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 Supplementary Methods 

 Using  Cloud-based  Resources  with  Local  Runtimes  |  Leveraging  cloud-based  computing 

 to  run  the  resources  we  share  offers  a  democratizing,  immediate,  and  easy  solution  -  as  it 

 doesn’t  require  setup  of  any  kind  nor  readily  available  hardware.  However,  even  when  the 

 primary  intent  is  to  run  these  pipelines  on  the  cloud,  we  believe  sharing  resources  developed 

 with  the  proposed  framework  can  bring  multifaceted  benefits  to  the  community.  Furthermore, 

 by  providing  a  way  to  run  such  pipelines  locally,  we  eliminate  the  dependency  on  any 

 third-party  cloud-computing  provider.  To  this  end,  we  used  publicly  available  Docker  images  1 

 to  reproduce  the  cloud-based  pipelines  on  local  nodes,  achieving  the  same  results.  We 

 provide  the  users  with  the  documentation  to  replicate  the  setup  as  part  of  the  project 

 repository  2,3  .  One  of  the  major  advantages  of  cloud-based  pipelines  remains  the  ease  of 

 integration:  whether  the  user  runs  the  pipelines  locally  or  on  the  cloud,  thanks  to  the  shared 

 Docker  images,  the  underlying  computational  environment  remains  consistent.  This  means 

 that  transitioning  between  local  and  cloud  processing,  whether  for  overflow  computational 

 needs or collaborative projects, becomes seamless. 

 Practical  Differences  Compared  to  a  Local  Setup  |  In  contrast  with  the  section  above,  we 

 want  to  provide  an  example  of  the  steps  a  user  (who  we  assume  is  familiar  with  the  field  and 

 equipped  with  adequate  computational  hardware  for  the  sake  of  simplicity)  should  follow  if 

 they  want  to  set  up  everything  necessary  to  replicate  and  extend  Hosny  et  al.’s  4  pipeline  on 

 local hardware without the resources provided. 

 The  first  step  in  this  process  should  be  to  set  up  a  computational  environment 

 capable  of  running  Hosny  et  al.  -  that  is,  python  libraries  and  system  dependencies.  Next, 

 the  user  must  search  for  and  download  publicly  available  data  (or  private/institutional  data) 

 that  suit  the  use  case  and  can  provide  a  reliable  benchmark  for  the  model  and  curate  them. 

 The  user  should  then  write  the  code  to  prepare  the  data  for  processing:  as  this  is  often  the 

 case,  this  requires  the  reimplementation  of  use-case-specific  data  preparation  steps,  often 

https://paperpile.com/c/v4joZE/Jbx01
https://paperpile.com/c/v4joZE/OHLo+2UbT
https://paperpile.com/c/v4joZE/APO3


 omitted  in  the  codebase  (as  for  Hosny  et  al.),  and  has  the  potential  to  introduce 

 inconsistencies  in  the  results  5  (given  the  number  of  tools  available  to  implement  such  steps 

 often  differs  in  some  key  aspects).  Finally,  the  user  must  re-implement  a  result  evaluation 

 pipeline  to  reproduce  or  extend  the  findings  of  the  original  publication.  This  often  relies, 

 again,  on  the  choice  of  a  preferred  tool  among  many  that  might  require  specific  expertise  to 

 be run as intended. 

 None  of  the  aforementioned  challenges  can,  by  their  nature,  be  addressed  by  the 

 reporting  guidelines,  checklists,  or  model  registries  (and  zoos)  that  have  been  proposed  in 

 recent  years  to  battle  the  reproducibility  crisis.  Furthermore,  such  challenges  can  be 

 worsened  by  the  fact  that  some  of  the  steps  involved  can  be  very  time-consuming  (e.g.,  the 

 selection  of  data  to  validate  the  pipeline)  or  demand  very  specific  knowledge  from  different 

 fields (e.g., the environment and model setup, the result analysis). 

https://paperpile.com/c/v4joZE/eMpPS


 Specifics of the Google Colaboratory Instances 

 CPU  Virtual 
 cores  RAM  GPU  VRAM  Disk 

 “Standard” 
 CPU-only 

 Intel Xeon 
 (2.20GHz)  2  13GiB  -  -  116GiB 

 “High RAM” 
 CPU-only 

 Intel Xeon 
 (2.20GHz)  8  52GiB  -  -  243GiB 

 “Free” GPU  Intel Xeon 
 (2.20GHz)  2  13GiB  T4  15GiB  84GiB 

 “Pro” GPU  Intel Xeon 
 (2.00GHz  8  52GiB  V100  16GiB  180GiB 

 Supplementary Table 1 | Colab Instances specifics.  Specifics of the different configurations of the 

 Colab instances used for developing and testing the end-to-end pipelines. 



 IDC  Queries  |  The  Imaging  Data  Commons  enables  the  user  to  query  against  any  of  the 

 DICOM  attributes  in  the  collections  hosted  on  the  platform  to  build  cohorts  that  can  be 

 recovered  at  any  point  in  time.  Here,  we  report  the  queries  we  used  to  build  the  datasets 

 used in our study. 

 NSCLC-Radiomics 

 SELECT 
 PatientID, 
 StudyInstanceUID, 
 SeriesInstanceUID, 
 SOPInstanceUID, 
 gcs_url 

 FROM 
 ̀bigquery  -public-data  .idc_v16.dicom_all` 

 WHERE 
 Modality  IN  (  "CT"  , 

 "RTSTRUCT"  ) 
 AND  Source_DOI =  "10.7937/K9/TCIA.2015.PF0M9REI" 

 ORDER BY 
 PatientID 

 Supplementary Item 1 | NSCLC-Radiomics Query 

 The  “SELECT”  statement  specifies  five  columns  to  be  parsed  from  the  specified  table:  the 

 patient  identifier,  the  study  instance  UID,  the  series  instance  UID,  the  Service-Object  Pair 

 (SOP)  Instance  UID,  and  the  GCS  URL.  In  this  case,  every  row  of  the  table  resulting  from 

 the  query  will  correspond  to  a  DICOM  file.  The  first  four  columns  are  DICOM  attributes 

 specific  to  the  file,  the  series,  or  the  study  -  while  the  last  column  will  contain  the  URL  to  the 

 corresponding DICOM file stored in Google Cloud Storage (GCS). 

 The  “FROM”  statement  specifies  the  dataset  and  table  from  which  to  retrieve  the 

 data.  In  this  case,  the  data  will  be  fetched  from  the  “dicom_all”  table  within  the  “idc_v16” 

 dataset,  part  of  BigQuery's  public  datasets  (specifically,  the  bigquery-public-data  project). 

 Specifying  the  version  of  the  IDC  data  to  fetch  makes  this  query  reproducible  at  any  point  in 

 time. 



 The  “WHERE”  statement  specifies  a  filter  applied  to  the  query  only  to  return  rows 

 where  the  DICOM  attribute  “Modality”  has  values  "CT"  (DICOM  Computed  Tomography 

 Series)  or  "RTSTRUCT"  (DICOM  Radiation  Therapy  Structure  Series).  Furthermore,  by 

 specifying  the  DOI  corresponding  to  the  NSCLC-Radiomics,  we  ensure  only  patients 

 belonging to the specific collections will be fetched. 

 Finally,  the  “ORDER”  clause  specifies  that  the  resulting  table  should  be  sorted  by  the 

 PatientID  column.  This  will  group  the  results  by  the  patient  identifier,  making  it  easier  to 

 inspect the content of the table. 

 NSCLC-Radiogenomics 

 SELECT 
 collection_id, 
 PatientID, 
 StudyInstanceUID, 
 SeriesInstanceUID, 
 SOPInstanceUID, 
 Modality, 
 gcs_url, 
 InstanceNumber 

 FROM 
 ̀bigquery  -public-data  .idc_v16.dicom_all` 

 WHERE 
 (Modality  IN  ("CT", "SEG"))  AND 
 (collection_id = "nsclc_radiogenomics") 

 Supplementary Item 2 | NSCLC-Radiogenomics Query 

 The  “SELECT”  statement  specifies  five  columns  to  be  parsed  from  the  specified  table:  in 

 addition  to  the  query  in  Supplementary  Item  1  ,  this  query  also  parses  the  collection 

 identifier,  the  modality,  and  the  instance  number.  As  for  the  other  query,  every  row  of  the 

 table  resulting  from  the  query  will  correspond  to  a  DICOM  file,  with  most  columns  containing 

 DICOM attributes specific to the file (except for the GCS URL and the collection ID). 

 The  “FROM”  statement  specifies  the  dataset  and  table  from  which  to  retrieve  the 

 data.  In  this  case,  the  data  will  be  fetched  from  the  “dicom_all”  table  within  the  “idc_v16” 



 dataset,  part  of  BigQuery's  public  datasets  (specifically,  the  bigquery-public-data  project). 

 Specifying  the  version  of  the  IDC  data  to  fetch  makes  this  query  reproducible  at  any  point  in 

 time. 

 The  “WHERE”  statement  specifies  a  filter  applied  to  the  query  only  to  return  rows 

 where  the  DICOM  attribute  “Modality”  has  values  "CT"  (DICOM  Computed  Tomography 

 Series)  or  "SEG"  (DICOM  Segmentation  object).  Since  NSCLC-Radiogenomics  has  both  CT 

 data  and  PET-CT  data,  this  makes  sure  we  are  only  fetching  the  DICOM  files  for  the 

 Computed  Tomography.  By  specifying  the  DOI  corresponding  to  the  NSCLC-Radiomics,  we 

 ensure only patients belonging to the specific collections will be fetched. 

 Finally,  the  “ORDER”  clause  specifies  that  the  resulting  table  should  be  sorted  by  the 

 PatientID  column.  This  will  group  the  results  by  the  patient  identifier,  making  it  easier  to 

 inspect the content of the table. 



 References 

 1.  Google Artifact Registry - Google Colab Docker  Images. 

 https://console.cloud.google.com/artifacts/docker/colab-images/us/public/runtime  . 

 2.  idc-radiomics-reproducibility  . (Github). 

 3.  Dennis Bontempi. @AIM-Harvard @MHubAI. 

 ImagingDataCommons/idc-radiomics-reproducibility: Second release  . 

 doi:  10.5281/zenodo.10047767  . 

 4.  Hosny, A.  et al.  Deep learning for lung cancer  prognostication: A retrospective 

 multi-cohort radiomics study.  PLoS Med.  15  , e1002711  (2018). 

 5.  Mateus, P.  et al.  Image based prognosis in head  and neck cancer using convolutional 

 neural networks: a case study in reproducibility and optimization.  Sci. Rep.  13  , 18176 

 (2023). 

http://paperpile.com/b/v4joZE/Jbx01
https://console.cloud.google.com/artifacts/docker/colab-images/us/public/runtime
http://paperpile.com/b/v4joZE/Jbx01
http://paperpile.com/b/v4joZE/OHLo
http://paperpile.com/b/v4joZE/2UbT
http://paperpile.com/b/v4joZE/2UbT
http://paperpile.com/b/v4joZE/2UbT
http://dx.doi.org/10.5281/zenodo.10047767
http://paperpile.com/b/v4joZE/2UbT
http://paperpile.com/b/v4joZE/APO3
http://paperpile.com/b/v4joZE/APO3
http://paperpile.com/b/v4joZE/eMpPS
http://paperpile.com/b/v4joZE/eMpPS
http://paperpile.com/b/v4joZE/eMpPS

