
 Supplementary Information for “End-to-End Reproducible AI

 Pipelines in Radiology Using the Cloud”

 Authors | Dennis Bontempi 1,2,3 , Leonard Nuernberg 1,2,3 , Suraj Pai 1,2,3 , Deepa Krishnaswamy 4 ,

 Vamsi Thiriveedhi 4 , Ahmed Hosny 1,3 , Raymond H Mak 1,3 , Keyvan Farahani 5 , Ron Kikinis 4 ,

 Andrey Fedorov 4 , Hugo JWL Aerts 1,2,3

 Affiliations
 1 Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical

 School, Boston, United States of America.
 2 Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, The

 Netherlands.
 3 Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School,

 Boston, United States of America.
 4 Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School,

 Boston, United States of America.
 5 National Heart, Lung, and Blood Institute and National Cancer Institute, Bethesda,

 Maryland

 Supplementary Methods

 Using Cloud-based Resources with Local Runtimes | Leveraging cloud-based computing

 to run the resources we share offers a democratizing, immediate, and easy solution - as it

 doesn’t require setup of any kind nor readily available hardware. However, even when the

 primary intent is to run these pipelines on the cloud, we believe sharing resources developed

 with the proposed framework can bring multifaceted benefits to the community. Furthermore,

 by providing a way to run such pipelines locally, we eliminate the dependency on any

 third-party cloud-computing provider. To this end, we used publicly available Docker images 1

 to reproduce the cloud-based pipelines on local nodes, achieving the same results. We

 provide the users with the documentation to replicate the setup as part of the project

 repository 2,3 . One of the major advantages of cloud-based pipelines remains the ease of

 integration: whether the user runs the pipelines locally or on the cloud, thanks to the shared

 Docker images, the underlying computational environment remains consistent. This means

 that transitioning between local and cloud processing, whether for overflow computational

 needs or collaborative projects, becomes seamless.

 Practical Differences Compared to a Local Setup | In contrast with the section above, we

 want to provide an example of the steps a user (who we assume is familiar with the field and

 equipped with adequate computational hardware for the sake of simplicity) should follow if

 they want to set up everything necessary to replicate and extend Hosny et al.’s 4 pipeline on

 local hardware without the resources provided.

 The first step in this process should be to set up a computational environment

 capable of running Hosny et al. - that is, python libraries and system dependencies. Next,

 the user must search for and download publicly available data (or private/institutional data)

 that suit the use case and can provide a reliable benchmark for the model and curate them.

 The user should then write the code to prepare the data for processing: as this is often the

 case, this requires the reimplementation of use-case-specific data preparation steps, often

https://paperpile.com/c/v4joZE/Jbx01
https://paperpile.com/c/v4joZE/OHLo+2UbT
https://paperpile.com/c/v4joZE/APO3

 omitted in the codebase (as for Hosny et al.), and has the potential to introduce

 inconsistencies in the results 5 (given the number of tools available to implement such steps

 often differs in some key aspects). Finally, the user must re-implement a result evaluation

 pipeline to reproduce or extend the findings of the original publication. This often relies,

 again, on the choice of a preferred tool among many that might require specific expertise to

 be run as intended.

 None of the aforementioned challenges can, by their nature, be addressed by the

 reporting guidelines, checklists, or model registries (and zoos) that have been proposed in

 recent years to battle the reproducibility crisis. Furthermore, such challenges can be

 worsened by the fact that some of the steps involved can be very time-consuming (e.g., the

 selection of data to validate the pipeline) or demand very specific knowledge from different

 fields (e.g., the environment and model setup, the result analysis).

https://paperpile.com/c/v4joZE/eMpPS

 Specifics of the Google Colaboratory Instances

 CPU Virtual
 cores RAM GPU VRAM Disk

 “Standard”
 CPU-only

 Intel Xeon
 (2.20GHz) 2 13GiB - - 116GiB

 “High RAM”
 CPU-only

 Intel Xeon
 (2.20GHz) 8 52GiB - - 243GiB

 “Free” GPU Intel Xeon
 (2.20GHz) 2 13GiB T4 15GiB 84GiB

 “Pro” GPU Intel Xeon
 (2.00GHz 8 52GiB V100 16GiB 180GiB

 Supplementary Table 1 | Colab Instances specifics. Specifics of the different configurations of the

 Colab instances used for developing and testing the end-to-end pipelines.

 IDC Queries | The Imaging Data Commons enables the user to query against any of the

 DICOM attributes in the collections hosted on the platform to build cohorts that can be

 recovered at any point in time. Here, we report the queries we used to build the datasets

 used in our study.

 NSCLC-Radiomics

 SELECT
 PatientID,
 StudyInstanceUID,
 SeriesInstanceUID,
 SOPInstanceUID,
 gcs_url

 FROM
 ̀bigquery -public-data .idc_v16.dicom_all`

 WHERE
 Modality IN ("CT" ,

 "RTSTRUCT")
 AND Source_DOI = "10.7937/K9/TCIA.2015.PF0M9REI"

 ORDER BY
 PatientID

 Supplementary Item 1 | NSCLC-Radiomics Query

 The “SELECT” statement specifies five columns to be parsed from the specified table: the

 patient identifier, the study instance UID, the series instance UID, the Service-Object Pair

 (SOP) Instance UID, and the GCS URL. In this case, every row of the table resulting from

 the query will correspond to a DICOM file. The first four columns are DICOM attributes

 specific to the file, the series, or the study - while the last column will contain the URL to the

 corresponding DICOM file stored in Google Cloud Storage (GCS).

 The “FROM” statement specifies the dataset and table from which to retrieve the

 data. In this case, the data will be fetched from the “dicom_all” table within the “idc_v16”

 dataset, part of BigQuery's public datasets (specifically, the bigquery-public-data project).

 Specifying the version of the IDC data to fetch makes this query reproducible at any point in

 time.

 The “WHERE” statement specifies a filter applied to the query only to return rows

 where the DICOM attribute “Modality” has values "CT" (DICOM Computed Tomography

 Series) or "RTSTRUCT" (DICOM Radiation Therapy Structure Series). Furthermore, by

 specifying the DOI corresponding to the NSCLC-Radiomics, we ensure only patients

 belonging to the specific collections will be fetched.

 Finally, the “ORDER” clause specifies that the resulting table should be sorted by the

 PatientID column. This will group the results by the patient identifier, making it easier to

 inspect the content of the table.

 NSCLC-Radiogenomics

 SELECT
 collection_id,
 PatientID,
 StudyInstanceUID,
 SeriesInstanceUID,
 SOPInstanceUID,
 Modality,
 gcs_url,
 InstanceNumber

 FROM
 ̀bigquery -public-data .idc_v16.dicom_all`

 WHERE
 (Modality IN ("CT", "SEG")) AND
 (collection_id = "nsclc_radiogenomics")

 Supplementary Item 2 | NSCLC-Radiogenomics Query

 The “SELECT” statement specifies five columns to be parsed from the specified table: in

 addition to the query in Supplementary Item 1 , this query also parses the collection

 identifier, the modality, and the instance number. As for the other query, every row of the

 table resulting from the query will correspond to a DICOM file, with most columns containing

 DICOM attributes specific to the file (except for the GCS URL and the collection ID).

 The “FROM” statement specifies the dataset and table from which to retrieve the

 data. In this case, the data will be fetched from the “dicom_all” table within the “idc_v16”

 dataset, part of BigQuery's public datasets (specifically, the bigquery-public-data project).

 Specifying the version of the IDC data to fetch makes this query reproducible at any point in

 time.

 The “WHERE” statement specifies a filter applied to the query only to return rows

 where the DICOM attribute “Modality” has values "CT" (DICOM Computed Tomography

 Series) or "SEG" (DICOM Segmentation object). Since NSCLC-Radiogenomics has both CT

 data and PET-CT data, this makes sure we are only fetching the DICOM files for the

 Computed Tomography. By specifying the DOI corresponding to the NSCLC-Radiomics, we

 ensure only patients belonging to the specific collections will be fetched.

 Finally, the “ORDER” clause specifies that the resulting table should be sorted by the

 PatientID column. This will group the results by the patient identifier, making it easier to

 inspect the content of the table.

 References

 1. Google Artifact Registry - Google Colab Docker Images.

 https://console.cloud.google.com/artifacts/docker/colab-images/us/public/runtime .

 2. idc-radiomics-reproducibility . (Github).

 3. Dennis Bontempi. @AIM-Harvard @MHubAI.

 ImagingDataCommons/idc-radiomics-reproducibility: Second release .

 doi: 10.5281/zenodo.10047767 .

 4. Hosny, A. et al. Deep learning for lung cancer prognostication: A retrospective

 multi-cohort radiomics study. PLoS Med. 15 , e1002711 (2018).

 5. Mateus, P. et al. Image based prognosis in head and neck cancer using convolutional

 neural networks: a case study in reproducibility and optimization. Sci. Rep. 13 , 18176

 (2023).

http://paperpile.com/b/v4joZE/Jbx01
https://console.cloud.google.com/artifacts/docker/colab-images/us/public/runtime
http://paperpile.com/b/v4joZE/Jbx01
http://paperpile.com/b/v4joZE/OHLo
http://paperpile.com/b/v4joZE/2UbT
http://paperpile.com/b/v4joZE/2UbT
http://paperpile.com/b/v4joZE/2UbT
http://dx.doi.org/10.5281/zenodo.10047767
http://paperpile.com/b/v4joZE/2UbT
http://paperpile.com/b/v4joZE/APO3
http://paperpile.com/b/v4joZE/APO3
http://paperpile.com/b/v4joZE/eMpPS
http://paperpile.com/b/v4joZE/eMpPS
http://paperpile.com/b/v4joZE/eMpPS

