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Supplementary Methods

Using Cloud-based Resources with Local Runtimes | Leveraging cloud-based computing
to run the resources we share offers a democratizing, immediate, and easy solution - as it
doesn’t require setup of any kind nor readily available hardware. However, even when the
primary intent is to run these pipelines on the cloud, we believe sharing resources developed
with the proposed framework can bring multifaceted benefits to the community. Furthermore,
by providing a way to run such pipelines locally, we eliminate the dependency on any
third-party cloud-computing provider. To this end, we used publicly available Docker images'
to reproduce the cloud-based pipelines on local nodes, achieving the same results. We
provide the users with the documentation to replicate the setup as part of the project
repository?3. One of the major advantages of cloud-based pipelines remains the ease of
integration: whether the user runs the pipelines locally or on the cloud, thanks to the shared
Docker images, the underlying computational environment remains consistent. This means
that transitioning between local and cloud processing, whether for overflow computational

needs or collaborative projects, becomes seamless.

Practical Differences Compared to a Local Setup | In contrast with the section above, we
want to provide an example of the steps a user (who we assume is familiar with the field and
equipped with adequate computational hardware for the sake of simplicity) should follow if
they want to set up everything necessary to replicate and extend Hosny et al.’s * pipeline on
local hardware without the resources provided.

The first step in this process should be to set up a computational environment
capable of running Hosny et al. - that is, python libraries and system dependencies. Next,
the user must search for and download publicly available data (or private/institutional data)
that suit the use case and can provide a reliable benchmark for the model and curate them.
The user should then write the code to prepare the data for processing: as this is often the

case, this requires the reimplementation of use-case-specific data preparation steps, often


https://paperpile.com/c/v4joZE/Jbx01
https://paperpile.com/c/v4joZE/OHLo+2UbT
https://paperpile.com/c/v4joZE/APO3

omitted in the codebase (as for Hosny et al.), and has the potential to introduce
inconsistencies in the results® (given the number of tools available to implement such steps
often differs in some key aspects). Finally, the user must re-implement a result evaluation
pipeline to reproduce or extend the findings of the original publication. This often relies,
again, on the choice of a preferred tool among many that might require specific expertise to
be run as intended.

None of the aforementioned challenges can, by their nature, be addressed by the
reporting guidelines, checklists, or model registries (and zoos) that have been proposed in
recent years to battle the reproducibility crisis. Furthermore, such challenges can be
worsened by the fact that some of the steps involved can be very time-consuming (e.g., the
selection of data to validate the pipeline) or demand very specific knowledge from different

fields (e.g., the environment and model setup, the result analysis).


https://paperpile.com/c/v4joZE/eMpPS

Specifics of the Google Colaboratory Instances
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Supplementary Table 1 | Colab Instances specifics. Specifics of the different configurations of the

Colab instances used for developing and testing the end-to-end pipelines.



IDC Queries | The Imaging Data Commons enables the user to query against any of the
DICOM attributes in the collections hosted on the platform to build cohorts that can be
recovered at any point in time. Here, we report the queries we used to build the datasets

used in our study.

NSCLC-Radiomics

SELECT

PatientID,

StudyInstanceUID,

SeriesInstanceUID,

SOPInstanceUID,

gcs_url
FROM

"bigquery-public-data.idc_v16.dicom_all"
WHERE

Modality IN ("CT",

"RTSTRUCT")

AND Source_DOI = "10.7937/K9/TCIA.2015.PFOMORET"
ORDER BY

PatientID

Supplementary Item 1 | NSCLC-Radiomics Query

The “SELECT” statement specifies five columns to be parsed from the specified table: the
patient identifier, the study instance UID, the series instance UID, the Service-Object Pair
(SOP) Instance UID, and the GCS URL. In this case, every row of the table resulting from
the query will correspond to a DICOM file. The first four columns are DICOM attributes
specific to the file, the series, or the study - while the last column will contain the URL to the
corresponding DICOM file stored in Google Cloud Storage (GCS).

The “FROM” statement specifies the dataset and table from which to retrieve the
data. In this case, the data will be fetched from the “dicom_all” table within the “idc_v16”
dataset, part of BigQuery's public datasets (specifically, the bigquery-public-data project).
Specifying the version of the IDC data to fetch makes this query reproducible at any point in

time.



The “WHERE” statement specifies a filter applied to the query only to return rows
where the DICOM attribute “Modality” has values "CT" (DICOM Computed Tomography
Series) or "RTSTRUCT" (DICOM Radiation Therapy Structure Series). Furthermore, by
specifying the DOI corresponding to the NSCLC-Radiomics, we ensure only patients
belonging to the specific collections will be fetched.

Finally, the “ORDER” clause specifies that the resulting table should be sorted by the
PatientID column. This will group the results by the patient identifier, making it easier to

inspect the content of the table.

NSCLC-Radiogenomics

SELECT
collection_id,
PatientID,
StudyInstanceUID,
SeriesInstanceUID,
SOPInstanceUID,
Modality,
gcs_url,
InstanceNumber
FROM
"bigquery-public-data.idc_v16.dicom_all"
WHERE
(Modality IN ("CT", "SEG")) AND
(collection_id = "nsclc_radiogenomics")

Supplementary Item 2 | NSCLC-Radiogenomics Query

The “SELECT” statement specifies five columns to be parsed from the specified table: in
addition to the query in Supplementary Item 1, this query also parses the collection
identifier, the modality, and the instance number. As for the other query, every row of the
table resulting from the query will correspond to a DICOM file, with most columns containing
DICOM attributes specific to the file (except for the GCS URL and the collection ID).

The “FROM” statement specifies the dataset and table from which to retrieve the

data. In this case, the data will be fetched from the “dicom_all” table within the “idc_v16”



dataset, part of BigQuery's public datasets (specifically, the bigquery-public-data project).
Specifying the version of the IDC data to fetch makes this query reproducible at any point in
time.

The “WHERE” statement specifies a filter applied to the query only to return rows
where the DICOM attribute “Modality” has values "CT" (DICOM Computed Tomography
Series) or "SEG" (DICOM Segmentation object). Since NSCLC-Radiogenomics has both CT
data and PET-CT data, this makes sure we are only fetching the DICOM files for the
Computed Tomography. By specifying the DOI corresponding to the NSCLC-Radiomics, we
ensure only patients belonging to the specific collections will be fetched.

Finally, the “ORDER” clause specifies that the resulting table should be sorted by the
PatientID column. This will group the results by the patient identifier, making it easier to

inspect the content of the table.
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