
A Supplementary Methods

A.1 FracMinHash for k-mer sampling

FracMinHash [1] is a method for systematically selecting a subset of k-mers from a
larger set of k-mers (i.e. subsampling). All k-mers used in fairy are obtained after
selection by FracMinHash. We describe FracMinHash below.

Let h : Σk → {0, ..., 264− 1} be a hash function from k-mers to 64-bit integers. Let
c be a positive number. Given a set of k-mers X, we obtain a subset

FMHc(X) = {x ∈ X : h(x) <
264 − 1

c
}.

Intuitively, FracMinHash returns a set of k-mers approximately c times smaller than
the original set, assuming a reasonably uniform hash function. The key reason we use
FracMinHash is that k-mers are consistently subsampled across different sequences –
given a fixed hash function, if a k-mer is sampled on a contig, the same k-mer will be
sampled on the read (because its hash value is the same).

In practice, fairy uses minimap2’s [2] hash function. Fairy uses c = 50 by default
and k = 31.

A.2 Containment ANI

Let A be a contig’s k-mers after applying FracMinHash. Let B be a metagenomic
sample’s (i.e. a set of reads) collection of k-mers after applying FracMinHash (over all
reads). The naive containment ANI is defined as

ANInaive =

(
|A ∩B|
|A|

)1/k

.

The containment ANI generalizes the standard ANI for genome-to-genome compar-
isons [3] under a simple statistical model. The naive containment ANI is not accurate
when the coverage of the contig is low within the sample [4]. To deal with this, sylph [5]
introduced a statistical procedure to estimate containment ANI accurately under low
coverage.

Briefly, let Na be the number of k-mers in A (the contig) with multiplicity/count
a in B (the sample). Under stochastic sequencing assumptions, we can estimate the

effective coverage as λ = (a + 1)Na+1

Na
[5, 6] for any a > 0; a is chosen to correspond

to the largest value of Na. Then, fairy’s containment ANI can be estimated as

ANI =

(
|A ∩B|

|A|(1− e−λ)

)1/k

.

In practice, fairy only estimates λ when the median k-mer coverage in the sample is
≤ 3, otherwise we use the naive formula. Additional implementation details are given
in the Methods section of sylph’s manuscript [5].
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A.3 Coverage calculation

Given a set of multiplicities for the k-mers in A (the contig) in the metagenomic
sample, we calculate coverage as follows. Let M be the median k-mer multiplicity.

• If M ≤ 3: fairy outputs the λ estimate (discussed previously).
• If 4 ≤ M ≤ 15: fairy uses a robust mean as follows. Let Z ∼ Pois(M) be a Poisson
random variable with mean M , the median k-mer multiplicity. We discard all k-mer
multiplicities α with P (Z > α) < 10−10, and then output a robust mean. This is
done to discard long-tailed outliers due to repetitive and shared k-mers.

• If M > 15, fairy outputs the median k-mer multiplicity M .

The intuition for the above procedure is that for smallM , a statistical method is crucial
because means and medians do not give enough resolution. For moderate M , means
give better resolution than medians but require thresholding to ensure robustness to
outliers.
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B Supplementary Figures

Fig. 1 Log-log plot of short-read, multi-sample bins recovered stratified by binning
method. Top: > 50% complete and < 5% contaminated bins. Bottom: > 90% complete and < 5%
contaminated bins.
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Fig. 2 Coverage patterns for fairy vs BWA on a high-quality bin. A high-quality bin on
the chicken caecum dataset for fairy (right) was split into two bins for BWA (left) by MetaBAT2.
The contigs on the top of fairy’s heatmap were unique to BWA’s results and not found in fairy’s 99%
complete bin. Coverage gaps (right, top) were due to the contigs not passing fairy’s ANI thresholds.
For the first column (i.e. sample), each of BWA Bin 2’s contig coverages was larger than all of BWA
Bin 1’s coverages. However, this was not the case when analyzing BWA Bin 2’s contigs using fairy’s
coverage.
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