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Supplementary Figure 1: jPCA rotations incompletely describe motor cortex activity. a, 
Rotations uncovered by jPCA across datasets. jPCA identified two rotational planes in M1 activity, 
and one rotational plane in PMd. b, The fit of rotational dynamics identified by jPCA depended 
heavily on reach complexity. jPCA fit motor cortex activity on straight reaches substantially better 
than curved reaches (p < 0.001, Wilcoxon Signed Rank test). c, Multi-unit PSTHs and 
reconstruction by jPCA rotations and mean activity across conditions. Rotations captured little of 
the multi-phasic modulation of neural activity during reaching. Traces colored by target angle.  
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Supplementary Figure 2: Eigenvalues of motor cortical dynamics correlate modestly with 
reach parameters. a, Probability distribution of eigenvalues for single-condition dynamics (left) 
and eigenvalues colored by target angle (right). b, Second eigenvalues of single-condition 
dynamics (blue, left), and x-extent of reach vs. the imaginary component of the second eigenvalue 
(right). No obvious relationship is present. c, Eighth eigenvalues (corresponding to the highest-
frequencies that were reliable) of single-condition dynamics (blue, left), and reach duration vs. the 
imaginary component of the eighth eigenvalue (right). Data in a-c taken from M1-N. d, Histogram 
of correlation coefficients of reach parameters with each real and imaginary component of each 
eigenvalue. e, Histogram of R2 for linear models predicting real and imaginary components of 
eigenvalues from reach parameters. Data in d, e is pooled across datasets.  
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Supplementary Figure 3: Different planes with shared eigenvalues best fit motor cortex 
activity. We compared models of motor cortex dynamics in which rotational frequencies were 
held constant between conditions while rotational planes were allowed to vary between conditions 
(the LDR model; left), rotational frequencies and planes were allowed to vary between conditions 
(center), and rotational frequencies and planes were conserved between conditions (right). Note 
that while the “different planes, shared eigenvalues” (LDR) model is a subset of the “different 
planes and eigenvalues” (condition-specific LDS) model, the “different planes, shared 
eigenvalues” explains greater neural variance when cross-validated. This improvement has two 
sources. First, as this model assumes that eigenvalues are shared across conditions, it gets to 
estimate rotational frequencies using every condition, leading to more stable estimates of 
eigenvalues. Second, LDS models predict the population state’s derivative from the state, which 
does not directly optimize variance explained. The “different planes, shared eigenvalues” model, 
on the other hand, directly optimizes the variance explained. 
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Supplementary Figure 4: Rotational planes differ between conditions. a, Alignment indices 
between corresponding (same-frequency) rotational planes on pairs of conditions (colored) and 
distribution expected due to estimation noise (gray).  b, Subspace Excursion Angles for 
corresponding rotational planes across conditions (colored), along with angles expected due to 
estimation noise (gray; Line, mean; shaded, 1 standard deviation).  
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Supplementary Figure 5: Rotations occupied distinct subspaces in neural state space. 
Cumulative distribution function of alignment index between different-frequency rotational planes 
(gray) and same-frequency rotational planes (colored) on pairs of conditions. Same-frequency 
rotational planes were more aligned than different-frequency rotational planes. 
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Supplementary Figure 6: State space location differed between conditions. a, Alignment 
indices between state space locations on pairs of conditions (green) and distribution expected 
due to estimation noise (gray).  b, Subspace excursion angles for state space locations across 
conditions (green), along with angles expected by estimation noise (gray) and angles formed by 
rotations (purple). Line, mean; shaded, 1 standard deviation. c, Cumulative distribution function 
of alignment index between rotations and state space locations (gray) and state space locations 
compared to state space locations (green) on pairs of conditions. State space locations were 
more aligned with themselves than with rotations.  
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Supplementary Figure 7: Reach kinematics are sufficient to predict motor cortex 
dynamics. a, To demonstrate that LDR encoding used continuous features to determine test 
condition dynamics, rather than simply memorizing the training set, we compared kernel 
regression (a continuous model) with nearest-neighbor regression (which memorizes the training 
set). Conditions were sorted by target angle. To make the (six-fold) cross-validation more 
challenging, for each fold we held out conditions with targets in the same sextant. The higher 
performance of kernel regression indicates that nonlinear LDR encoding was not merely 
memorization of the training set. b, Example unit for the 7 models of neural activity fit in this study.   
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Supplementary Figure 8: LDR-based decoding does not rely on output-potent dimensions 
exclusively. Variance explained in hand position using LDR-based decoding with and without 
output-potent activity. Each dot is a condition. LDR-based decoding still performed well even after 
excluding output-potent dimensions.  
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Supplement 
 
Basis function representation of a diagonalizable linear dynamical system 
Linear dynamical systems are defined by a transfer matrix, M, that maps the state of the dynamical 
forward in time. This can be defined in continuous time as 
 

(1) dx/dt = Mx 
 

so that the derivative of the state is just a linear transformation on the current state. From some 
initial state x0, the state at time t can be expressed as  
 

(2) x(t) = mexp(Mt)x0 
 
where mexp() refers to the matrix exponential. In this section, we will work in continuous time, 
though our argument generalizes to discrete time naturally. Under a few assumptions, the transfer 
matrix M can be diagonalized 
 

(7) M = Ediag(d)E-1 
 
where E is the eigenvectors of the dynamics, d is a vector of the eigenvalues, and diag() returns 
a diagonal matrix with the argument along the diagonal. If M is diagonalizable, then the state at 
time t can be expressed more simply as 
 

(8) x(t) = Eexp(diag(d)t)E-1x0 
 
where exp() is the exponential function applied to each element in its argument. Define the vector 
 

(9) xe0 = E-1x0 
 
as the initial state in the eigenvector basis. Using that, for two vectors z and y of identical 
dimensions,  
 

(10) diag(z)y = diag(y)z 
 
then (8) can be re-written as   
 

(11) x(t) = Ediag(xe0)exp(dt) 
 
so that exp(dt) is now a column-vector. By further defining the terms 
 

(12) b(t) = exp(dt) 
 

(13) L = Ediag(xe0) 
 
(11) can be re-written as  
 

(14) x(t) = Lb(t) 
 
so that the state at time t can be expressed as the product of loading matrix and a set of temporal 
basis functions. This factorization isolates the effect of the eigenvalues in determining the 
“temporal” characteristics of the population into b. L, by contrast, expresses both the effect of the 
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eigenvectors of determining “where” in state space dynamics occur, and the initial state in setting 
the phases and magnitudes of the dynamics.  
 
Fitting motor cortex activity with conserved rotations, but varying rotational planes 
In this study, we required a method to identify a model of motor cortex activity where rotations in 
motor cortex activity were conserved in their temporal characteristics (identical eigenvalues), but 
occupied different planes on different conditions (different eigenvectors). In this model, motor 
cortex activity on single conditions is an LDS. This system is, however, nonlinear across 
conditions, thus disallowing simply regressing the state’s derivatives against the state. We exploit 
the basis-function representation of LDSs to work around this issue. As conditions share 
eigenvalues, they share temporal basis functions. This means that two conditions, i and j, have 
states as a function of time t 
 

(15) x(i)(t) = L(i)b(t) 
 

(16) x(j)(t) = L(j)b(t) 
 

(17) L(j) = E(j)diag(E(j),-1x(j)0) 
 
where x(j)(t) and x(i)(t) is the firing rates at time t on conditions j and i respectively, E(j) is the matrix 
of eigenvectors of the transfer matrix for condition j, and x(j)0 is the initial state on condition j. 
Usefully, while the loading matrices in (15) and (16) differ, the temporal basis functions are 
conserved between conditions because the eigenvalues are conserved. This means that activity 
on each condition is just a different linear transformation on the same temporal basis functions. 
Fitting this model therefore reduces to identifying an optimal set of temporal basis functions that 
explain neural activity. These can be obtained by the temporal singular vectors of the neural 
activity concatenated into a (neurons x conditions)-by-time matrix, or equivalently the 
eigenvectors of the Gramian matrix over time. This is comparable to similar operations over 
neurons that are used to extract the dimensions of highest variance in neural state space.   
 
 


