Supporting Information

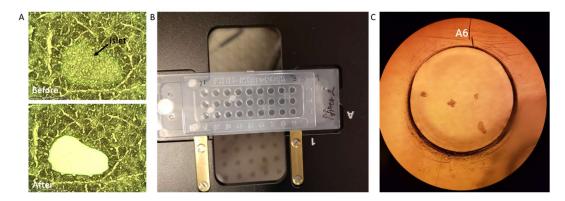
Coupling microdroplet-based sample preparation, multiplexed isobaric labeling, and nanoflow peptide fractionation for deep proteome profiling of tissue microenvironment

Marija Veličković¹, Thomas L. Fillmore¹, Isaac Kwame Attah², Camilo Posso², James C. Pino², Rui Zhao¹, Sarah M. Williams¹, Dušan Veličković¹, Jon M. Jacobs¹, Kristin E. Burnum-Johnson¹, Ying Zhu^{1,†,*}, and Paul D. Piehowski^{1,*}

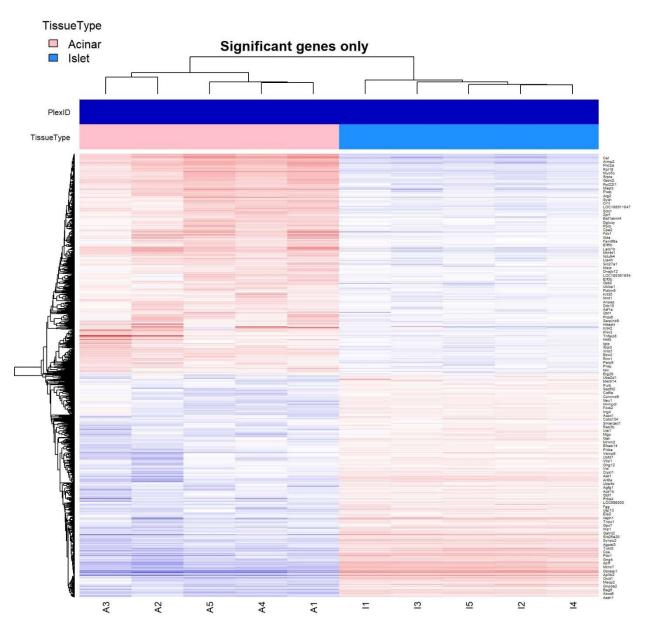
¹ Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.

² Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.

†Present Address: Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, 1 DNA Way, South San Francisco, 94080, United States.


* Paul D. Piehowski, contact information: Paul.Piehowski@pnnl.gov

* Ying Zhu, contact information: <u>zhu.ying@gene.com</u>


Table of Contents

Supporting figure 1. Images of the dissection and collection of pancreas tissue voxels into the microPOTS chip.

Supporting Figure 2: The heat map visualization of distinct cluster of all significant genes, indicating different biological functions of the two tissue types (islet and acinar).

Supporting figure 1. Images of the dissection and collection of pancreas tissue voxels into the microPOTS chip. A) Islet region before and after laser-microdissection B) Microchip with collected pancreas tissue samples. Microwells were preloaded with DMSO that served as a capturing medium. C) Islet tissue voxels collected into microwell A6, observed under the Zeiss LCM microscope.

Supporting Figure 2: The heat map visualization of distinct cluster of all significant genes, indicating different biological functions of the two tissue types (islet and acinar).