1	Supplementary Information for:
2	Hyperlocal Air Pollution Mapping: A Scalable Transfer Learning LUR
3	Approach for Mobile Monitoring
4	Zhendong Yuan ¹ *, Jules Kerckhoffs ¹ , Hao Li ² , Jibran Khan ^{3,4} , Gerard Hoek ¹ , Roel Vermeulen ^{1,5}
5	¹ Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, Netherlands
6	² Professorship of Big Geospatial Data Management, Technical University of Munich, 85521 Ottobrunn, Germany
7	³ Department of Environmental Science, Aarhus University, DK-4000 Roskilde, Denmark
8	⁴ Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, DK-4000 Roskilde, Denmark
9	⁵ Julius Centre for Health Sciences and Primary Care, University Medical Centre, Utrecht University, 3584 CX Utrecht,
10	The Netherlands
11	
12	*Corresponding author
13	z.yuan@uu.nl
14	
15	
10	
17	
18	This file contains one text, five tables and three figures.
19	<u>Text:</u>
20	Text S1. Model implementation of SLR
21	<u>Tables:</u>
22	Table S1. Spatial predictor variables with units, predefined directions of effect, and buffer sizes
23	in AMS.
24	Table S2. Statistics of UFP model predictions in particle/cm ³ .
25	Table S3. SLR trained in Rotterdam.
26	Table S4. SLR trained in Copenhagen.
27	Table S5. SLR trained in Amsterdam.
28	
29	Figures:
30	Figure S1. Scatterplot of model predictions against fixed-site validation measurements.
31	Figure S2. NO_2 maps of differences between SLR_AMS_160D and the other model tested.

- 32 Figure S3. Spatial maps of UFP predictions from the mixed-effect and IDW_Coral models with
- 33 a unified legend.

35 Text S1. Model implementation of SLR

The stepwise linear regression (SLR) model selects predictor variables in a forward stepwise 36 manner. It starts by taking an empty, intercept-only model, and then adds variables based on 37 38 the goodness of fit determined via the adjusted R² values. The variable having the highest 39 adjusted R² value was added first in the model, and the model development process stopped 40 when adding new variables could not improve the adjusted R². Predictor variables are only included when the direction of the association is predetermined (e.g., positive for traffic load). 41 42 The predictor variables in the LUR models were checked for p-value and collinearity. Here, p-43 value > 0.10 and variance inflation factor > 3 and Cook's D < 1 was removed.

44

Table S1: Spatial predictor variables with units, predefined directions of effect, and buffer sizes in AMS.

Predictor variable	Abbreviation	Units	Direction	Buffer	10 th	Mean	90 th
			of effect	100	percentile	1150	Percentile
				200	0	1159	0
Agricultural	ACDI	m 2		500	0	24770	64052
land area ¹	AGKI_	m²	-	- 500	0	34779	64052
				5000	1710001	178942	649727
Ainn ant angal	A ID			5000	1/10991	13290916	30287613
Airport area	AIR_	III²	T	100	0	640794	1628347
				200	0	2006	0
Terdenstern and al	NIDUC	?		500	0	17769	41347
Industry area	INDUS_	m²	+	1000	0	49074	180131
				5000	2002105	199831	730248
				5000	2902185	5182292	8091464
				200	0	0	0
Natural and	NATIO	?		500	0	0	0
forested areas ¹	NATUR_	m²	-	500	0	0	0
				5000	0	420222	0
Dant ana 1	DODT	?		100	0	429332	2388024
rort area	PORI_	III-	Ŧ	200	0	2048	2510
				500	0	22447	85979
				1000	0	226202	258949
				5000	0	226393	956817
Desidential land	DEC			100	0	21152	1326/782
Residential land	KES_	m²	+	200	0	21152	31416
arca				500	0	183950	282742
				1000	104805	492795	785390
				5000	17042122	1820998	3040804
Transportation	TDANG	m ²		100	17043122	32157817	40811045
area ¹	IKANS_	111-	т	200	0	0	0
arca				500	0	12457	2074
				1000	0	50061	2874
				5000	510010	1240506	2002005
				100	0	2251	7952
				300	0	2531	102385
Urban Green	URBG	m ²	_	500	0	7023/	268822
area ¹		111	_	1000	0	261278	852803
				5000	62/18972	9362179	13883066
				100	<u>۲0572</u>	0	0
				300	0	10238	30716
Water ¹	WATER	m ²		500	0	27897	152527
** atti	WITTER_	111		1000	0	222478	741893
				5000	2904140	8362718	12310634
				5000	2304140	0302710	12310034

				100	0	319	770
D				300	0	2385	5355
Population	РОР	n	+	500	25	6091	13410
density-	—			1000	1485	21762	46115
				5000	146514	366674	580006
Traffic intensity on nearest road ³	TRAFNEAR	Veh/day	+		137	9986	22487
Traffic intensity on nearest	TRAFMAJOR	Veh/day	+		3115	14212	28042
Heavy-duty traffic intensity on nearest road ³	HTRAFNEAR	Veh/day	+		0	619	1333
Heavy-duty traffic intensity	HTRAFMAIOR	Veh/dav	+		54	980	2138
on nearest major road ³		v en/ duy					
Road length of	RDL_	m	+	25	39	66	100
all roads ⁵				50	100	187	294
				100	254	636	966
				300	2029	4880	7083
				500	7893	13761	19090
	MDDI			1000	29092	50344	68095
Road length of	MRDL_	m	+		0	24	91
an major roaus				100	0	210	198
				200	0	1522	254
				500	0	1532	3554
				1000	2015	13627	21887
Traffic intensity	TLOA	(Veh/dav)*m	+	25	0	63/722	15799/15
on all roads	ilon_	(ven/duy) in		50	6393	1815133	4797110
(sum of (traffic				100	78159	5494027	14290643
intensity *				300	3038453	36918277	1.01E+08
length of all				500	13741938	44180744	87625101
segments)) ³				1000	62971674	166892417	324383228
Traffic intensity	TMLOA	(Veh/day)*m	+	25	0	543194	1387293
on all major				50	0	1548534	4473085
roads				100	0	4550786	13415227
(sum of (traffic				300	0	12783795	26453420
Intensity"				500	0	30877644	64537936
segments)) ³				1000	26948221	116664854	238567679
Heavy-duty	HLOA_	(Veh/day)*m	+	25	0	40889	59383
traffic intensity				50	0	115926	205867
on all roads				100	1607	336918	909792
duty traffic				300	84212	2085219	8507687
intensity*				500	387896	2664654	6027990
length of all segments)) ³				1000	2550331	10515869	25699398
Heavy-duty	HMLOA_	(Veh/day)*m	+	25	0	35363	41295
traffic intensity				50	0	100488	141074
on major roads				100	0	286355	742416
(sum of (neavy- duty traffic				300	0	846066	1614863
intensity*lenoth				500	0	2033997	4769469
of all segments)				1000	966747	8018542	22978460

47 ¹Source: CORINE (Copernicus Land Monitoring Service) 2018, raster 100m.

48 ²Source: CBS (Central Bureau of Statistics Netherlands) 2017, 100m*100m.

49 ³Source: NWB (National Road Network Netherlands) 2011, vehicles per day per segment (between intersections)

Model names	Min.	1 st Qu.	Median	Mean	3 rd Qu.	Max
Mixed-effect model	16,200	19,200	20,000	22,175	21,800	70,200
AMS_SLR_160D	15,444	21,722	23,587	25,588	26,810	70,903
CPH2AMS_SLR	-1,543	5,723	9,796	16,941	17,556	191,372
RTM2AMS_SLR	7,123	16,164	19,701	23,151	26,785	79,853
IDW_SLR	7,642	15,353	18,886	22,629	26,161	88,468
CPH2AMS_Coral	5,249	10,410	11,100	11,832	12,397	36,805
RTM2AMS_Coral	2.42	22,043	24,218	24,865	27,394	52,094
IDW_Coral	1.01	21,102	23,102	23,762	26,014	49,497

51 Table S2: Statistics of UFP model predictions in particle/cm³.

52

53 Table S3: SLR trained in Rotterdam

	Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	7.598e+00	1.297e-01	58.558	<2e-16	***		
PORT_5000	6.990e-08	8.808e-09	7.936	2.13e-15	***		
PORT_1000	1.603e-06	9.488e-08	16.890	<2e-16	***		
MRDL_100	1.879e-03	1.149e-04	16.348	<2e-16	***		
WATER_500	7.356e-08	4.736e-09	15.532	<2e-16	***		
0							
RES_5000	4.877e-08	3.356e-09	14.532	<2e-16	***		
INDUS_5000	1.398e-07	1.567e-08	8.917	<2e-16	***		
NATUR_500	3.064e-08	1.551e-08	1.975	0.0483	*		
0							
TRANS_1000	1.419e-06	1.864e-07	7.612	2.74e-14	***		
AGRI_100	3.803e-05	3.039e-06	12.515	<2e-16	***		
INDUS_500	1.289e-06	2.381e-07	5.412	6.25e-08	***		
WATER_500	1.574e-06	3.617e-07	4.353	1.34e-05	***		
URBG_100	5.097e-06	4.652e-06	1.096	0.2732			
TRAFNEAR	4.782e-05	1.716e-06	27.866	<2e-16	***		
Multiple R-squ	Multiple R-squared: 0.08009, Adjusted R-squared: 0.07988						

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

54 55 56

Table S4: SLR trained in Copenhagen

	Estimate	Std. Error	t value	<i>Pr(> t)</i>	
(Intercept)	-1.844e-01	5.297e-01	-0.348	0.727717	
TRANS_5000	1.994e-06	1.158e-07	17.223	<2e-16	***
PORT_300	2.572e-05	1.483e-06	17.343	<2e-16	***
WATER_100	7.235e-06	4.429e-07	16.335	<2e-16	***
0					
POP_100	3.360e-03	5.600e-04	5.999	2.03e-09	***
TRANS_1000	4.101e-06	4.246e-07	9.659	<2e-16	***
TRAFNEAR	3.209e-04	9.890e-06	32.444	<2e-16	***
INDUS_5000	1.525e-07	3.481e-08	4.381	1.19e-05	***

NATUR_500	-8.172e-09	1.574e-08	-0.519	0.603678			
0							
RDL_500	2.094e-04	3.433e-05	6.100	1.09e-09	***		
AGRI_300	7.796e-06	2.785e-06	2.799	0.005138	**		
MRDL_300	4.554e-04	1.349e-04	3.376	0.000737	***		
AIR_5000	1.051e-07	3.976e-08	2.643	0.008239	**		
URBG_1000	1.409e-06	2.052e-07	6.867	6.86e-12	***		
MRDL_50	2.475e-02	1.240e-03	19.956	<2e-16	***		
Maltinla Damanuda 0.24(1 Adimeted Damanuda 0.2454							

Multiple R-squared: 0.3461, Adjusted R-squared: 0.3454

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

57 58

59 Table S5: SLR trained in Amsterdam

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	6.906e+00	2.244e-01	30.780	<2e-16	***
MRDL_100	5.908e-03	1.533e-04	38.532	<2e-16	***
TRAFNEAR	1.069e-04	1.425e-06	75.012	<2e-16	***
MRDL_25	2.742e-02	9.877e-04	27.767	<2e-16	***
PORT_1000	9.889e-07	5.961e-08	16.590	<2e-16	***
TRANS_5000	1.048e-06	4.653e-08	22.523	<2e-16	***
TLOA_1000	4.916e-09	1.363e-10	36.059	<2e-16	***
URBG_5000	-1.209e-08	1.207e-08	-1.001	0.317	
AGRI_300	6.586e-06	6.140e-07	10.726	<2e-16	***
INDUS_5000	1.552e-07	1.601e-08	9.693	<2e-16	***
WATER_1000	1.404e-06	8.749e-08	16.048	<2e-16	***
POP_1000	3.543e-05	1.848e-06	19.176	<2e-16	***
AIR_5000	-9.398e-08	1.349e-08	-6.966	3.31e-12	***
WATER_5000	-9.105e-08	7.067e-09	-12.885	<2e-16	***
NATUR_5000	-6.473e-07	3.644e-08	-17.765	<2e-16	***
Multiple R-squa	red: 0.4427,	Adjusted R-s	quared: 0.4	1425	

60 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

64 Figure S1. Scatterplot of model predictions against fixed-site validation measurements (NO₂;

65 **n=82).**

AMS_SLR-CPH2AMS_Coral

AMS_SLR-CPH2AMS_SLR

AMS_SLR-RTM2AMS_SLR

Figure S2. NO₂ maps of differences between SLR_AMS_160D and the other model tested.

Figure S3. Spatial maps of UFP predictions from the mixed-effect and IDW_Coral models with a unified legend.