A nucleotide receptor in vascular endothelial cells is specifically activated by the fully ionized forms of ATP and UTP

Kevin D. LUSTIG, Michael G. SPORTIELLO, Laurie ERB and Gary A. WEISMAN* Departments of Biochemistry and Food Science and Human Nutrition, University of Missouri-Columbia, Columbia, MO 65212, U.S.A.

Extracellular ATP causes an increase in the concentration of cytoplasmic free calcium ([Ca²⁺],) in bovine pulmonary-artery endothelial (BPAE) cells that results in the synthesis and release of prostacyclin (PGI₂), a potent vasodilator and inhibitor of platelet aggregation. We show here that PGI, release in BPAE cells correlates with the concentration of the fully ionized form of extracellular ATP (ATP⁴⁻) and not with the concentration of other ionic forms of ATP. Concentrations as low as 10 nm-ATP⁴⁻ elicited an increase in PGI₂ release [EC₅₀ (concn. giving half-maximal stimulation) 3 µM] in BPAE cells incubated in an iso-osmotic medium, pH 7.4, lacking Ca²⁺ and Mg²⁺. When the pH or the Mg²⁺ concentration of the medium was varied so as to maintain a constant level of ATP⁴⁻, while varying the concentration of proton-ATP (HATP³⁻) or MgATP²⁻ respectively, PGI, release remained constant. An inhibitory effect of extracellular Mg²⁺ on PGI, release could be attributed solely to a decrease in the concentration of ATP⁴⁻. In contrast with Mg²⁺, extracellular Ca²⁺ stimulated PGI₂ release induced by ATP. Several results suggest that extracellular Ca²⁺ modulates PGI₂ release by increasing Ca²⁺ uptake through an ATP⁴⁻-activated plasma-membrane channel. In BPAE cells incubated in Ca²⁺-free medium, ATP elicited a transient increase in [Ca²⁺], that declined to the basal level within 60 s. In cells incubated in Ca²⁺-containing medium, ATP caused an increase in $[Ca^{2+}]$, that had two components: a transient peak in $[Ca^{2+}]$, (0-60 s) and a sustained increase in [Ca²⁺], that was maintained for several minutes after ATP addition. Increasing the concentration of extracellular calcium from 0.25 mM to 10 mM had no effect on the transient rise in $[Ca^{2+}]$, induced by ATP, but significantly enhanced the magnitude of the sustained increase in $[Ca^{2+}]_i$. Alterations in the magnitude of the sustained increase in $[Ca^{2+}]$, would likely modulate PGI₂ release, which was not complete until 2 min after ATP addition. Extracellular Ca²⁺ also stimulated PGI, release induced by bradykinin. Bradykinin caused a sustained increase in [Ca²⁺], in BPAE cells in the presence of extracellular Ca²⁺. Finally, the magnitude of PGI, release induced by UTP, a more potent agonist than ATP, correlated with the concentration of extracellular fully ionized UTP (UTP4-). These findings support the hypothesis that nucleotide receptors in BPAE cells recognize the fully ionized form of ATP and UTP and are coupled to signaltransduction pathways involving the mobilization of intracellular Ca²⁺, the influx of extracellular Ca²⁺ and the subsequent release of PGI_a.

INTRODUCTION

There is considerable pharmacological and biochemical evidence supporting the hypothesis that the hormone-like effects of extracellular nucleotides in the cardiovascular system are mediated by plasma-membrane receptors (Gordon, 1986; Cooper et al., 1989; Boyer et al., 1990; Erb et al., 1990). Nucleotide receptors in mammalian tissues are coupled to a variety of signaltransduction pathways involving the phospholipase C-dependent mobilization of cytoplasmic free Ca²⁺ (Charest *et al.*, 1985; Dubyak & De Young, 1985; Fine *et al.*, 1989; Gonzalez *et al.*, 1989), the activation of plasma-membrane channels for Ca²⁺ (Benham & Tsien, 1987; Greenberg et al., 1988), K⁺ (Gordon & Martin, 1983) or normally impermeant molecules (Rozengurt & Heppel, 1975; Weisman et al., 1984; Gomperts, 1985; Heppel et al., 1985; Steinberg et al., 1987), the stimulation of a phospholipase A, (Boeynaems & Pearson, 1990) or the phospholipase D-dependent formation of phosphatidic acid (Martin & Michaelis, 1989; Pirotton et al., 1990).

One of the more intensively studied nucleotide receptors, located in vascular endothelial cells, regulates the formation of prostacyclin (PGI₂), a vasodilator and inhibitor of platelet aggregation (Moncada, 1982). It has been postulated that the

extracellular ATP-mediated release of PGI, from the endothelium prevents the excessive accumulation of platelets at a site of vascular injury, thereby preventing thrombosis, and that, through its vasodilatory actions, PGI, also helps alleviate the adverse effects of ischaemia and circulatory shock (Boeynaems & Pearson, 1990). The activation of a nucleotide receptor in endothelial cells leads to the phospholipase C-dependent mobilization of intracellular Ca²⁺, the influx of extracellular Ca²⁺ and the subsequent activation of enzymes that degrade phospholipids to generate arachidonic acid (Boeynaems & Galand, 1983; Pearson et al., 1983; Hallam & Pearson, 1986; Luckoff & Busse, 1986; Forsberg et al., 1987; Pirotton et al., 1987), the rate-limiting substrate for PGI, synthesis (Moncada & Vane, 1979). The ATPmediated increase in the concentration of cytoplasmic free calcium ([Ca²⁺]_i) is necessary and sufficient to induce the synthesis and release of PGI, (Carter et al., 1988; Hallam et al., 1988; Martin & Michaelis, 1990; Lustig et al., 1992). In bovine pulmonary-artery endothelial (BPAE) cells, an increase in [Ca²⁺], elicited by ATP or UTP, a pyrimidine nucleotide, activates a calmodulin-dependent, phosphatidylcholine-specific phospholipase A, (Lustig et al., 1992).

There are several possible mechanisms by which ATP and other nucleotides can be released into the blood and thereby

Abbreviations used: BPAE cells, bovine pulmonary-artery endothelial cells; PGI_2 , prostacyclin; $[Ca^{2+}]_i$, the concentration of cytoplasmic free calcium; EC_{50} , concentration giving half-maximal stimulation; fura-2-AM, fura-2 penta-acetoxymethyl ester; 6-oxo-PGF_{1a}, 6-oxo-prostaglandin F_{1a} ; HBS, Hepes-buffered saline solution; HATP³⁻, proton-ATP; ATP⁴⁻, the fully ionized form of ATP; UTP⁴⁻, the fully ionized form of UTP. * To whom correspondence and reprint requests should be addressed.

stimulate PGI_2 release. Two primary sources of extracellular nucleotides are platelets (Meyers *et al.*, 1982) and adrenal medullary cells (Rojas *et al.*, 1987), which store high millimolar levels of adenine nucleotides in cytoplasmic granules and release these stores into the bloodstream upon chemical stimulation. Other sources of blood ATP include dead and injured cells, myocardial cells (Forrester & Williams, 1977), and endothelial and smooth-muscle cells (Pearson & Gordon, 1979). Blood levels of ATP sufficient to cause PGI_2 release ($20 \,\mu$ M) have been detected 3–5 min after a small incision in human skin (Born & Kratzer, 1984), and the ATP level immediately after injury may be considerably higher, since nucleotidases present in the serum (Ishii & Green, 1973; Weisman *et al.*, 1986) serve to degrade extracellular ATP.

The predominant form of ATP in the blood is the magnesium-ATP complex (MgATP²⁻), the substrate for many intracellular ATP-requiring enzymes. Although most studies to date have not determined whether nucleotide receptors are activated by a specific ionic form of extracellular ATP, it has been suggested that the fully ionized form of ATP (ATP⁴⁻), and not MgATP²⁻. is the receptor ligand that mediates the release of histamine from rat mast cells (Dahlquist & Diamant, 1974; Cockcroft & Gomperts, 1979) and the activation of plasma-membrane channels to normally impermeant metabolites in rat mast cells (Gomperts, 1985), mouse fibroblasts (Heppel et al., 1985) and mouse macrophages (Steinberg et al., 1987). In addition, it has recently been suggested that ATP⁴⁻, and not MgATP²⁻, induces an increase in [Ca2+], in mouse macrophages (Greenberg et al., 1988), human skin fibroblasts (Fine et al., 1989) and sheep pituitary cells (Davidson et al., 1990). Finally, Pearson & Cusack (1985) have suggested, based on indirect evidence, that a nucleotide receptor in endothelial cells recognizes ATP uncomplexed to a metal cation.

The objective of the present study was to determine whether the receptor that mediates the nucleotide-induced release of PGI_2 in BPAE cells is activated by a specific ionic form of nucleotide. We demonstrate that nucleotide receptors in BPAE cells are activated by ATP^{4-} or the fully ionized form of UTP (UTP^{4-}) and that neither MgATP²⁻, proton-ATP (HATP³⁻), NaATP³⁻, KATP³⁻ nor CaATP²⁻ acts as receptor agonist or antagonist. Our results also suggest that the stimulation of PGI₂ release by ATP is a consequence of both the ATP-mediated release of Ca²⁺ from intracellular stores and the influx of extracellular Ca²⁺ through an ATP⁴⁻-activated plasma-membrane channel.

MATERIALS AND METHODS

Materials

BPAE cells (CCL 209, passage 14) were obtained from the American Type Culture Collection (Rockville, MD, U.S.A.) and used for experiments between passages 19 and 26. Fetal-bovine serum, Eagle's (1959) minimum essential medium, penicillin and streptomycin were obtained from GIBCO (Grand Island, NY, U.S.A.). The radioimmunoassay kit for 6-oxoprostaglandin $F_{1\alpha}$ (6-oxo-PGF₁₂) was obtained from New England Nuclear (Boston, MA, U.S.A.). Sterile disposable pipettes and polystyrene tissue-culture flasks and dishes were manufactured by Corning (New York, NY, U.S.A.) and obtained from Fisher Scientific (St. Louis, MO, U.S.A.). Ecolume scintillation cocktail was obtained from ICN (Irvine, CA, U.S.A.). Fura-2 pentaacetoxymethyl ester (fura-2-AM), nucleotides, nucleosides and other chemicals were obtained from Sigma (St. Louis, MO, U.S.A.). All compounds were solubilized in deionized water purified by using a Milli-Q water-treatment system (Millipore Co., Bedford, MA, U.S.A.). Concentrations of nucleotide stock solutions were verified spectrophotometrically.

Methods

Cell culture. BPAE cells were grown on 75 cm² polystyrene flasks in 20 ml of growth medium, pH 7.4, consisting of Eagle's minimum essential medium, 15% (v/v) fetal-bovine serum, 10 mM-Hepes, 26 mM-NaHCO₃, penicillin (100 units/ml), and streptomycin (100 µg/ml). Cell cultures were maintained at 37 °C in a humidified (90%) atmosphere of air/CO₂ (19:1). The cells were removed from the flask at confluence by a 5 min incubation with 5 ml of phosphate-buffered saline [PBS; 8.1 mM-Na₂HPO₄/1.5 mM-KH₂PO₄ (pH 7.4)/137 mM-NaCl/4 mM-KCl], containing 0.05% (w/v) trypsin and 0.3 mM-EDTA, and then subcultured at a density of 1 × 10⁴ cells/cm² on 10 cm² polystyrene dishes in 2 ml of growth medium. Cell number was determined using a Coulter Model ZBI cell counter (Hialeah, FL, U.S.A.) or a haemocytometer. The growth medium was replaced 2 or 3 days after subculturing cells on dishes or flasks.

Measurement of prostacyclin release. At 6–10 days after subculturing BPAE cells on 10 cm² dishes, confluent monolayers were washed twice and incubated for 5 min at 37 °C in 1 ml of HBS (10 mM-Hepes (pH 7.4)/137 mM-NaCl/5 mM-KCl/5 mMglucose), unless otherwise indicated. Nucleotides and other compounds were added to the medium as specified in the Figure and Table legends. After the indicated time period at 37 °C, the medium was removed and stored at -20 °C until assayed for PGI₂. The amount of PGI₂ in each sample was quantified by using a radioimmunoassay for 6-oxo-PGF_{1a}, the stable hydrolysis product of PGI₂ (Johnson *et al.*, 1976), according to instructions in the radioimmunoassay kit (New England Nuclear).

Ca²⁺ measurements. Confluent cultures of BPAE cells on 75 cm² flasks were removed by trypsin treatment as described above. Dissociated cells were sedimented at 200 g for 5 min at 25 °C and washed once with 10 ml of HBS, pH 7.4. The washed cells were suspended in HBS, pH 7.4, supplemented with 1 mm-MgCl₂ and 1 mM-CaCl₂ at 5×10^5 cells/ml, and stored (for up to 4 h) at room temperature. A 2 ml aliquot of the cell suspension was incubated with 2 µM-fura-2-AM for 20 min at 37 °C. The hydrolysis of the membrane-permeant fura-2-AM by non-specific cytoplasmic esterases traps fura-2, a fluorescent Ca²⁺-binding probe, inside cells (Grynkiewicz et al., 1985). Fura-2-loaded cells were sedimented, washed twice and suspended in 2 ml of HBS, pH 7.4, supplemented with 1 mm-MgCl₂ and the indicated concentration of CaCl₂. The cell suspension then was transferred to a quartz cuvette and placed in the temperature-regulated (37 °C) sample chamber of a dual-excitation beam spectrofluorimeter (SPEX, Edison, NJ, U.S.A.) and [Ca²⁺], was measured according to a method developed by Grynkiewicz et al. (1985) with slight modifications (Lustig et al., 1992). During measurements of [Ca²⁺], the cell suspension was stirred continuously with a Teflon bar driven by a magnetic-stirring motor positioned beneath the sample chamber. The magnitude of the maximal increases in [Ca²⁺], and PGI₂ release elicited by ATP and UTP varied somewhat between different BPAE cell preparations, but was consistent within a single preparation (K. D. Lustig & G. A. Weisman, unpublished work).

Calculation of ionic forms of ATP and UTP at different nucleotide and cation concentrations. The concentrations of the different ionized forms of extracellular ATP and UTP were calculated by using a BASIC program (kindly supplied by Dr. Tom Berkelman, University of California, Davis CA, U.S.A.) that was based upon a FORTRAN program written by Perrin & Sayce (1967). In the present study it has been assumed that the predominant forms of extracellular ATP are MgATP²⁻, ATP⁴⁻, CaATP²⁻, HATP³⁻, NaATP³⁻ and KATP³⁻. The concentrations

Table 1. PGI_2 release correlates with the concentration of ATP^{4-} and not $MgATP^{2-}$

BPAE cells on 10 cm² dishes were washed and incubated at 37 °C in 1 ml of HBS, pH 7.4, supplemented with the indicated concentration of MgCl₂. After 5 min, ATP was added to the indicated concentrations of ATP⁴⁻ and MgATP²⁻, calculated as described in the Materials and methods section. The medium was sampled 5 min later and assayed for 6-oxo-PGF_{1α} (see the Materials and methods section). Results are means \pm s.D. of triplicate determinations and are representative of results from five experiments.

[MgATP ²⁻] (µм)	[ATP ⁴⁻] (µм)	[MgCl ₂] (тм)	PGI ₂ release (pmol/10 ⁶ cells)
15.8	0.9	1.0	23.8 ± 2.4
24.5	0.9	1.5	31.9 ± 3.6
32.9	0.9	2.0	33.6 ± 5.7
49.8	0.9	3.0	28.9 ± 1.5
84.0	0.9	5.0	25.1 ± 1.9
128.4	0.9	7.5	26.3 ± 10.5
167.4	0.9	10.0	30.0 ± 5.9
0	0	10.0	1.0 ± 0.1
0	0.9	0	29.6 ± 4.2
0	15.0	0	51.2 ± 9.6

of other forms of ATP (e.g., H_2ATP^{2-}), which are presumably present at very low concentrations, have not been considered. The equilibria and conservation equations needed to calculate the concentration of ATP^{4-} , $MgATP^{2-}$ and $HATP^{3-}$ are described by Steinberg & Silverstein (1987). The concentrations of $CaATP^{2-}$, $NaATP^{3-}$, $KATP^{3-}$ or the different ionic forms of UTP were calculated by a similar approach. The following association constants were used for all calculations: Mg^{2+} for ATP^{4-} , $10^{4.28}$ m⁻¹; and for UTP⁴⁻, $10^{4.35}$ m⁻¹; Ca^{2+} for ATP^{4-} , $10^{3.94}$ m⁻¹; H⁺ for ATP^{4-} , $10^{6.95}$ m⁻¹; K⁺ for ATP^{4-} , 5.30 m⁻¹; Na⁺ for ATP^{4-} , 5.82 m⁻¹ (Cockcroft & Gomperts, 1979; Sigel, 1987; Fine *et al.*, 1989).

RESULTS AND DISCUSSION

The nucleotide receptor that mediates PGI₂ release from BPAE cells recognizes ATP⁴⁻ but not MgATP²⁻

Extracellular ATP can bind a variety of cations found in the blood, including Mg²⁺, Ca²⁺, Na⁺, K⁺ and H⁺. In an iso-osmotic medium, pH 7.4, containing 100 μм-ATP, 137 mм-NaCl, 5 mм-KCl, 1 mm-MgCl, and 1 mm-CaCl,, the predominant ionic forms of ATP, calculated as described in the Materials and methods section, are distributed as follows: MgATP²⁻, 62.7%; ATP⁴⁻, $3.5\%;\,HATP^{3-},\,1.3\%;\,NaATP^{3-},\,2.8\%;\,KATP^{3-},\,0.1\%;$ and CaATP²⁻, 29.7%. Other ionic forms of ATP are found only at very low levels (< 0.01%) and have not been considered in the present study. Since the level of each ionic form of ATP is dependent upon the affinity of each cation for ATP, the concentration of each cation and the total ATP concentration, it is possible to manipulate experimental conditions so that the concentration of one ionic form of ATP is maintained at a fixed level while the concentration of another ionic form is varied. For example, by varying the Mg²⁺ concentration of Ca²⁺-free medium in direct proportion to the total concentration of ATP, it is possible to vary the concentration of MgATP²⁻ while maintaining a constant level of ATP⁴⁻.

When the concentrations of Mg^{2+} and ATP in the medium were varied so as to maintain a fixed concentration of ATP^{4-} (0.9 μ M) while varying the concentration of $MgATP^{2-}$, the magnitude of PGI₂ release remained constant, albeit submaximal

Fig. 1. Effect of extracellular Mg²⁺ on ATP-induced PGI₂ release

BPAE cells on 10 cm² dishes were washed and incubated at 37 °C in 1 ml of HBS, pH 7.4, supplemented with either 1 mM-(\bigcirc) or 5 mM-(\bigcirc) MgCl₂. After 5 min, ATP was added at the indicated concentration, and 5 min later the medium was sampled and assayed for 6-oxo-PGF_{1x}, the stable hydrolysis product of PGI₂ (see the Materials and methods section). (a) Blot of PGI₂ release as a function of the total concentration of ATP. (b) A replot of PGI₂ release as a function of the ATP⁴⁻ concentration, calculated as described in the Materials and methods section. Data are means \pm s.D. of triplicate determinations and are representative of results from four experiments.

(Table 1). The amount of PGI_2 release induced by $0.9 \,\mu$ M-ATP⁴⁻ was the same in the presence or absence of MgATP²⁻. In the absence of ATP, Mg²⁺ had little effect on PGI₂ release at concentrations as high as 10 mM (Table 1).

 PGI_2 release was also measured over a wide range of ATP concentrations in BPAE cells incubated in iso-osmotic Ca²⁺-free medium, pH 7.4, containing either 1 mm- or 5 mm-MgCl₂. The amount of PGI₂ release was significantly lower in BPAE cells incubated in medium containing 5 mm-MgCl₂ than in cells incubated with 1 mm-MgCl₂ (Fig. 1*a*). If the concentration of ATP⁴⁻ was calculated for each data point and then plotted against the amount of PGI₂ released, the results indicated that the extent of PGI₂ release varied directly with the concentration of ATP⁴⁻ in the medium (Fig. 1*b*). Thus the inhibitory effect of extracellular Mg²⁺ on ATP-induced PGI₂ release could be attributed solely to a reduction in the concentration of ATP⁴⁻ (Table 1; Fig. 1). These results suggest that MgATP²⁻ is not an agonist or antagonist of the nucleotide receptor in BPAE cells.

The nucleotide receptor that mediates PGI₂ release from BPAE cells recognizes ATP⁴⁻, but not HATP³⁻, NaATP³⁻ or KATP³⁻

The results described above do not rule out the possibility that other ionic forms of ATP, including HATP³⁻, NaATP³⁻ and

Table 2. PGI₂ release correlates with the concentration of ATP^{4-} and not $HATP^{3-}$

BPAE cells on 10 cm² dishes were washed and incubated at 37 °C in 1 ml of HBS supplemented with 1 mM-MgCl₂ and 1 mM-CaCl₂ at the indicated pH. After 5 min, ATP was added to the indicated concentrations of ATP⁴⁻ and HATP³⁻, calculated as described in the Materials and methods section. The medium was sampled 5 min later and assayed for 6-oxo-PGF_{1α} (see the Materials and methods section). Results are means \pm s.D. of triplicate determinations and are representative of results from four experiments.

[HATP ³⁻] (µм)	[АТР ⁴⁻] (µм)	pН	PGI ₂ release (pmol/dish)
0.1	3.7	8.6	23.5±7.4
0.2	3.7	8.2	28.0 ± 7.2
0.5	3.7	7.4	26.8 ± 9.3
1.3	3.6	7.0	30.3 ± 6.4
7.6	3.4	6.6	30.4 ± 0.8
17.0	3.0	6.2	31.6 ± 9.3
0	0	6.2	0.9 ± 0.3
0	0	7.4	1.0 ± 1.0
0	0	8.6	1.2 ± 0.9

Fig. 2. Dose-dependence of ATP⁴⁻-induced PGI₂ release

BPAE cells on 10 cm² dishes were washed and incubated at 37 °C in 1 ml of HBS, pH 7.4. After 5 min, ATP^{4-} was added at the indicated concentration, and 5 min later the medium was sampled and assayed for 6-oxo-PGF_{1z} (see the Materials and methods section). The concentration of ATP^{4-} was calculated as described in the Materials and methods section. Data are means of triplicate determinations and are representative of results from three experiments.

KATP³⁻, contribute to PGI₂ release in Ca²⁺-free medium. Accordingly, it was determined whether varying the pH of the isoosmotic medium altered PGI, release in BPAE cells treated with a constant concentration of ATP4-. When the pH of the medium was varied so as to maintain the concentration of ATP⁴⁻ between 3 to 4 μ M while varying the concentration of HATP³⁻, the extent of PGI, release did not correlate with the concentration of HATP³⁻ (Table 2). The pH of the medium had little effect on PGI₂ release in the absence of ATP (Table 2). ATP-induced PGI₂ release was not altered when BPAE cells were incubated in a Na⁺-free medium containing choline or in a medium lacking K⁺ (K. D. Lustig & G. A. Weisman, unpublished work), suggesting that neither NaATP³⁻ nor KATP³⁻ is the ionic form of ATP that induces PGI, release. Finally, ATP⁴⁻ induced a dose-dependent increase in PGI₂ release (EC₅₀ 3 μ M) from BPAE cells incubated in an iso-osmotic medium (pH 7.4) lacking Ca²⁺ and Mg²⁺ (Fig. 2). An increase in PGI₂ release was observed at ATP⁴⁻ concentrations as low as 10 nm (Fig. 2). These results indicate that

Table 3. Extracellular Ca²⁺ stimulates PGI, release

BPAE cells on 10 cm² dishes were washed and incubated at 37 °C in 1 ml of HBS, pH 7.4, supplemented with the indicated concentration of CaCl₂. After 5 min, ATP was added to the indicated concentrations of ATP⁴⁻ and CaATP²⁻, calculated as described in the Materials and methods section. The medium was sampled 5 min later and assayed for 6-oxo-PGF_{1α} (see the Materials and methods section). Results are means \pm s.D. of triplicate determinations and are representative of results from four experiments.

[CaATP ²⁻] (µм)	[ATP ⁴⁻] (µм)	[CaCl ₂] (тм)	PGI ₂ release (pmol/10 ⁶ cells)
6.0	1.4	0.5	72.8±5.0
12.0	1.4	1.0	77.5 ± 14.0
36.0	1.4	3.0	89.1 ± 10.7
60.0	1.4	5.0	93.9 ± 4.1
119.0	1.4	10.0	108.7 ± 12.9
0	0	10.0	7.6 ± 1.6
0	1.4	0	33.8 ± 2.0

Fig. 3. Effect of extracellular Ca²⁺ on ATP-induced PGI₂ release

BPAE cells on 10 cm² dishes were washed and incubated at 37 °C in 1 ml of HBS, pH 7.4, supplemented with either 1 mM-(\bigcirc) or 5 mM-(\bigcirc) CaCl₂. After 5 min, ATP was added at the indicated concentration, and 5 min later the medium was sampled and assayed for 6-oxo-PGF_{1x} (see the Materials and methods section). (a) Plot of PGI₂ release as a function of the total concentration of ATP. (b) Replot of PGI₂ release as a function of the ATP⁴⁻ concentration, calculated as described in the Materials and methods section. Data are means ± s.D. of triplicate determinations and are representative of results from four experiments.

the nucleotide receptor that mediates PGI₂ release in BPAE cells is activated by ATP⁴⁻ but not by MgATP²⁻, HATP³⁻, NaATP³⁻ or KATP³⁻.

Fig. 4. Effect of extracellular calcium on the increase in [Ca²⁺]_i elicited by ATP

BPAE-cell suspensions were loaded with fura-2 (see the Materials and methods section), washed and incubated at 37 °C in 2 ml of HBS, pH 7.4, supplemented with 1 mm-MgCl₂ and the indicated concentration of CaCl₂ (broken line, Ca²⁺-free medium). Then $[Ca^{2+}]_i$ was measured as described in the Materials and methods section, and 100 μ m-ATP was added 50 s after measurements began. Each curve is a trace from the same experiment with a single cell preparation and the data are representative of results from three experiments.

Stimulation of nucleotide-induced \mbox{PGI}_2 release by extracellular \mbox{Ca}^{2+}

The Ca²⁺ and ATP concentrations in an iso-osmotic Mg²⁺-free medium, pH 7.4, were varied so as to maintain a constant concentration of ATP⁴⁻ while varying the concentration of CaATP²⁻. PGI₂ release increased as the concentration of CaATP²⁻ in the medium was increased (Table 3). In the absence of ATP, Ca²⁺ had little effect on PGI₂ release at concentrations as high as 10 mM.

 PGI_2 release was measured over a wide range of ATP^{4-} concentrations in BPAE cells incubated in Mg^{2+} -free medium containing 1 mm- or 5 mm-CaCl₂. The extent of PGI_2 release was the same in BPAE cells incubated in medium supplemented with 5 mm-CaCl₂ or 1 mm-CaCl₂ (Fig. 3a). If the concentration of

ATP⁴⁻ was calculated for each data point and then plotted against the amount of PGI_2 release, the results indicate that the extent of PGI_2 release did not correlate with the concentration of ATP^{4-} (Fig. 3b).

One explanation for these results is that both ATP⁴⁻ and CaATP²⁻ are agonists of the nucleotide receptor that mediates PGI, release in BPAE cells. Alternatively, since the increase in PGI_v release induced by ATP in BPAE cells was dependent upon an increase in $[Ca^{2+}]$, that is partially mediated by an influx of extracellular Ca²⁺ (Lustig et al., 1992), another plausible explanation is that the stimulation of PGI, release by extracellular Ca²⁺ is due to an alteration in the rate of Ca²⁺ uptake through an ATP⁴⁻-activated plasma-membrane channel. Several different approaches were used to distinguish between these two possibilities. To determine whether alterations in the extracellular Ca²⁺ concentration affected the rate of Ca²⁺ uptake, the effect of ATP on [Ca²⁺], was measured in BPAE cells incubated with different concentrations of extracellular Ca2+. In Ca2+-depleted medium, ATP caused an increase in [Ca²⁺], that was maximal (2-3 times the basal level) within 5 s of ATP addition, but then declined within 60 s to the basal level (Fig. 4). The addition of ATP to BPAE cells incubated in media containing ≥ 0.25 mm-Ca²⁺, however, caused a rapid increase in [Ca²⁺], that was greater and more sustained than in cells incubated in the absence of extracellular Ca²⁺ (Fig. 4). Moreover, the magnitude of the sustained increase in [Ca2+], was dependent upon the concentration of extracellular Ca^{2+} (Fig. 4). An alteration in the rate that [Ca²⁺], declines to the basal level after ATP addition would likely affect the extent of PGI₂ release, since the release of PGI₂ did not begin until 20-30 s after the addition of ATP⁴⁻ to BPAE cells and was not complete until 2 min after ATP⁴⁻ addition (Fig. 5). The Ca²⁺ concentration (< 0.25 mM) that modulated the transient increase in [Ca²⁺], induced by ATP was significantly different from the Ca^{2+} concentration ($\ge 0.25 \text{ mM}$) that modulated the sustained increase in [Ca²⁺], (Fig. 4). These findings may indicate that ATP activates two different subclasses of nucleotide receptor in BPAE cells: one coupled to a phospholipase C and intracellular Ca²⁺ mobilization and the other coupled to plasma-membrane Ca²⁺ channels, as has been observed in mouse macrophages (Greenberg et al., 1988).

Bradykinin, a peptide hormone, also induced Ca2+ uptake and

Fig. 5. Time course of ATP-induced PGI, release

BPAE cells on 10 cm² dishes were washed and incubated at 37 °C in 1 ml of HBS, pH 7.4. After 5 min, 100 μ M-ATP (\bigcirc) was added and at the indicated time, the medium was sampled and assayed for 6-oxo-PGF_{1 α} (see the Materials and methods section). Cells incubated in the absence of ATP served as controls (\bigcirc). Data are means of triplicate determinations and are representative of results from three experiments.

Fig. 6. Effect of extracellular Ca²⁺ on bradykinin-induced PGI₂ release

BPAE cells on 10 cm² dishes were washed and incubated at 37 °C in 1 ml of HBS, pH 7.4, supplemented with the indicated concentration of CaCl₂. After 5 min, 50 nm-bradykinin (\bigcirc) or 500 nm-bradykinin (\bigcirc) was added, and 5 min later the medium was sampled and assayed for 6-oxo-PGF_{1x} (see the Materials and methods section). Data are means of triplicate determinations and are representative of results from two experiments. In the absence of Ca²⁺ and bradykinin, the level of PGI₂ release was 15.5 pmol/dish.

Table 4. PGI₂ release correlates with the concentration of UTP⁴⁻ and not MgUTP²⁻

BPAE cells on 10 cm² dishes were washed and incubated at 37 °C in 1 ml of HBS, pH 7.4, supplemented with 1 mm-CaCl₂ and the indicated concentration of MgCl₂. After 5 min, UTP was added to the indicated concentrations of UTP⁴⁻ and MgUTP²⁻, calculated as described in the Materials and methods section. The medium was sampled 5 min later and assayed for 6-oxo-PGF_{1α} (see the Materials and methods section). Results are means \pm s.D. of triplicate determinations and are representative of results from three experiments.

[MgUTP ²⁻] (µм)	[UTP ⁴⁻] (µм)	[MgCl ₂] (mм)	PGI ₂ release (pmol/10 ⁶ cells)
10.8	0.6	0.75	45.0±9.0
17.6	0.6	1.25	37.7 ± 4.0
20.9	0.6	1.5	34.7 ± 4.7
27.8	0.6	2.0	45.1 ± 3.4
41.1	0.6	3.0	50.4 ± 9.7
67.8	0.6	5.0	54.9 ± 5.2
134.4	0.6	10.0	46.4 ± 4.3
0	0	10.0	1.8 ± 0.4
0	0.6	0	47.8 + 4.6

the release of PGI_2 in cultured porcine aortic endothelial cells (Whorton *et al.*, 1984). Similar to ATP, bradykinin induced a sustained increase in $[Ca^{2+}]_i$ in BPAE cells that was dependent upon the concentration of extracellular Ca^{2+} (K. D. Lustig & G. A. Weisman, unpublished work). Extracellular Ca^{2+} also modulated PGI₂ release induced by bradykinin in BPAE cells (Fig. 6). These results strongly suggest that extracellular Ca^{2+} modulates PGI₂ release in BPAE cells by altering the magnitude of the sustained increase in $[Ca^{2+}]_i$. Taken together, these findings suggest that the increase in PGI₂ release induced by extracellular Ca^{2+} is due to the stimulation of Ca^{2+} uptake through an ATP⁴⁻ activated plasma-membrane channel rather than an increase in the concentration of $CaATP^{2-}$.

Stimulation of PGI, release in BPAE cells by UTP⁴⁻

The pyrimidine nucleotide UTP elicits the inositol trisphosphate-dependent mobilization of intracellular Ca²⁺, the influx of extracellular Ca2+ and the release of PGI, in BPAE cells (Lustig et al., 1992). When the concentration of MgUTP²⁻ in the medium was varied while maintaining a constant concentration of UTP⁴⁻ (0.6 μ M), the extent of PGI₂ release remained constant (Table 4). The amount of PGI₂ release induced by 0.6 μ M-UTP⁴⁻ was the same in the presence or absence of MgUTP²⁻, suggesting that MgUTP²⁻ is not an agonist or antagonist of the nucleotide receptor. As with ATP⁴⁻, an increase in the extracellular Ca²⁺ concentration caused an increase in the amount of PGI, release induced by UTP⁴⁻ (K. D. Lustig & G. A. Weisman, unpublished work), presumably due to enhanced uptake of Ca²⁺ through a UTP⁴⁻ activated plasma-membrane channel. Although these results do not indicate whether ATP and UTP interact with the same nucleotide receptor in BPAE cells, they do suggest that the nucleotide receptor(s) that mediates PGI, release recognizes the fully ionized form of nucleotide.

Biological significance of ATP⁴⁻ and UTP⁴⁻

The fully ionized forms of ATP and UTP may play a physiological role in mediating the release of PGI, from the endothelium. In addition to ATP, storage granules in adrenalmedullary cells (Goetz et al., 1971; Van Dyke et al., 1977) and platelets (Goetz et al., 1971) also contain significant amounts of UTP (up to 8% of granule nucleotide content). A nucleotide translocator transports ATP⁴⁻ and UTP⁴⁻ into adrenal-medullary storage granules (Weber & Winkler, 1981), and both nucleotides are presumably released upon degranulation. The specific release of ATP⁴⁻ and UTP⁴⁻ into the bloodstream presumably would localize the effects of the nucleotides, since bivalent cations and other ions in the blood would rapidly reduce the concentration of the active, fully ionized, forms of both nucleotides. The binding of bivalent cations to ATP⁴⁻ and UTP⁴⁻ also would facilitate the degradation of both nucleotides, since ectonucleotidases on the surface of endothelial cells are likely to hydrolyse bivalent-cation-nucleotide complexes (Pearson & Gordon, 1985).

Steinberg et al. (1987) have postulated that bivalent cations inactivate ATP⁴⁻ after release from P₂ purinergic nerves in the peripheral and central nervous systems, where ATP has been postulated to act as a neurotransmitter (Stone, 1981; Gordon, 1986). Consistent with the hypothesis that P, purinergic receptors recognize ATP⁴⁻, the increase in [Ca²⁺], induced by ATP in NG108-15 neuroblastoma × glioma cells correlated with the concentration of ATP⁴⁻ and not MgATP²⁻ (T.-A. Lin, K. D. Lustig & G. A. Weisman, unpublished work). Thus nucleotide receptors, in general, may be activated by the fully ionized form of nucleotide. An intriguing recent study indicated that both ATP and UTP, in combination with amiloride, can correct a defect in chloride transport in cultured human-airway epithelia from cystic-fibrosis patients (Knowles et al., 1991). It seems plausible that these therapeutic effects also may be mediated by ATP⁴⁻ and UTP⁴⁻.

Support for this project to G.A.W. was provided by grants from the National Institutes of Health (GM-36887 and RR-07053) and the United States Department of Agriculture Experiment Station (MO-00493). K.D.L. was supported by a predoctoral fellowship from the Molecular Biology Program of the University of Missouri-Columbia (UMC). We are grateful to Dr. Randy K. Hoover for assistance with Ca^{2+} measurements and to Mr. Karl Mann, Ms. Xiang Pan and Ms. Tracey Rebmann for other technical assistance.

REFERENCES

Benham, C. D. & Tsien, R. W. (1987) Nature (London) 328, 275–278
Boeynaems, J. M. & Galand, N. (1983) Biochem. Biophys. Res. Commun. 112, 290–296

Boeynaems, J. M. & Pearson, J. D. (1990) Trends Pharmacol. Sci. 11, 34-37

- Born, G. V. R. & Kratzer, M. A. A. (1984) J. Physiol. (London) 354, 419-429
- Boyer, J. L., Cooper, C. L. & Harden, T. K. (1990) J. Biol. Chem. 265, 13515–13520
- Carter, T. D., Hallam, T. J., Cusack, N. J. & Pearson, J. D. (1988) Br. J. Pharmacol. 95, 1181–1190
- Charest, R., Blackmore, P. F. & Exton, J. H. (1985) J. Biol. Chem. 260, 15789–15794
- Cockcroft, S. & Gomperts, B. D. (1979) J. Physiol. (London) 296, 229-243
- Cooper, C. L., Morris, A. J. & Harden, T. K. (1989) J. Biol. Chem. 264, 6202-6206
- Dahlquist, R. & Diamant, B. (1974) Acta Pharmacol. Toxicol. 34, 368-384
- Davidson, J. S., Wakefield, I. K., Sohnius, U., Van Der Merwe, P. A. & Millar, R. P. (1990) Endocrinology (Baltimore) 126, 80–87
- Dubyak, G. R. & De Young, M. B. (1985) J. Biol. Chem. 260, 10653-10661
- Eagle, H. (1959) Science 130, 432-437
- Erb, L., Lustig, K. D., Ahmed, A. H., Gonzalez, F. A. & Weisman, G. A. (1990) J. Biol. Chem. **265**, 7424–7431
- Fine, J., Cole, P. & Davidson, J. S. (1989) Biochem. J. 263, 371-376
- Forrester, T. & Williams, C. A. (1977) J. Physiol. (London) 268, 371-390
- Forsberg, E. J., Feuerstein, G., Shohami, E. & Pollard, H. B. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 5630-5634
- Goetz, U., Da Prada, M. & Pletscher, A. (1971) J. Pharmacol. Exp. Ther. 178, 210–215
- Gomperts, B. D. (1985) in Secretory Processes (Dean, R. T. & Stahl, P., eds.), pp. 18-36, Butterworth and Co., London
- Gonzalez, F. A., Rozengurt, E. & Heppel, L. A. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 4530–4534
- Gordon, E. L., Pearson, J. D. & Slakey, L. L. (1986) J. Biol. Chem. 261, 15496–15504
- Gordon, J. L. (1986) Biochem. J. 233, 309-319
- Gordon, J. L. & Martin, W. (1983) Br. J. Pharmacol. 79, 531-542
- Greenberg, S., Di Virgilio, F., Steinberg, T. H. & Silverstein, S. C. (1988) J. Biol. Chem. **263**, 10337–10343
- Grynkiewicz, G., Poenie, M. & Tsien, R. Y. (1985) J. Biol. Chem. 260, 3440-3450
- Hallam, T. J. & Pearson, J. D. (1986) FEBS Lett. 207, 95-99
- Hallam, T. J., Pearson, J. D. & Needham, L. A. (1988) Biochem. J. 251, 243–249
- Heppel, L. A., Weisman, G. A. & Friedberg, I. (1985) J. Membr. Biol. 86, 189-196
- Ishii, K. & Green, H. (1973) J. Cell Sci. 13, 429-439
- Received 31 July 1991/26 November 1991; accepted 3 December 1991

- Johnson, R. A., Morton, D. R., Kinner, J. H., Gorman, R. R., McGuire, J. C., Sun, F. F., Whitaker, N., Bunting, S, Salmon, J., Moncada, S. & Vane, J. R. (1976) Prostaglandins 12, 915–928
- Knowles, M. R., Clarke, L. L. & Boucher, R. C. (1991) N. Engl. J. Med. 325, 533–538
- Luckhoff, A. & Busse, R (1986) J. Celi. Physiol. 126, 414-420
- Lustig, K. D., Sportiello, M. G., Landis, D. M., Hicks-Taylor, C. S., Zhang, X., Erb, L. & Weisman, G. A. (1992) Biochim. Biophys. Acta 1134, 61–72
- Martin, T. W. & Michaelis, K. C. (1989) J. Biol. Chem. 264, 8847-8856 Martin, T. W. & Michaelis, K. C. (1990) Biochim. Biophys. Acta 1054,
- 159–168
- Meyers, K. M., Holmsen, H. & Seachord, C. L. (1982) Am. J. Physiol. 243, R454-R461
- Moncada, S. (1982) Arteriosclerosis 2, 193-207
- Moncada, S. & Vane, J. R. (1979) N. Eng. J. Med. 300, 1142-1147
- Pearson, J. D. & Cusack, N. J. (1985) Eur. J. Biochem. 151, 373-375
- Pearson, J. D. & Gordon, J. L. (1979) Nature (London) 281, 384-386
- Pearson, J. D. & Gordon, J. L. (1985) Annu. Rev. Physiol. 47, 617–627 Pearson, J. D., Slakey, L. L. & Gordon, J. L. (1983) Biochem. J. 214,
- 273-276 Perrin, D. D. & Sayce, I. G. (1967) Talanta 14, 833-842
- Pirotton, S., Raspe, E., Demolle, D., Erneux, C. & Boeynaems, J. M. (1987) J. Biol. Chem. 262, 17461-17466
- Pirotton, S., Robaye, B., Lagneau, C. & Boeynaems, J. M. (1990) J. Cell. Physiol. 142, 449–457
- Rojas, E., Forsberg, E. & Pollard, H. B. (1987) in Biophysics of the Pancreatic B-Cell (Atwater, I., Rojas, E. & Soria, B., eds.), pp. 7–19, Plenum Press, New York.
- Rozengurt, E. & Heppel, L. A. (1975) Biochem. Biophys. Res. Commun. 67, 1581–1588
- Sigel, H. (1987) Eur. J. Biochem. 165, 65-72
- Steinberg, T. H. & Silverstein, S. C. (1987) J. Biol. Chem. 262, 3118-3122 Steinberg, T. H., Newman, A. S., Swanson, J. A. & Silverstein, S. C
- (1987) J. Biol. Chem. 262, 8884–8888
- Stone, T. W. (1981) Neuroscience 6, 523-555
- Van Dyke, K., Robinson, R., Urquilla, P., Smith, D., Taylor, M., Trush, M. & Wilson, M. (1977) Pharmacology 15, 377-391
- Weber, A. & Winkler, H. (1981) Neuroscience 6, 2269-2276
- Weisman, G. A., De, B. K., Friedberg, I., Pritchard, R. S. & Heppel, L. A (1984) J. Cell. Physiol. 119, 211–219
- Weisman, G. A., Lustig, K. D., Lane, E., Huang, N., Belzer, I. & Friedberg, I. (1988) J. Biol. Chem. 263, 12367-12372
- Whorton, A. R., Willis, C. E., Kent, R. S. & Young, S. L. (1984) Lipids 19, 17–24