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Note S1 – Reproducibility of YKO screens 
 
By virtue of its size and robust annotations, Yeast Phenome enables an assessment of knock-out 
screen reproducibility. An example of an experiment repeated multiple times is growth on 
glycerol, a non-fermentable carbon source that can only be metabolized via respiration. Inability 
of knock-out mutants to respire, revealed by their failure to proliferate on rich media containing 
glycerol as the sole carbon source, has been systematically tested 8 times in 6 different 
laboratories (table S1). By comparing the results of all 8 screens, we found that each screen 
reported a similar number of slow growing mutants (NPV < –3) that were deemed respiration 
deficient (140 ± 42 mutants, mean ± std. dev., n = 8). Importantly, most mutants (57–82%) 
identified in any one screen were reproduced in at least 5 of the 8 independent replicates, while 
0–24% of mutants remained unique to single datasets (fig. S2A). 
One possible explanation for genes required for respiration in some but not all screens is that 
differences in experimental design (e.g., glycerol dosage, type of growth assay, mutant ploidy or 
mating type) create conditional essentialities. If that is the case, we expect genes unique to any 
single experiment to share common biological functions as often as genes reproduced in multiple 
experiments. To test this hypothesis, we used proximity on the genetic interaction similarity 
(GIS) network as an unbiased measure of shared function. The GIS network connects genes if 
their mutations have similar effects on the fitness of other mutants (11). Without any prior 
knowledge of gene function, the GIS network places genes relative to one another based on the 
extent of their functional similarity, producing an unsupervised view of cellular organization 
spanning multiple levels of resolution, from molecular pathways to organelles (5, 11). We 
performed Spatial Analysis of Functional Enrichment (SAFE) (5) to identify regions of the GIS 
network that are overrepresented for respiration-deficient mutants from each screen (fig. S2B). 
We found that the enrichment profiles of all screens were nearly identical to one another (cosine 
correlation between neighborhood enrichment scores ρ = 0.994 ± 0.003, mean ± std. dev., npairs = 
28) and consistent with respiration, oxidative phosphorylation, and other mitochondrial and 
metabolic functions (fig. S2B). The enrichment was driven primarily by mutants identified in 
multiple screens, whereas mutants unique to single experiments scattered randomly throughout 
the network (fig. S2C). This observation does not support the hypothesis that isolated findings 
share common biological functions and suggests, instead, that they are likely false positives. 
Furthermore, it suggests that, whenever replicate screens are not available, SAFE enrichment 
profiles could inform our level of confidence in single observations. 
 
  



 
 

 
 

Note S2 – Analysis of secondary mutations 
 
Knock-out collections are built on the principle that genetic loci can be systematically 
altered, one at a time, while keeping the rest of the genome constant. However, the genomes 
of knock-out mutants are not expected to remain constant over generations. Depending on 
time and selective pressure, knock-out mutants may acquire secondary mutations that 
partially compensate for gene loss and alleviate any corresponding fitness defects. Consistent 
with this expectation, studies have reported heritable phenotypic heterogeneity within 
isogenic knock-out populations (83), mapped secondary site suppressors using systematic 
genetic crosses (84) and identified a wide range of genomic alterations through whole 
genome sequencing (18, 25). While knowing that adaptation is a general property of living 
systems that can be minimized but not eliminated completely, we sought to understand to 
what extent acquired secondary mutations may affect the interpretation of phenotypes 
derived from the yeast knock-out collection. 
We compared phenotypes across two independently constructed versions of the haploid 
collection (Mat-a and Mat-a), as well as the homozygous diploid collection produced by 
mating them. Copies of the collections were housed separately across many laboratories and 
exposed to vastly different experimental conditions, giving each strain an opportunity to 
evolve independently from its siblings. Despite the opportunity to diverge, estimates of 
phenotype rate, i.e. the frequency of strong phenotypes (|NPV| > 3) displayed by each gene 
(see also Fig. 2 and related section in the main text), were correlated across collections (e.g., 
cosine r = 0.66–0.72; fig. S4A), suggesting that secondary mutations are either rare, reoccur 
frequently in strains lacking the same gene or have relatively little impact on most 
phenotypes.  
To examine the impact on phenotypes more directly, we asked how often secondary 
mutations mask existing phenotypes or produce new ones, thus lowering the degree to which 
a phenotypic profile reflects the function of the deleted gene. Using data from previous 
investigations (83, 84), we compiled a list of 207 knock-out mutants that show (n = 103) or 
do not show (n = 104) evidence of secondary mutations (Materials & Methods). We 
presented random subsets of this list to two independent examiners and asked them to 
evaluate the phenotypes of each gene with respect to the gene’s known biological function 
(Materials & Methods). The evaluations provided by each examiner, as well as their 
consensus, showed no statistical association between evidence of secondary mutations and 
phenotype-function inconsistency (p-value = 0.98, one-tailed Fisher’s exact test; fig. S4B). 
Indeed, in contrast to expectation, the phenotypes of knock-out mutants carrying secondary 
mutations were more, not less, likely to agree with the functions of the deleted genes (70% 
among strains with secondary mutations vs 58% in the control group; fig. S4B). Given these 
data, we estimate with 95% confidence that secondary mutations increase the relative risk of 
phenotype-function inconsistency by no more than 3% (relative risk RR = 0.711, 95% CI 
[0.491, 1.030]; table S2).  
The relatively low impact of secondary mutations on the functional interpretation of knock-
out phenotypes may be explained by close functional proximity (and therefore high 
phenotypic similarity) between the two affected genes. Indeed, in cases where secondary 
mutations have been identified, they often occurred in genes that act in the same biological 
pathway, protein complex or regulatory response as the deleted gene (83, 84). These 
observations suggest that secondary mutations are likely to modulate, but not obscure, the 



 
 

 
 

phenotypes of the original deletion. Consistent with this hypothesis, knock-out mutants with 
and without secondary site suppressors show highly similar genetic interaction profiles (84). 
We therefore conclude that secondary mutations, arising spontaneously during routine 
laboratory manipulations, should not impede the use and interpretation of phenotypic profiles 
derived from the yeast knock-out collection. 
 
  



 
 

 
 

Note S3 – Phenotypic screens of the heterozygous diploid YKO 
 
The data provided at www.yeastphenome.org and used for analysis in this study include only 
phenotypic screens of the two haploid YKO collections (Mat-a and Mat-a) and the homozygous 
diploid YKO collection. However, we also assembled and annotated data derived from 
phenotypic screens of the heterozygous diploid collection. These data were processed and 
transformed in the same manner as the haploid/homozygous phenotypic screens (Materials & 
Methods). The unprocessed input data and processing code for each publication reporting 
heterozygous screens are provided in the yp-data Github repository 
(https://github.com/yeastphenome/yp-data) and its archived version 
(https://doi.org/10.5281/zenodo.7714347). In addition, we’re providing the following 3 files in 
the “Bundle downloads” section of the Yeastphenome.org website 
(https://yeastphenome.org/downloads/): 

1. yp_datasets_het_20221018.tar.gz (tab-delimited) – A list of heterozygous diploid screens 
with relevant metadata (explained in the README.txt file). 

2. yp_matrix_het_20221018.tar.gz (tab-delimited) – A gene x screen matrix for cleaned but 
unnormalized phenotypic values. 

3. yp_matrix_het_z_20221018.tar.gz (tab-delimited) – A gene x screen matrix of normalized 
phenotypic values. 

  



 
 

 
 

Note S4 – List of datasets used for analysis 
 
Yeast Phenome 
Versions: 2022-02-08 and 2022-10-25 
URL: https://yeastphenome.org/downloads/  
Notes: 

1. Similarity of phenotypic profiles was measured for each pair of genes using a bootstrap 
strategy as described below (“Calculating profile similarity”). The similarity metric was 
cosine correlation. Gene expression data from Kemmeren et al., 2014 (4) were excluded 
from similarity analyses because only ~1,500 knock-out mutants were tested. 

2. When comparing phenotypic profiles to genetic interaction, protein-protein interaction 
and gene expression profiles, genes encoding ribosome components were excluded. 

 
Genetic interactions 
Publication: Costanzo et al., 2016 (11) 
Notes: 

1. Similarity of genetic interaction profiles was measured for each pair of query strains 
using a bootstrap strategy as described below (“Calculating profile similarity”). The 
similarity metric was cosine correlation. Dubious ORFs, essential genes and genes 
encoding ribosome components were excluded. 

2. Genetic interaction degree was calculated as the number of genetic interactions per query 
strain that satisfy the intermediate stringency cutoff: |ε| > 0.08 and p-value < 0.05 (where 
ε is the genetic interaction score). 

 
Protein-protein interactions 
Database: BioGRID (85) 
URL: https://downloads.thebiogrid.org/File/BioGRID/Release-Archive/BIOGRID-
4.3.195/BIOGRID-ORGANISM-4.3.195.tab3.zip  
Accessed on: 2021-03-31 
Notes: 

1. Similarity of protein-protein interaction profiles was measured a bootstrap strategy as 
described below (“Calculating profile similarity”). The similarity metric was Jaccard 
index. Dubious ORFs, essential proteins, ribosome components and proteins with fewer 
than 4 interactions were excluded. 

 
Gene expression 
Database: SPELL (37) 
URL: http://sgd-archive.yeastgenome.org/expression/microarray/  
Accessed on: 2017-09-24 
Notes: 

1. Similarity of gene expression profiles was measured using a bootstrap strategy as 
described below (“Calculating profile similarity”). The similarity metric was cosine 
correlation. Dubious ORFs, essential genes and genes encoding ribosome components 
were excluded. 

 
Transcription factor/target gene mapping 



 
 

 
 

Publication: Balaji et al., 2006 (86) 
 
Protein complexes 
Database: EMBL-EBI Complex Portal 
URL: http://ftp.ebi.ac.uk/pub/databases/intact/complex/current/complextab/559292.tsv  
Accessed on: 2022-11-02 
 

Biochemical pathways 
Database: Yeast Biochemical Pathway Database (YeastCyc) via SGD (20) 
URL: http://sgd-archive.yeastgenome.org/curation/literature/biochemical_pathways.tab  
Accessed on: 2022-03-02 
 
Gene Ontology (GO) 
Database: Gene Ontology Consortium 
URL: http://geneontology.org/  
Accessed on: 2017-12-06 
Notes: 

1. In the precision-recall analysis of phenotypic profiles, as well the analysis of 
chromosomal co-clustering, GO was restricted to a list of 295 biological process terms 
that were previously identified by expert biologists as moderately specific (87). 

 
Multifunctional genes 
Database: SGD (20) 
URL: http://sgd-archive.yeastgenome.org/curation/literature/go_slim_mapping.tab  
Accessed on: 2021-05-04 
Notes:  

1. A gene was defined as “multifunctional” if it was annotated to 4 or more different GO 
Slim terms. 

 
Duplicated gene pairs 
Publication: Byrne et al., 2005 (88) 
 
Conserved genes 
Database: The Alliance of Genome Resources (89) 
URL: https://www.alliancegenome.org/  
Accessed on: 2022-06-28 
Notes:  

1. A S. cerevisiae gene was defined as conserved if it had an ortholog (i.e., best reciprocal 
match) in D. rerio, M. musculus, R. norvegicus, C. elegans, D. melanogaster or H. 

sapiens.  
 
Uncharacterized ORFs 
Database: SGD (20) 
URL: 
https://yeastmine.yeastgenome.org/yeastmine/bagDetails.do?scope=all&bagName=Uncharacteri
zed_ORFs  



 
 

 
 

Accessed on: 2022-09-03 
 
Gene coordinates (S. cerevisiae) 
Database: SGD (20) 
URL: http://sgd-archive.yeastgenome.org/curation/chromosomal_feature/SGD_features.tab  
Accessed on: 2017-04-03 
 
Human gene knock-out data 
Database: The Cancer Dependency Map Project (DepMap) (38) 
URL: https://depmap.org/portal/download/all/ [CRISPR_gene_effect.csv] 
Version: 22Q2 
Accessed on: 2022-10-10 
Notes: 

1. The similarity of gene effects was calculated using cosine correlation implemented in 
deepgraph (61). 

 
Gene copy number of human cancer cell lines 

Database: The Cancer Dependency Map Project (DepMap) (38) 
URL: https://depmap.org/portal/download/all/ [CCLE_gene_cn.csv] 
Version: 22Q2 
Accessed on: 2023-01-28 
 
Gene coordinates (H. sapiens) 
Database: Gene (NCBI) 
URL: https://www.ncbi.nlm.nih.gov/gene 
Accessed on: 2022-10-11 
 
Laboratory origin of YKO strains 

Publication: Hoepfner et al., 2014 (18) 
  



 
 

 
 

Table S1 – List of Yeast Phenome screens for respiratory metabolism 
 

Screen 
ID Paper Collection Growth 

assay Medium Data type Notes 

470 
Dimmer et al., 2002 
(76) 

Hom Undefined YPG 2% Discrete  

4837 
Steinmetz et al., 2002 
(77) 

Hom 
Pooled 
culture 

YPG 3% Quantitative  

5000 Dudley et al., 2005 (78) Hom Spot assay YPG 3% Discrete  
417 Luban et al., 2005 (79) Hap a Undefined YPG 3% Discrete  

21955 
Kuepfer et al., 2005 
(69) 
 

Hap a Undefined 

MM 
(Verduyn 
mix) + 
His + 
Leu + 
Met + 
Ura, 
Glycerol 
(2%) 
 

Discrete 

Excluded 
from 
analysis (SC 
medium) 

1050, 
1051 

Hillenmeyer et al., 
2008 (7) 

Hom 
Pooled 
culture 

YPG Quantitative 

Excluded 
from 
analysis 
(unknown 
YPG dose) 

158 Merz et al., 2009 (80) Hap ɑ Spot assay YPG 3% Discrete  

16489 Qian et al., 2012 (81) Hom 
Pooled 
culture 

YPG 5% Quantitative  

16369, 
16388 

Galardini et al., 2019 
(52) 

Hap a 
Colony 
size 

SC + G 
2% 

Quantitative 

Excluded 
from 
analysis (SC 
medium) 

22018 Acton et al., 2017 (66) Hom 
Pooled 
culture 

YPG 3% Quantitative  

21874 
Stenger et al., 2020 
(82) 

Hap a 
Colony 
size 

YPG 3% Discrete  

 
Only experiments that employed YP-based media and glycerol as the sole carbon source were 
included in this analysis. Yeast Phenome contains additional data for growth on synthetic media 
(partial and complete) and media supplemented with other carbon sources (e.g., glucose, 
ethanol). 
  



 
 

 
 

Table S2 – Analysis of phenotype-function consistency for knock-out mutants carrying 
secondary mutations 
 
  Phenotype-function consistency  
  Yes No Total Risk 

Secondary 
mutations 

Yes 
A = 72 
A0 = 66 

B = 31 
B0 = 37 

103 
ARM = b / 
(a+b) = 0.3 

No 
C = 60 
C0 = 66 

D = 44 
D0 = 38 

104 
ARW = d / 

(c+d) = 0.42 
Total 132 75 207  

 
The relative risk (RR) of a secondary mutation affecting the phenotypes is given by RR = ARM / 
ARW = 0.3 / 0.42 = 0.711 (values below 1 indicate that secondary mutations help, do not harm, 
phenotypic profiles). 
To estimate the confidence intervals around this relative risk, we can use the Taylor series 
approximate variance (90). The two-sided 95% confidence limits are given by: 

!" = $!"##±%.'()
%*+#,

- .%*+#/0  
So, in this case, RR = 0.711, CI 95%: [0.491, 1.030]. That means that, with 95% confidence, the 
relative risk of a secondary mutation to negatively impact the phenotypic profile of a knock-out 
mutant is at most 3%. 
 
 
  



 
 

 
 

Table S3 – List of screens with the highest number of chemogenomic associations  
 
 

Screen ID Phenotype / Condition Paper 
Number of 
chemogenomic 
associations 

699 
unfolded protein response (UPR) (UPRE-
GFP) / YPD 

Jonikas et al., 2009 (19) 692 

16429 
vacuole class G (Vph1) / SD [low-fluor] + 
Met + Leu + Ura + NAT + G418 

Mattiazzi Usaj et al., 
2020 (91) 

334 

16550 
protein stability (tFT-Tom5) / SC - Leu + 
Ade 

Dederer et al., 2019 (92) 189 

16324 
mtDNA copy number (mtDNA/whole 
genome) 

Puddu et al., 2019 (25) 175 

16428 
vacuole fragmented (Vph1) / SD [low-fluor] 
+ Met + Leu + Ura + NAT + G418 

Mattiazzi Usaj et al., 
2020 (91) 

122 

21877 expression of mtDNA (ARG8m) / SC - Arg Stenger et al., 2020 (82) 118 

4802 
abundance of potassium / SC + element 
supplements 

Yu et al., 2011 (93) 111 

5356 
chronological lifespan / glucose [0.5%], 
time [9 d], SC, Hopkins (-C) 

Matecic et al., 2010 (94) 103 

4949 
abundance of glycogen (iodine staining) / 
SC 

Wilson et al., 2002 (95) 103 

1190 
abundance of calcium / hypotonic shock, 
DCD - Leu 

Loukin et al., 2007(96) 93 

  



 
 

 
 

Table S4 – List of uncharacterized ORFs with at least 1% pleiotropy and strong profile 
similarity to verified ORFs 
 

 Top correlated gene  
Uncharacterized 

ORF ORF Gene name Correlation 
(mean) 

Correlation 
(std. dev.) 

Phenotype 
rate (%) 

YLR261C YLR262C YPT6 0.689 0.05 0.13 

YBR062C YGL131C SNT2 0.667 0.034 0.01 

YGL117W YDR354W TRP4 0.66 0.031 0.04 

YHR045W YPL170W DAP1 0.582 0.068 0.03 

YDR114C YER050C RSM18 0.535 0.038 0.03 

YIL077C YIL041W GVP36 0.515 0.099 0.02 

YIL029C YOR043W WHI2 0.489 0.065 0.02 

YKR073C YKR072C SIS2 0.476 0.037 0.02 

YIL014C-A YIL060W YIL060W 0.471 0.037 0.02 

YFL034W YHL019C APM2 0.458 0.081 0.02 

YNL184C YNL252C MRPL17 0.445 0.046 0.03 

YHL029C YNL056W OCA2 0.441 0.05 0.01 

YCR087C-A YCR045C RRT12 0.439 0.04 0.02 

YJL193W YJL155C FBP26 0.437 0.073 0.02 

YLL030C YIL121W QDR2 0.418 0.065 0.01 

YPL056C YPL057C SUR1 0.417 0.125 0.01 

YCR050C YCR045C RRT12 0.417 0.047 0.03 

YGL088W YDR450W RPS18A 0.412 0.033 0.02 

YLR331C YLR332W MID2 0.405 0.069 0.02 

YOR183W YPR106W ISR1 0.396 0.035 0.03 

YCL001W-A YCR026C NPP1 0.395 0.045 0.03 

YCR007C YDL010W GRX6 0.391 0.059 0.01 

YNL140C YHR167W THP2 0.387 0.057 0.03 

YPR089W YDL226C GCS1 0.364 0.06 0.01 

YBR027C YDL066W IDP1 0.362 0.049 0.01 

YCR085W YBR295W PCA1 0.356 0.045 0.01 

YEL033W YIR026C YVH1 0.352 0.035 0.03 

YKL121W YBR208C DUR1,2 0.347 0.051 0.01 

YER077C YNL177C MRPL22 0.346 0.039 0.04 

YGL007W YMR216C SKY1 0.341 0.041 0.05 

YBR284W YCR045C RRT12 0.336 0.047 0.02 

YEL028W YBR149W ARA1 0.33 0.064 0.01 

YCR025C YCR045C RRT12 0.329 0.042 0.01 



 
 

 
 

YLR426W YDL066W IDP1 0.327 0.035 0.04 

YER084W YDL100C GET3 0.326 0.047 0.01 

YMR262W YDR458C HEH2 0.322 0.047 0.01 

YML037C YPR029C APL4 0.319 0.044 0.01 

YCR051W YBR278W DPB3 0.314 0.037 0.01 

YLR358C YJL080C SCP160 0.31 0.046 0.06 

YML122C YLR372W ELO3 0.304 0.041 0.12 

YLR407W YJR083C ACF4 0.299 0.062 0.01 

YDR525W YOR085W OST3 0.296 0.044 0.02 

YHL044W YJL192C SOP4 0.29 0.04 0.01 

YIL067C YCR009C RVS161 0.238 0.045 0.02 

YHL005C YMR256C COX7 0.236 0.042 0.01 

YLR125W YDL184C RPL41A 0.176 0.032 0.01 
 
 
  



 
 

 
 

Table S5 – List of yeast strains used for validation experiments 
 

Strain ID Genotype 
Yeast knock-out 
collection (YKO) 

MATa orfΔ::KanMX his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

Prototrophic deletion 
collection (PDC) 

MATa orfΔ::KanMX can1Δ::STE2pr-Sp_his5 his3∆1 lyp1∆0 

ABY001 PDC hoΔ::KanMX 

ABY002 PDC dap1∆::KanMX 

ABY003 PDC yhr045w∆::KanMX 

ABY004 PDC ygl117w∆::KanMX 

ABY005 PDC dap1∆::KanMX yhr045w∆::NatMX 

ABY006 ABY001 [MoBY-2μ-LEU2-ERG11]  

ABY007 ABY002 [MoBY-2μ-LEU2-ERG11] 

ABY008 ABY003 [MoBY-2μ-LEU2-ERG11] 

ABY009 ABY002 [pRS412-NatNT2-DAP1] 

ABY010 ABY003 [pRS412-NatNT2-YHR045W] 

ABY011 ABY003 [pRS412-NatNT2-NCP1] 

ABY012 ABY004 [MoBY-2μ-LEU2-YGL117W] 

 
 
  



 
 

 
 

Table S6 – List of primers 
 

Primer Sequence 

Nat_F 
ACTATTTGGCCAAGACGGTTGCTTATACATCTATAATCAAAGATTGTACT
GAGAGTGCAC 

Nat_R 
GATAATAATAAATAATAAATAATAAAGCGATAGATAATGCCTGTGCGGT
ATTTCACACCG 

natNT2_F AAAAAAAGATCTGTTTAGCTTGCCTCG 

natNT2_R AAAAAAAGATCTCGATTTGCAGGCATTTGCTCGG 

NCP1_HindIII AAAAAAAAGCTTGGAATCACACCGCGAAACTGG 

NCP1_XbaI AAAAAATCTAGAGAAGAACGGTAAGCCTGATCCCG 

DAP1_HindIII AAAAAAAAGCTTGCTGTGCCAGATCAGTGTGGG 

DAP1_XbaI AAAAAATCTAGAGACACCACCGCAGCCACAACC 
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All published screens of the YKO collection were identified, curated, assembled and normalized to enable analysis and integra-
tion. (A) In the YKO collection, each open reading frame is deleted and replaced via homologous recombination with a selectable marker 
(kanMX) flanked by locus-specific molecular barcodes (UP and DN), as well as universal sequences that can be used for amplification 
(black vertical bars). (B) Phenotypic screens involving the YKO collection are typically performed in an arrayed or a pooled format. In the 
arrayed format, each strain is examined independently from other strains by virtue of being grown in a separate well in a 96-well plate and/or 
as a separate colony on solid media. In the pooled format, all strains are co-cultured together in the same vessel and identified by barcode 
sequencing or microarray hybridization. (C) Publications that report phenotypic screens of the YKO collection were discovered using a 
comprehensive strategy (Materials & Methods). Each publication was associated with a list of screens and each screen was annotated with 
a set of standard vocabularies, i.e. lists of standardized terms that describe the measured phenotype (e.g., growth, expression of RNR3, 
mtDNA copy number) and the environment or experimental condition in which the phenotype was measured (e.g., growth medium, expo-
sure to a chemical compound, temperature). Each screen was also associated with the corresponding data, which comprise the list of tested 
knock-out mutants (whenever available) and the list of phenotypic values for each tested mutant (whenever available). These data were 
cleaned, harmonized and normalized (Materials & Methods). The original and normalized data, as well as the Python code used for 
processing, were also stored in a database and a GitHub repository (see “Data and materials availability”).
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Thanks to its size and meta-data annotations, Yeast Phenome allows to identify similar screens and assess their reproducibility 
(note S1). (A) We identified 8 independent screens of respiratory metabolism (i.e., growth on rich media with glycerol as sole carbon 
source) using criteria described in table S1. In each screen, “hits” were defined as knock-out mutants with a strong growth defect (NPV < 
–3) relative to the most typical mutant in that screen (i.e., mode of all phenotypic values). The fractions of hits identified in one screen and 
reproduced in 0–7 other screens are shown as stacked bars and color-coded. For example, ~4% of hits reported by the first screen (Dimmer 
et al., 2002 (76)) were unique to that screen (black). In contrast, ~18% of hits were reproduced by 6 or 7 other studies (dark red + red). (B) 
The reproducibility of respiration deficiency across the 8 screens was nearly complete when, instead of a gene-by-gene overlap, we 
compared their SAFE enrichment profiles. A screen’s SAFE profile illustrates the statistical association between the identified hits and one 
or more domains of the genetic interaction similarity network (11). Visual and quantitative comparisons of the SAFE profiles of the 8 screens 
(3 of which are shown here) demonstrate that, on a functional level, the sets of identified hits are highly similar to one another and consis-
tently associated with respiration, oxidative phosphorylation and mitochondrial targeting functions. (C) Reproducible hits are more likely to 
associate with relevant biological functions than non-reproducible hits. Nodes of the genetic interaction similarity network (B) that corre-
spond to hits from Merz et al., 2009 (80) are represented as dots. The color of each dot indicates the total number of screens in which that 
gene was identified as a hit. Dark red, red, orange and light green colors indicate hits reproduced in at least 5 of the 8 studies. As expected, 
these hits are concentrated in the network domain associated with respiration, oxidative phosphorylation and mitochondrial targeting. In 
contrast, black and dark blue dots indicate genes identified in only 1 or 2 screens. These hits are more randomly distributed throughout the 
network.
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The comparison of 164 pairs of near-replicate screens provides an estimate of screen reproducibility within and between labs. The 
plots show a cumulative distribution of near-replicate screen-screen similarities computed using phenotypic profiles (A) and SAFE enrich-
ment profiles (B). Near-replicate screen pairs were defined as screens that have tested the same phenotype under similar experimental 
conditions (Materials & Methods). Additionally, screens performed by the same lab were analyzed separately from screens performed by 
different labs. The background distribution corresponds to all screens, regardless of their tested phenotype, condition or lab of origin.
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Secondary mutations are unlikely to impact gene-phenotype associations from YKO screens (note S2). (A) Phenotype rate is 
defined as the fraction of screens in which a knock-out mutant shows a strong phenotype (|NPV| > 3). The phenotype rates of Mat-a, Mat-α 
and homo]\Jous diploid strains mutated for the same Jenes are Jenerall\ correlated �cosine correlation ѩ   �.��²�.���� suJJestinJ that 
secondary mutations are either rare, reoccur frequently in strains lacking the same gene or have relatively little impact on most phenotypes. 
(B) The phenotypic profiles of knock-out mutants with evidence of secondary mutations are more, not less, likely to be consistent with 
known functions of the knocked-out genes than the phenotypic profiles of mutants without evidence of secondary mutations. Each blue box 
represents a set of knock-out mutants with (right) and without (left) evidence of secondary mutations (note S2). The grey areas in each box 
are proportional to the fraction of mutants presentinJ phenot\pes that are inconsistent with the Jene’s Nnown function.
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Phenotypic profiles predict functional relationships as accurately as other genome-scale datasets. (A) We examined gene-gene 
similarities using 4 independent data sources: Yeast Phenome, genetic interactions, protein-protein interactions and gene expression. For 
each dataset, we calculated profile similarities using a bootstrap strategy (20 samples, 1,500 features per sample). In each sample, we 
ranNed Jene pairs b\ their profile similarit\ �ѩ� and computed recall �number of functionall\ related pairs with ѩ ! Ȭ for decreasinJ Yalues for 
Ȭ� and precision �the fraction of functionall\ related pairs amonJ all Jene pairs with ѩ ! Ȭ for decreasinJ Yalues of Ȭ�. A Jene pair was 
considered functionally related if both genes are co-annotated to the same GO biological process term, protein complex or biochemical 
pathwa\. 7he plot shows the relationship between recall and precision for each dataset. /ines and shaded areas represent the aYeraJe and 
standard deYiation of precision�recall curYes for the �� samples. 'ata sources and details about calculatinJ phenot\pic similarities� preci-
sion�recall and areas under the precision�recall curYe �A835� are described in 0aterials 	 0ethods. �B� 'ifferent t\pes of functional 
relationships are better predicted b\ different data t\pes. 7he heatmap shows areas under the precision�recall curYes �A835s� computed 
following the precision-recall analysis described in (A) but using narrower definitions of functional relationship (e.g., only co-annotation to the 
same protein complex or only co-annotation to the same biochemical pathway). (C� 'espite an oYerall consistent performance in functional 
prediction� we obserYed little redundanc\ between data t\pes such that Jenes correlated in one dataset were Jenerall\ uncorrelated in 
others. 7he heatmap shows 3earson correlation coefficients between Jene�Jene profile similarit\ Yalues computed from the � different data 
sources.
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Principal Component Analysis (PCA) of Yeast Phenome data provides an estimate of screen diversity and major axes of variation. 
(A) Cumulative distribution of the phenotypic variation among knock-out mutants explained by the first 4,000 principal components (PCs). 
The red lines indicate that 50% of phenotypic variance is explained by the first 273 PCs. (B) Knock-out mutants projected onto the first 2 
PCs of Yeast Phenome data. The bar plots along the x- and y-axis show the association of the 2 PCs with additional gene features. The bar 
plot on top shows the relative prevalence of genes involved in protein synthesis (blue) and vesicle transport (red) in bins along the PC1 
coordinate. The bar plot on the right shows the average mutant growth rate in bins along the PC2 coordinate.  
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Phenotype rate, defined as the fraction of screens in which a gene shows a strong phenotype (|NPV| > 3), is not uniformly distrib-
uted across biological processes. An average phenotype rate was computed for each GO biological process with more than 10 genes 
represented in Yeast Phenome. The true phenotype rate (Ptrue, red line) was compared to the average and standard deviation of 1,000 
randomly sampled gene sets of the same size (Prandom� blacN dot and ѫrandom, grey box, respectively). A z-score for each biological process 
was computed as (Ptrue– Prandom� � ѫrandom. The top 50 biological processes with the highest (A) and the lowest (B) z-scores are shown. The 
aromatic amino acid family biosynthetic process (highlighted in red) is the only metabolic process with an elevated phenotype rate.
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Phenotype rates and genetic interaction degrees for 1,099 GO biological processes are correlated. An average phenotype rate was 
computed for each process with more than 10 genes represented in Yeast Phenome. A z-score was computed by comparing the true 
phenotype rate (Ptrue) to the average and standard deviation of 1,000 randomly sampled gene sets of the same size (Prandom): Z = (Ptrue– 
Prandom� � ѫrandom. The same calculation was performed for genetic itneraction degrees. A scatter-plot of phenotype rate and genetic interaction 
degree z-scores is shown. The solid red line corresponds to y = x. The dotted red lines correspond to y = x – 2 and y = x + 2. Processes that 
fall outside of the red dotted lines and are associated with intracellular trafficking, transcription/chromatin remodeling and DNA replication 
are colored in blue, yellow and green, respectively.

Spearman ρ = 0.63, p-value = 6.4 x 10–123
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Figure S9

B

A

The biosynthesis of tryptophan is unique among all amino acids for its requirement under many chemical stresses. (A) The 
superpathway of aromatic amino acid biosynthesis includes the biosynthesis of tryptophan, tyrosine and phenylalanine, as well as their 
common precursor chorismate. Genes encoding enzymes required for each reaction are indicated in red. The feedback inhibition of ARO4 
by tyrosine and ARO3 by phenylalanine are indicated by the grey dashed lines. (B) Mutants impaired in the GAAC pathway (gcn2у� gcn3у� 
gcn4у and gcn20у� are sensitiYe to onl\ a��� of the conditions that cause trpу�aroу sensitiYit\. 7he 9enn diaJram shows the oYerlap 
between two sets of screens� �� blue� ����� screens where at least � of the � trpу�aroу mutants show impaired Jrowth �139 � ²��� �� red� 
572 screens where at least 2 of the 4 gcnу mutants show impaired Jrowth �139 � ²��.
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Evidence from Yeast Phenome and validation experiments suggests that Yhr045w works with Dap1 in regulating ergosterol 
biosynthesis and DNA damage response. (A) yhr045wу and dap1у are amonJ the top � mutants with the hiJhest deJree of sensitiYit\ to 
h\dro[\urea �+8�. :e e[amined �� <east 3henome screens that tested Jrowth upon e[posure to +8 at Yarious doses. 0utants were 
ranNed based on their normali]ed phenot\pic Yalues �139s� in each screen. 7he top �� mutants with the lowest median ranN �red line� are 
shown in the plot. 0utant ranNs in all �� datasets are also shown �Jre\ circles�. 7he si]e of the circles reflects the +8 dose. yhr045wу and 
dap1у are hiJhliJhted in red. �B� :e e[perimentall\ confirmed the sensitiYit\ of dap1у and yhr045wу to +8 and 00S� and Yerified that the 
sensitiYit\ is rescued b\ the e[pression of plasmid�borne DAP1 and YHR045W� respectiYel\ �0aterials 	 0ethods�. 7he sensitiYit\ of 
yhr045wу cannot be rescued b\ the e[pression of NCP1� a Jene located �.� Nb upstream of YHR045W and inYolYed in erJosterol bios\n�
thesis like DAP1. 7he inabilit\ of NCP1 to complement yhr045wу phenot\pes indicates that these phenot\pes are not caused b\ a neiJh�
borinJ Jene effect �1*E�.
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Evidence from Yeast Phenome and validation experiments suggests that Ygl117w is a novel member or regulator of the aromatic 
amino acid biosynthesis pathway. �A� 7he phenot\pic profile of ygl117w¨ is as similar to the phenot\pic profiles of trp¨�aro¨ mutants as 
the\ are to one another. &osine correlations between all pairs of Jenes were computed usinJ the bootstrap method described in 0aterials 	 
0ethods. �B� 7he Jrowth defect of ygl117wу on media lacNinJ tr\ptophan �S& ² 7rp� is rescued b\ the e[pression of a plasmid�borne 
YGL117W �0aterials 	 0ethods�. �C� A model describinJ the potential role of <Jl���w in the aromatic amino acid bios\nthesis pathwa\. 
'ata in the literature� <east 3henome data and our own Yalidation e[periments are consistent with the h\pothesis that <Jl���w neJatiYel\ 
reJulates the abilit\ of phen\lalanine to feedbacN�inhibit the 'A+3 actiYit\ of Aro�.
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The phenotypic similarities of overlapping, immediately adjacent and proximal non-adjacent gene pairs are significantly higher 
than expected by random chance. A schematic representation of different classes of gene pairs is shown on the right. The distributions of 
phenotypic similarities for overlapping gene pairs (purple), adjacent gene pairs (cyan), proximal non-adjacent gene pairs (red) and gene 
pairs located on different chromosomes (yellow) were compared to the overall distribution of all phenotypic similarities (excluding overlap-
ping gene pairs). The p-values for the corresponding 2-sample Kolmogorov-Smirnov tests are reported.
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The relationship between phenotypic similarity and chromosomal 
proximity is consistent across all chromosomes examined 
independently. Gene pairs located on each chromosome were sorted by 
their intergenic distance and subdivided into groups of 250 pairs. In each 
group, the average intergenic distance and average phenotypic similarity 
were computed and plotted on the x and y-axis, respectively. Distance 
was plotted on a log10 scale. The color of each point indicates the fraction 
of immediately adjacent genes in the group. The yellow line indicates the 
average phenotypic similarity for gene pairs located on different chromo-
somes. The blue line indicates the approximate boundary of the expo-
nential relationship estimated from all chromosomes (380 kb; Fig. 5; 
Materials & Methods). The green line indicates the linear fit between log10 
intergenic distance and phenotypic similarity for all points within the 
estimated distance boundary (left of the blue line) on each chromosome. 
As a reference, the red line indicates the same linear fit estimated from 
all chromosomes (Fig. 5).
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The relationship between phenotypic similarity and chromosomal proximity is consistent across several independent subsets of 
Yeast Phenome data. Phenotypic similarity was computed using only screens from 3 large studies (Hillenmeyer et al., 2008 (7); Hoepfner 
et al., 2014 (18); Lee et al., 2014 (71)), as well as all screens excluding the top 5 largest chemo-genomics datasets (the top 3 plus Parsons 
et al., 2006 (6); Ericson et al., 2008 (72)). Gene pairs located on the same chromosome were sorted by their intergenic distance and 
subdivided into groups of 1,000 pairs. In each group, the average intergenic distance and average phenotypic similarity were computed and 
plotted on the x and y-axis, respectively. Distance was plotted on a log10 scale. The color of each point indicates the fraction of immediately 
adjacent genes in the group. The yellow line indicates the average phenotypic similarity for gene pairs located on different chromosomes. 
The blue line indicates the approximate boundary of the exponential relationship estimated from each subset (Materials & Methods). The 
red line indicates the linear fit between log10 intergenic distance and phenotypic similarity for all points within the estimated distance bound-
ary (left of the blue line).
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The relationship between phenotypic similarity and chromosomal proximity is consis-
tent across all sets of strains constructed by the same laboratory. Gene pairs located on 
each chromosome were sorted by their intergenic distance and subdivided into groups of 100 
pairs. In each group, the average intergenic distance and average phenotypic similarity were 
computed and plotted on the x and y-axis, respectively. Distance was plotted on a log10 scale. 
The yellow line indicates the average phenotypic similarity for gene pairs located on different 
chromosomes. The blue line indicates the approximate boundary of the exponential relation-
ship estimated from all gene pairs (380 kb; Fig. 5; Materials & Methods). The green line 
indicates the linear fit between log10 intergenic distance and phenotypic similarity for all gene 
pairs within the estimated distance boundary (left of the blue line) constructed by a given 
laboratory. As a reference, the red line indicates the same linear fit estimated from all gene 
pairs (Fig. 5). Despite the fact that strains constructed by Laboratory 14 have a consistently 
higher phenotypic similarity (see main text), they still show an exponential relationship with 
intergenic distance.
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YKO mutants constructed by laboratory 14 appear to be the 
only case of a lab-linked aneuploidy that affects proximal 
genes. (A) The average correlation was computed for YKO mutants 
constructed by the same laboratory and affecting genes located on 
the same chromosome (x-axis) vs different chromosomes (y-axis). In 
all cases (except for laboratory 14), YKO mutants affecting genes 
located on different chromosomes show background levels of 
phenotypic similarity (yellow line), whereas those located on the 
same chromosome are consistently more similar. (B) YKO mutants 
constructed by laboratory 14 have been previously shown to carry an 
extra copy of chromosome XI (see main text). An overview of 
aneuploidy across ~4,400 YKO mutants indicate that amplification of 
chromosome XI in strains generated by laboratory 14 is the only 
example of chromosome aneuploidy shared by proximal genes.
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The relationship between phenotypic similarity and chromosomal proximity is not explained by known cases of functional 
co-clustering. (A) The relationship persists if we exclude all gene pairs with prior evidence of functional co-clustering (Materials & Meth-
ods): members of the same protein complex, metabolic pathway, moderately specific GO biological process term; gene co-expressed or 
co-regulated by the same transcription factor; paralogous gene pairs. Gene pairs located on the same chromosome were sorted by their 
intergenic distance and subdivided into groups of 1,000 pairs. In each group, the average intergenic distance and average phenotypic 
similarity were computed and plotted on the x and y-axis, respectively. Distance was plotted on a log10 scale. The color of each point 
indicates the fraction of immediately adjacent genes in the group. The yellow line indicates the average phenotypic similarity for gene pairs 
located on different chromosomes. The blue line indicates the approximate boundary of the exponential relationship estimated from each 
subset (Materials & Methods). The red line indicates the linear fit between log10 intergenic distance and phenotypic similarity for all points 
within the estimated distance boundary (left of the blue line). (B) Similarity of gene expression across multiple experimental conditions (37) 
is also related to chromosomal proximity. However, this relationship has a much shorter range (10.8 kb) than phenotypic similarity (380 kb). 
Gene pairs located on the same chromosome were sorted by their intergenic distance and subdivided into groups of 1,000 pairs. In each 
group, the average intergenic distance and average gene co-expression (measured by cosine similarity) were computed and plotted on the 
x and y-axis, respectively. Distance was plotted on a log10 scale. The color of each point indicates the fraction of immediately adjacent genes 
in the group. The yellow line indicates the average phenotypic similarity for gene pairs located on different chromosomes. The blue line 
indicates the approximate boundary of the exponential relationship estimated from each subset (Materials & Methods). The red line 
indicates the linear fit between log10 intergenic distance and phenotypic similarity for all points within the estimated distance boundary (left of 
the blue line).
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The relationship between phenotypic similarity (co-essentiality) and chromosomal proximity among human genes persists if we 
exclude amplified genes. Genes with reported evidence of copy number amplification (n > 4) in at least 2 cancer cell lines were excluded 
from the analysis (Materials & Methods). Gene pairs located on the same chromosome were sorted by their intergenic distance and 
subdivided into groups of 1,000 pairs. In each group, the average intergenic distance and average phenotypic similarity were computed and 
plotted on the x and y-axis, respectively. Distance was plotted on a log10 scale. The color of each point indicates the fraction of immediately 
adjacent genes in the group. The yellow line indicates the average phenotypic similarity for gene pairs located on different chromosomes. 
The blue line indicates the approximate boundary of the exponential relationship estimated from each subset. The red line indicates the 
linear fit between log10 intergenic distance and phenotypic similarity for all points within the estimated distance boundary (left of the blue 
line). 
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