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Figure S1: FlexTPC has similar or better performance than the Briere models
when describing insect developmental rates. The Briere1, Briere2 and flexTPC
models are compared in the botrana dataset. Experimental measurements of
the developmental rate (defined as the inverse of mean time to progression) of
various life stages (eggs, instars 1 through 5 and pupae) of the grapevine moth
Lobesia botrana at various temperatures are shown as blue triangles. The fitted
models are shown as lines (Briere1: red, Briere2: yellow, flexTPC: green).
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Figure S2: FlexTPC outperforms the Briere models when describing TPCs of
organisms from cold environments. The Briere1, Briere2 and flexTPC models
are compared in the glacierbac dataset. Experimental measurements of the
growth rate of five different bacterial strains are shown as blue triangles. The
fitted models are shown as lines (Briere1: red, Briere2: yellow, flexTPC: green).
The strains shown in the top row are facultative psychrophiles while the strains
shown in the bottom are obligate psychrophiles. Due to their mathematical
structure, the Briere models cannot describe TPCs for which the minimum
temperature is less than 0℃.
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Figure S3: FlexTPC can describe thermal performance curves of various shapes
that arise under stressors. We show the model fits of flexTPC and the Briere
models in the abcoli dataset. The optical density (a proxy for the total amount
of bacteria) of an E. coli culture after 24 hours of growth under various antibiotic
backgrounds (AMP: ampicillin, CLI: clindamycin, CPR: ciprofloxacin, ERY:
erythromycin, FOX: cefoxitin, GEN: gentamycin, LVX: levofloxacin, NTR: ni-
trofurantoin, STR: streptomycin, TET: tetracyclin, TOB: tobramycin, no drug:
no antibiotic) is shown as blue triangles. The fitted models are shown as lines
(Briere1: red, Briere2: yellow, flexTPC: green). Note that the presence of
antibiotics changes the shape of the thermal performance curve.
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Figure S4: Accuracy of upper thermal breadth approximation. Parameter β of
the flexTPC model approximates the ratio between the upper thermal breadth
T2 − T1 (defined as the width of the temperature interval for which r(T )

rmax
>

e−
1
8 ≈ 0.88) and the lower thermal breadth Tmax−Tmin (defined as the width of

the temperature interval for which r(T )
rmax

> 0). Left. The model parameter β is
compared to the true thermal breadth ratio τ2 − τ1 = T2−T1

Tmax−Tmin
(where τ2 − τ1

was obtained numerically) for various values of parameter α, which determines
the location of the thermal optimum relative to Tmin and Tmax. The identity
line is shown as a dotted line for comparison. We only show symmetric and
left-skewed curves (i.e. when α ≥ 0.5) since, by symmetry, the error behavior
will be the same for the corresponding right-skewed curve obtained by replacing
αwith 1 − α. Right. The relative error

∣∣∣β−(τ2−τ1)
τ2−τ1

∣∣∣ of β when approximating
τ2 − τ1 is shown for various values of α. Dotted lines show relative errors of 5%
and 10%.
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Figure S5: Shifing the Briere model to accomodate traits with nonzero pefor-
mance at lower temperatures changes the shape of the curve. An attempt to
use the Briere model below freezing temperatures could be to shift it left by
an offset Toffset (see shifted Briere model section in the Supplemental Informa-
tion). We show the curve shapes (normalized by the maximum value to more
easily compare the curve shapes) of different choices of Toffset while keeping all
other model parameters constant. The resulting TPCs can describe TPCs be-
low freezing temperatures, but the curve shape depends on the choice of offset
temperature, which is effectively an additional model parameter.
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Mathematical derivation of the flexTPC model
We start with the equation for the four-parameter Briere2 model for thermal
performance curves

r(T ) =

{
cT (T − Tmin)(Tmax − T )

1
m Tmin < T < Tmax

0 otherwise

and modify it as follows:

r(T ) =

{
c(T − Tmin)

a(Tmax − T )b Tmin < T < Tmax

0 otherwise
(S1)

In doing this we change the model in two important ways. First, we remove the
root at zero: this will make the model suitable for describing TPCs of organisms
that function below freezing temperatures. Second, we introduce an exponent a
for the first factor to make the model more flexible and replace the power 1/m
by a constant b. This leads to a flexible model that can describe temperature
performance curves of many different shapes that is equivalent to the Beta model
[2] if we replace the constant c with a different constant k by taking c = ek.

However, this form of the model contains three arbitrary mathematical con-
stants a, b, c without a clear biological meaning, making it difficult to interpret
the model parameters, determine initial values for curve fitting and set reason-
able prior distributions with Bayesian approaches. To make this model more
useful for ecological applications, we reparametrize the model by replacing these
arbitrary constants with biologically meaningful quantities. We start by finding
the optimal temperature. If we take natural logarithms and differentiate we
have

d

dT
ln r =

d

dT
[ln c+ a ln(T − Tmin) + b ln(Tmax − T )]

=
a

T − Tmin
− b

Tmax − T

By Fermat’s theorem on extrema, ln r(T ) is maximized when d
dT ln r = 0. Since

the natural logarithm is a monotonically increasing function, this condition also
maximizes r(T ). Thus, we can find the optimum temperature Topt by solving
the equation

0 =
a

Topt − Tmin
− b

Tmax − Topt

which yields
Topt = αTmax + (1− α)Tmin (S2)

where α = a
a+b . Rearranging this equation yields α =

Topt−Tmin

Tmax−Tmin
, which shows

that α can be interpreted as a rescaled (and dimensionless) optimal temperature.
In other words, it represents the position of the optimal temperature relative to
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the minimum and maximum, with the extreme values α = 0 corresponding to
Topt = Tmin and α = 1 to Topt = Tmax.

If we take α = a
a+b and define s = a+b, we have that a = αs and b = (1−α)s.

Substituting these constants in Equation S1 yields

r(T ) =

{
c(T − Tmin)

αs(Tmax − T )(1−α)s Tmin < T < Tmax

0 otherwise
(S3)

Now, we replace the arbitrary constant c with the maximum trait value rmax

by noting that by definition rmax = r(Topt), which gives the following equation

rmax = c(Topt − Tmin)
αs(Tmax − Topt)

(1−α)s

Substituting Equation S2 for Topt into this expression and solving for c yields

c =
rmax

[αα(1− α)1−α(Tmax − Tmin)]
s

Substituting this expression for c into Equation S3 and rearranging the resulting
expression yields the following:

r(T ) =

rmax

[(
T−Tmin

α

)α (
Tmax−T

1−α

)1−α (
1

Tmax−Tmin

)]s
Tmin < T < Tmax

0 otherwise
(S4)

This version of the model was previously derived in [1], where it is referred to as
the modified Briere model. An alternate parametrization that has the optimum
temperature Topt ∈ [Tmin, Tmax] explicitly can be found by substituting the
expression α =

Topt−Tmin

Tmax−Tmin
and rearranging to get

r(T ) =

rmax

[(
T−Tmin

Topt−Tmin

) Topt−Tmin
Tmax−Tmin

(
Tmax−T

Tmax−Topt

) Tmax−Topt
Tmax−Tmin

]s

Tmin < T < Tmax

0 otherwise
(S5)

We can find the parameters of the model that determine its shape by nondi-
mensionalizing the model, which will remove any parameters that determine
the location and scaling of the thermal performance curve without changing its
shape. To do this, we can define a nondimensional temperature τ = T−Tmin

Tmax−Tmin

(where τ and T have a relationship that is analogous to that between α and
Topt) and a nondimensional trait value w = r

rmax
. Substituting in Equation S4

yields the following nondimensional model:

w(τ) =


[(

τ
α

)α (
1−τ
1−α

)1−α
]s

0 < τ < 1

0 otherwise
(S6)

that removes all parameters that give units to the model. This shows that
parameters α and s determine the shape of the curve, while parameters rmax,
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Tmin and Tmax determine the location and scaling of the curve in the temperature
and performance axes.

Currently, Equations S4, S5 and S6 have a parameter s > 0 that does not
have a direct biological interpretation. However, differentiating Equation S6
yields

dw

dτ
= w(τ)

d lnw

dτ

= sw(τ)

[
α

τ
− 1− α

1− τ

]
which shows that s scales the magnitude of the rate of change of performance
with temperature. Thus, large values of s will give TPCs where performance
decreases more steeply away from the optimum (i.e. curves that are more nar-
row).

To make the model more interpretable, it seems natural to try to find a way
to substitute parameter s by the thermal breadth of the TPC (i.e. the tempera-
ture range for which a certain relative performance reference value wref ∈ (0, 1)
is exceeded), a quantity of interest to ecologists. It is convenient to work with
the nondimensional model to do this, as it only has two parameters and any
derived results can easily be converted to analogous results for dimensional mod-
els. Mathematically, finding the (nondimensional) thermal breadth corresponds
to finding τ2 − τ1, where τ1, τ2 are the solutions for the equation w(τ) = wref,
and τ1 ≤ τ2. Unfortunately, this equation does not have a closed-form solution.
However, here we derive an approximate solution that is approached asymptot-
ically as wref → 1. To do this, we first take natural logarithms of Equation S6,
substitute w(τ) = wref and divide by s to get the equation

1

s
lnwref = α ln

τ

α
+ (1− α) ln

1− τ

1− α

with solutions τ1, τ2. Now, consider the second order Taylor expansion of the
first term in the right hand side of this equation around τ = α. This yields

α ln
( τ

α

)
∼ τ − α− 1

2α
(τ − α)2

Let ρ = 1− τ , γ = 1− α. After a change of variables and Taylor expanding in
an analogous way, the second term can be approximated by

(1− α) ln
1− τ

1− α
= γ ln

ρ

γ
∼ ρ− γ − 1

2γ
(ρ− γ)2

= α− τ − 1

2(1− α)
(α− τ)2

Thus, as τ → α (which implies wref → 1)

1

s
lnwref ∼ τ − α− 1

2α
(τ − α)2 +

[
α− τ − 1

2(1− α)
(α− τ)2

]
= −1

2

(
1

α
+

1

1− α

)
(τ − α)2
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This is a quadratic equation on τ , with solutions

τ1 = α−
√
−2α(1− α)

s
lnwref

τ2 = α+

√
−2α(1− α)

s
lnwref

and therefore, when wref → 1 we have an asymptotic solution for the nondimen-
sional thermal breadth τ2 − τ1:

τ2 − τ1 ∼
√
−8α(1− α)

s
lnwref

The choice of wref = e−
1
8 is particularly convenient, as in this case the expression

simplifies to

τ2 − τ1 ∼
√

α(1− α)

s

We can define a new model parameter β as an approximate nondimensional
thermal breadth by replacing the asymptotic sign with equality so that

β =

√
α(1− α)

s

Solving for s, we get the expression

s =
α(1− α)

β2

which we can substitute into Equations S4 and S6 to get a fully interpretable
parametrization of the flexTPC model in both nondimensional form

w(τ) =


[(

τ
α

)α (
1−τ
1−α

)1−α
]α(1−α)

β2

0 < τ < 1

0 otherwise
(S7)

and in what we consider the standard form of flexTPC

r(T ) =

rmax

[(
T−Tmin

α

)α (
Tmax−T

1−α

)1−α (
1

Tmax−Tmin

)]α(1−α)

β2

Tmin < T < Tmax

0 otherwise
(S8)

where the dimensional location/scaling parameters Tmin, Tmax, rmax are reintro-
duced, but the parameters α, β that determine the curve shape are kept in
nondimensional form.

As before, we can also construct a fully dimensional parametrization in terms
of Topt and the approximate thermal breadth B at rref = e−

1
8 rmax that may be
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of interest for applied scientists that wish to easily get estimates for these quanti-
ties from standard statistical software. The roots of r(T ) = rref can be obtained
by transforming the dimensionless τ1, τ2 found previously into dimensional tem-
peratures by inverting the equation τ = T−Tmin

Tmax−Tmin
, which leads to

T1 = Tmin + τ1(Tmax − Tmin)

T2 = Tmin + τ2(Tmax − Tmin)

We can then get an asymptotic solution for the dimensional thermal breadth
T2 − T1

T2 − T1 = (τ2 − τ1)(Tmax − Tmin)

∼ β(Tmax − Tmin)

We can thus define B = β(Tmax − Tmin) as an approximate thermal breadth.
Solving this expression for β and substituting into Equation S7, along with the
expressions that define the nondimensional quantities w = r

rmax
, α =

Topt−Tmin

Tmax−Tmin
,

1−α =
Tmax−Topt
Tmax−Tmin

, τ = T−Tmin

Tmax−Tmin
, 1−τ = Tmax−T

Tmax−Tmin
yields the fully dimensional

form of the flexTPC model

r(T ) =

rmax

[(
T−Tmin

Topt−Tmin

) Topt−Tmin
Tmax−Tmin

(
Tmax−T

Tmax−Topt

) Tmax−Topt
Tmax−Tmin

] (Topt−Tmin)(Tmax−Topt)

B2

Tmin < T < Tmax

0 otherwise
(S9)

The relative error for B when approximating T2 − T1 is the same as the one for
β in approximating τ2 − τ1 (see Figure S4), since∣∣∣∣B − (T2 − T1)

T2 − T1

∣∣∣∣ = ∣∣∣∣β(Tmax − Tmin)− (τ2 − τ1)(Tmax − Tmin)

(τ2 − τ1)(Tmax − Tmin)

∣∣∣∣ = ∣∣∣∣β − (τ2 − τ1)

τ2 − τ1

∣∣∣∣ .
Constructing more parsimonious models from the
flexTPC equation
FlexTPC is a five-parameter model that can describe thermal performance
curves of a wide range of shapes. As all model parameters are interpretable,
our preferred approach when data is limited is to take a Bayesian approach to
parameter inference and use informative prior distributions based in biological
knowledge (e.g. temperature ranges of the habitat of the species, or the ap-
proximate thermal breadth for previously fitted TPCs to the trait of interest
in other species) to restrict parameter values to biologically reasonable ranges.
This makes it possible to fit flexTPC even in data-limited situations. However,
some researchers may not wish to take a Bayesian approach to parameter infer-
ence and may find a need for a more parsimonious model than flexTPC due to
data limitations. In this section we show how the interpretable parametrization
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of flexTPC makes it possible to easily obtain models with fewer parameters from
the flexTPC equation for these purposes.

To obtain a more parsimonious model, one or more of the flexTPC model
parameters needs to be removed by either fixing it to a constant value or mak-
ing it a function of the remaining model parameters. Whenever fitting a TPC
to real data, it will almost always be necessary for the TPC model to be able
to vary the maximum trait value rmax and the thermal limits Tmin and Tmax

to describe the data. Because of this, the parameters that are the most likely
candidates for removal are the parameter for the upper thermal breadth β and
the relative location of the thermal optimum α (although, as discussed in the
main text, removing the latter will introduce a deterministic relationship be-
tween Topt, Tmax, and Tmin that can potentially introduce bias in estimates of
these parameters).

Three parameter models

For very data-limited cases where introducing bias in the Topt, Tmax, and Tmin

estimates is less important than having a parsimonious model that fits the data
well, three-parameter TPC models may be useful. Various three parameter
models can be obtained from the flexTPC equation by fixing both α and β.

For example, the quadratic model is a special case of flexTPC when fix-
ing α = 1/2, β = 1/

√
8. While the Briere1 model is not a special case of

flexTPC, setting α ≈ 0.8, β ≈ 0.2 yields a three-parameter model with a sim-
ilar shape. Like the Briere1 model, this restricted flexTPC model also makes
a strong assumption about the relationship of the temperature optimum and
thermal limits. However, unlike the Briere1 model, this restricted model can
describe TPCs from organisms that function at any temperature range, includ-
ing below freezing temperatures.

Four parameter models

If estimating Topt and the thermal limits is one of the main goals of the analysis,
researchers may wish to avoid possibly introducing bias into these quantities by
introducing a deterministic relationship between these quantities, but still need a
more parsimonious model than flexTPC. These kinds of models can be obtained
by leaving α as a free parameter, and only removing β.

Rather than setting β to a constant, a researcher may be interested in having
the thermal breadth vary depending on curve skewness. We show that this can
be done by making β a function of α. For example, suppose we want a model
that reduces to the quadratic model for symmetric curves (i.e. β = 1/

√
8 when

α = 0.5) and approximates the Briere1 model for curves of similar skewness (i.e.
β = 0.2 when α = 0.8). A simple way of obtaining a restricted model from the
flexTPC equation that accomplishes this is setting

β =
1√
8
−

∣∣α− 1
2

∣∣
0.3

(
1√
8
− 0.2

)
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The resulting model has four free parameters (Tmin, Tmax,rmax and α) and can
describe curves of any skewness (i.e. where Topt is at any point in-between Tmin

and Tmax), but assumes the thermal breadth varies deterministically with the
skewness. This model can be used for traits for which either the Briere1 or
quadratic models are typically used, making it possible to compare the inferred
parameters fairly with a single four-parameter model.

Shifted Briere model
In order to use the Briere model to describe TPCs for organisms that grow
below freezing temperatures, the root at T = 0◦C can be shifted to a lower
temperature by adding an offset temperature Toffset to the function argument. In
order to keep the interpretation of Tmin and Tmax as the minimum and maximum
temperatures, the same offset needs to be added to these parameters. Modifying
the Briere2 model equation

r(T ) = cT (T − Tmin)(Tmax − T )
1
m

by adding these offsets leads to the shifted Briere2 model

r(T ) = c(T + Toffset)(T + Toffset − Tmin − Toffset)(Tmax + Toffset − T − Toffset)
1
m

= c(T + Toffset)(T − Tmin)(Tmax − T )
1
m

where now the root at T = 0◦C is replaced by a root at T = −Toffset. This
model can describe TPCs for which Tmin ≥ −Toffset. However, the choice of
Toffset changes the shape of the resulting curve (see Figure S5). As before, a
shifted Briere1 model corresponds to setting m = 2.

Model comparison
We include alternative model comparison metrics to those used in the main text.

botrana dataset
Aikaike Information Criterion

stage Briere1 Briere2 flexTPC
eggs -55.89 -40.25 -49.61
i1 -59.19 -54.92 -62.00
i2 -71.53 -70.63 -74.22
i3 -41.38 -33.46 -60.92
i4 -59.92 -63.21 -58.29
i5 -57.53 -75.16 -75.49

pupae -68.13 -72.66 -98.48
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Bayesian Information Criterion

stage Briere1 Briere2 flexTPC
eggs -53.33 -37.06 -45.78
i1 -56.64 -51.73 -58.17
i2 -68.98 -67.44 -70.39
i3 -38.82 -30.26 -57.09
i4 -57.36 -60.02 -54.45
i5 -54.97 -71.97 -71.66

pupae -65.58 -69.46 -94.65

glacierbac dataset
Aikaike Information Criterion

species (strain) Briere1 Briere2 flexTPC
Arthrobacter sp (55) -60.66 -63.68 -67.31
Arthrobacter sp (60) -37.43 -46.32 -56.29
Pseudomonas (76) -31.86 -30.17 -36.84

Arthrobacter glacialis (137) -41.60 -38.82 -50.41
Arthrobacter glacialis (158) -61.54 -66.20 -90.24

Bayesian Information Criterion

species (strain) Briere1 Briere2 flexTPC
Arthrobacter sp (55) -59.07 -61.69 -64.92
Arthrobacter sp (60) -36.64 -45.33 -55.10
Pseudomonas (76) -31.07 -29.19 -35.65

Arthrobacter glacialis (137) -41.82 -39.09 -50.74
Arthrobacter glacialis (158) -60.75 -65.21 -89.06
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abcoli dataset
Aikaike Information Criterion

antibiotic Briere1 Briere2 flexTPC
AMP -5.56 -8.64 -17.12
CLI -11.98 -10.51 -11.38
CPR -2.92 -7.16 -11.75
ERY 3.28 0.25 -4.95
FOX -18.14 -16.31 -21.11
GEN -3.16 -3.96 -11.56
LVX -12.93 -10.96 -12.43
NTR -16.03 -16.47 -17.42
STR -5.39 -7.42 -12.87
TET -15.07 -13.83 -14.88
TMP -18.63 -16.74 -24.29
TOB -7.15 -9.40 -17.35

no drug -5.49 -6.43 -25.33

Bayesian Information Criterion

antibiotic Briere1 Briere2 flexTPC
AMP -5.78 -8.91 -17.45
CLI -12.19 -10.78 -11.70
CPR -3.14 -7.43 -12.07
ERY 3.07 -0.02 -5.27
FOX -18.35 -16.58 -21.43
GEN -3.38 -4.23 -11.88
LVX -13.15 -11.23 -12.75
NTR -16.25 -16.74 -17.74
STR -5.61 -7.69 -13.19
TET -15.28 -14.10 -15.20
TMP -18.85 -17.01 -24.61
TOB -7.37 -9.67 -17.68
WT -5.70 -6.70 -25.65

Statistical model for Bayesian estimation of temperature-
dependent mosquito life history traits
For each trait in the lhculex dataset, we compare the flexTPC model to a
different TPC model that was used to fit the same data in a previous study
(Shocket et al, 2020).
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Species Egg viability Larval survival Development rate Adult lifespan
Culex pipiens Quadratic Quadratic Briere1 Linear

Culex quinquefasciatus Briere1 Quadratic Briere1 Linear

Table 1: Previously used model in the literature for each trait and species.

where the models are defined as follows:

Briere1: r(T ) =

{
cT (T − Tmin)(Tmax − T )

1
2 Tmin < T < Tmax

0 otherwise

Quadratic: r(T ) =

{
c(T − Tmin)(Tmax − T ) Tmin < T < Tmax

0 otherwise

Linear: r(T ) =

{
m(Tmax − T ) T > 15◦C
m(Tmax − 15) otherwise

(note that the “linear” model for lifespan is really a piecewise linear model where
lifespan is assumed constant below 15◦C).

Model reparametrization

In order to make comparisons between the models fair, identical prior distribu-
tions were used for the parameters of both flexTPC and the corresponding lit-
erature model whenever possible. This required reparametrizing the quadratic,
Briere1 and linear models so they can be written in terms of the maximum trait
value rmax.

The “linear model” that was used in Shocket et al for adult mosquito lifespan
is in truth a piecewise linear model that is assumed to be constant below 15◦C
and is linear above this temperature. Since lifespan decreases at high temper-
atures, this means that in this model rmax = m(Tmax − 15). We can use this
expression to reparametrize the linear model and write it down in terms of Tmax

and rmax:

r(T ) =

{
rmax

(
Tmax−T
Tmax−15

)
T > 15◦C

rmax otherwise

The quadratic model is a special case of the flexTPC model if we set α = 1
2

and s = 2 in Equation S4. This yields the following expression:

r(T ) =

{
4rmax

(Tmax−Tmin)2
(T − Tmin) (Tmax − T ) Tmin < T < Tmax

0 otherwise

which is written down in terms of rmax.
The Briere1 model cannot be written down in terms of rmax = r(Topt) in a

simple way, but if the parameters rmax, Tmin and Tmax are known, we can solve
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the Briere1 model equation for c to get

c =
rmax

Topt(Topt − Tmin)(Tmax − Topt)
1
2

where Topt =
4Tmax+3Tmin+

√
16T 2

max+9T 2
min−16TminTmax

10 . We can thus set a prior
distribution on parameters rmax, Tmin, Tmax for the Briere model and calculate
c as a transformed parameter.

In the following sections, we use P as a notational shortcut to denote all
parameters of the correponding TPC model. For example, for the Briere1
and quadratic models we have P = {Tmin, Tmax, rmax} while for the flexTPC
model we have P = {Tmin, Tmax, rmax, α, β̃}. We use the flexTPC model as
parametrized in Equation S8 for inference.

Probability of larval survival to adulthood
As no information was easily available about the number of mosquitoes used to
calculate the observed proportions in the dataset, we used a normal likelihood
rather than a binomial for this dataset.

Likelihood

pi|Ti,P ∼ Normal(µ = r(Ti : P), σ)

Prior distributions

The following priors were used for the flexTPC model:

Tmin ∼ Normal(µ = 5, σ = 2.5)

Tmax ∼ Normal(µ = 35, σ = 5)

rmax ∼ Uniform(0, 1)

α ∼ Uniform(0, 1)

β ∼ Gamma(µ = 0.2, σ = 0.4)

σ ∼ Uniform(0, 1)

The same priors for Tmin, Tmax, rmax and σ were used for the quadratic model.
The same priors for Tmin, Tmax and rmax were used for the Briere1 (for Culex

pipiens) and quadratic (for Culex quinquefasciatus) models. The priors for the
minimum and maximum temperatures are weakly informative, and correspond
to a priori assumptions that the minimum temperature is ≈ 95% likely to be
in the temperature range [0◦C, 10◦C], that the maximum temperature is ≈ 95%
likely to be in the temperature range [30◦C, 40◦C], which are reasonable for the
mosquito species. The prior for the maximum trait value is noninformative,
assuming that the maximum proportion of viable eggs is a priori equally likely
to be in the interval [0, 1]. The prior for the thermal breadth parameter β is
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(very) weakly informative. It has a mean of 0.2 (corresponding to a similar
thermal breadth as the Briere1 model) and a 95% prior credible interval of
[2.1 × 10−7, 1.37]. It places higher prior probability on temperature breadths
that are similar to those in commonly used TPC models, like the Briere1 and
quadratic models (for reference, for the quadratic model β = 1√

8
≈ 0.35), but

allows for other values if necessary to describe the data. The prior for the
standard deviation is uniform, with an upper bound that is higher than values
that could be taken by the data (which is bounded to be in the interval [0, 1]).

Mosquito development rate
Likelihood

yi|Ti,P ∼ Normal(µ = r(Ti;P), σ)

Prior distributions

The following priors were used for the flexTPC model:

Tmin ∼ Normal(µ = 5, σ = 2.5)

Tmax ∼ Normal(µ = 35, σ = 5)

rmax ∼ Uniform(0, 1)

α ∼ Uniform(0, 1)

β ∼ Gamma(µ = 0.2, σ = 0.4)

σ ∼ Uniform(0, 1)

The same priors for Tmin, Tmax, rmax and σ were used for the Briere1 model.
The prior distribution for rmax needs a special note, as the response is not

a probability and as such is not bounded at one mathematically. The prior for
rmax now corresponds to an assumption that the mosquito development rate
(i.e. the inverse of the time to adulthood in days) is a priori equally likely to
be in the interval [0, 1]. The upper bound is appropriate because the time from
egg hatching to adulthood will be substantially more than a day (resulting on
MDR values less than one) even under optimal conditions. The reasoning for
the priors used for the other model parameters is similar as for those mentioned
previously for the probability of larval survival.

Adult lifespan
Likelihood

yi|Ti,P ∼ Normal(µ = r(Ti;P), σ)
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Prior distributions

The following priors were used for the flexTPC model:

Tmin ∼ Normal(µ = 5, σ = 2.5)

Tmax ∼ Normal(µ = 35, σ = 5)

rmax ∼ Uniform(0, 150)

α ∼ Uniform(0, 1)

β ∼ Gamma(µ = 0.2, σ = 0.4)

σ ∼ Uniform(0, 100)

The same priors for Tmax, rmax and σ were used for the linear model.
The reasoning for the prior distributions for Tmin, Tmax, α and β are the

same as before. The prior for rmax corresponds to the assumption that the
maximum adult lifespan (in days) is a priori equally likely to be in the interval
[0, 150]. Due to the increased range of the response variable, the upper bound
for the uniform prior for the standard devation was also increased.

Egg viability
As information on the number of eggs used to calculate the proportions at each
temperature was available for this dataset, egg viability was modeled with a
binomial distribution for the number of viable eggs ni out of Ni total eggs that
were evaluated for viability at temperature Ti.

Likelihood

ni|Ti,P ∼ Bin(p = r(Ti;P), Ni)

Prior distributions

The following priors were used for the flexTPC model:

Tmin ∼ Normal(µ = 10, σ = 5)

Tmax ∼ Normal(µ = 35, σ = 5)

rmax ∼ Uniform(0, 1)

α ∼ Uniform(0, 1)

β ∼ Gamma(µ = 0.2, σ = 0.4)

The same priors for Tmin, Tmax and rmax were used for the Briere1 (for Culex
pipiens) and quadratic (for Culex quinquefasciatus) models. The prior distri-
bution for Tmin was made less informative than in the other traits, as initial
attempts to fit this trait showed that the Tmin ∼ Normal(µ = 5, σ = 2.5) prior
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used for other traits was too restrictive, as Tmin values above 10◦C are rea-
sonable for this trait. Thus, the prior distribution was modified so that the
prior 95% credible interval was approximately [0◦C, 20◦C]. The reasoning for
the prior distributions of other parameters was identical as detailed above for
other traits.
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