

SUPPLEMENTAL INFORMATION

Figure S1. GeoMx spatial transcriptomics and protein analysis of pancreatic autopsy samples from control and COVID-19 subjects. Related to Figure 1.

(A) Schematic representation of GeoMx spatial transcriptomics and protein analysis.

(**B and C**) 3D PCA plots of GeoMx whole transcriptome sequencing data from ROIs of human ductal (B) and exocrine (C) areas of COVID-19 (N=7) and control (N=8) pancreatic autopsy samples.

(D and E) Volcano plot highlighting the pathways enriched in transcriptome sequencing data from ROIs of human ductal (D) and exocrine (E) areas of COVID-19 (N=7) and control (N=8) pancreatic autopsy samples.

(F) Relative percent of proinflammatory macrophages from the CIBERSORT analysis of immune cells (LM22) using the GeoMx whole transcriptome sequencing data of human islet areas in non-T2D or T2D COVID-19 pancreatic autopsy samples. Each dot represents one count in each ROI.

(G) Heatmap of the CIBERSORT analysis of immune cells (LM22) using the GeoMx whole transcriptome sequencing data from ROIs of human ductal areas of COVID-19 (N=7) and control (N=8) pancreatic autopsy samples.

(H) Heatmap of the CIBERSORT analysis of immune cells (LM22) using the GeoMx whole transcriptome sequencing data from ROIs of human exocrine areas of COVID-19 (N=7) and control (N=8) pancreatic autopsy samples.

(I) Normalized counts (Log2) of immune cell markers, including CD3, CD8 and CD4 for T cells, CD56 for NK cells, CD66b for neutrophils and CD20 for B cells, in ROIs of the islet areas of control (N=8) and COVID-19 (N=7) pancreatic autopsy samples. Each dot represents one count in each ROI.

(J) Heatmap of the proteins related to T cell activation examined by GeoMx protein assay from ROIs of human islet areas of COVID-19 (N=7) and control (N=8) pancreatic autopsy samples.

(K) Normalized counts (Log2) of CD44 in the ductal or exocrine areas of control (N=8) and COVID-19 (N=7) pancreatic autopsy samples. Each dot represents one count in each ROI.

(L and M) Immunohistochemistry staining (L) and quantification (M) of CD163 in COVID-19 (N=3) and control (N=3) pancreatic autopsy samples. Dotted lines encircled the regions of the islets. Scale bar=20 μ m.

P values were calculated by unpaired two-tailed Student's t test. n.s., no significance, **P < 0.01, ***P < 0.001.

Figure S2. CVB4 infects human islets and induces activation of proinflammatory macrophages. Related to Figure 2.

(A) UMAP of human islets exposed to mock, SARS-CoV-2 (MOI=1) or CVB4 (2x10⁶ PFU/mI) viruses.

(B) Violin plot of cell markers of each cell population, including *INS, GCG, PRSS2, KRT19, COL1A1, SST, PPY, IFI30,* and *PECAM1*.

(C) UMAP showed the expression of CVB4-*polyprotein* in human islets exposed to mock or CVB4 (2x10⁶ PFU/ml) virus.

(D) Jitter plot showed the expression of CVB4-*polyprotein* in human islets exposed to mock or CVB4 (2x10⁶ PFU/ml) virus.

(E) Confocal images of Enterovirus (CVB4) antigen expression in INS⁺ β cells, GCG⁺ α cells of human islets exposed to mock or CVB4 (2x10⁶ PFU/ml). The white arrows highlight the co-localization of INS and Enterovirus antigen. The yellow arrows highlight the co-localization of GCG and Enterovirus antigen. Scale bar= 50 µm.

(F) Confocal images of Enterovirus (CVB4) antigen expression in INS⁺ β cells, CD68⁺ macrophages of human islets exposed to mock or CVB4 (2x10⁶ PFU/ml). The white arrows highlight the co-localization of INS and Enterovirus antigen. Scale bar= 50 μm. **(G)** Confocal images of Enterovirus (CVB4) antigen expression in KRT19⁺ ductal cells, PRSS1⁺ acinar cells of human islets exposed to mock or CVB4 (2x10⁶ PFU/ml). Scale bar= 50 μm.

(H) Confocal images of Enterovirus (CVB4) antigen expression in PECAM1⁺ endothelial cells of human islets exposed to mock or CVB4 (2x10⁶ PFU/ml). Scale bar= 50 μm.

(I) Confocal images of Enterovirus (CVB4) antigen expression in SST⁺ δ cells of human islets exposed to mock or CVB4 (2x10⁶ PFU/mI). The white arrows highlight the co-localization of SST and Enterovirus antigen. Scale bar= 50 µm.

(**J and K**) Confocal images (J) and quantification (K) of IL1B expression in CD68⁺ macrophages of human islets exposed to mock or SARS-CoV-2 (MOI=0.5). The vellow arrows highlight the co-localization of CD68 and IL1B. Scale bar= 50 µm.

(L and M) Confocal images (L) and quantification (M) of CXCL8 expression in CD68⁺ macrophages of human islets exposed to mock or SARS-CoV-2 (MOI=0.5). The yellow arrows highlight the co-localization of CD68 and CXCL8. Scale bar= 50 μm.

P values were calculated by unpaired two-tailed Student's t test. ***P* < 0.01, ****P* < 0.001.

Figure S3. Single cell RNA-seq analysis of human islets upon CVB4 or SARS-CoV-2 exposure. Related to Figure 2.

(A) Dot plot analysis of pyroptosis pathway associated genes in virus⁺ β cell cluster and virus⁻ β cell cluster of human islets upon mock or SARS-CoV-2 exposure (MOI=1).

(B) Pathway enrichment analysis of cell death pathways in α , δ , mesenchymal and endothelial cell clusters of human islets exposed to mock or SARS-CoV-2 (MOI=1).

(**C and D**) Confocal images (C) and quantification (D) of IL1B expression in CD68⁺ macrophages of human islets exposed to mock or CVB4 (2x10⁶ PFU/mI). The yellow arrows highlight the co-localization of CD68 and IL1B. Scale bar= 50 μm. (**E and F)** Confocal images (E) and quantification (F) of CXCL8 expression in CD68⁺ macrophages of human islets exposed to mock or CVB4 (2x10⁶ PFU/mI). The yellow arrows highlight the co-localization of CD68 and CXCL8. Scale bar= 50 μm.

(G) Dot plot analysis of pyroptosis pathway associated genes in virus⁺ β cell cluster and virus⁻ β cell cluster of human islets upon mock or CVB4 (2x10⁶ PFU/mI).

(H) Violin plot of the expression of *HLA* genes in the β cell cluster of human islets exposed to mock or SARS-CoV-2 (MOI=1).

(I) Violin plot of the expression of *HLA* genes in the β cell cluster of human islets exposed to mock or CVB4 (2x10⁶ PFU/ml).

(J) Violin plot of the expression of autoantigen genes in the β cell cluster of human islets exposed to mock or SARS-CoV-2 (MOI=1).

(K) Violin plot of the expression of autoantigen genes in the β cell cluster of human islets exposed to mock or CVB4 (2x10⁶ PFU/mI).

(L) Violin plot of the expression of antigen presentation associated genes in the β cell cluster of human islets exposed to mock or SARS-CoV-2 (MOI=1).

(M) Violin plot of the expression of antigen presentation genes in the β cell cluster of human islets exposed to mock or CVB4 (2x10⁶ PFU/ml).

P values were calculated by unpaired two-tailed Student's t test. ***P* < 0.01, ****P* < 0.001.

Figure S4. Construction and characterization of hPSC-derived VMI organoids. Related to Figure 3 and Figure 4.

(A) Schematic illustration of directed differentiation of hPSCs to pancreatic endocrine cells. At day 16, we detected INS-GFP⁺ cells. Then, early stage 6 cells (day 16-day19) were co-cultured with macrophages and endothelial cells or culture separately for 7-14 days.

(B) Confocal images of hPSC-derived pancreatic endocrine cells stained with antibodies against INS, GCG, NKX6-1, PDX1 and SST. Scale bar= 50 μm.

(C) Schematic illustration of directed differentiation of hESCs to macrophages.

(D) Flow cytometry analysis of hPSC-derived unstimulated macrophages stained with antibodies against CD11B, CD14, CD80 and CD206.

(E) Confocal images of hPSC-derived macrophages engulfing GFP labeled *E.Coli*. Macrophages: RFP; *E.Coli: Green*. Scale bar= 25 µm.

(F) Schematic illustration of directed differentiation of hPSCs to endothelial cells.

(G) qRT-PCR analysis to examine the expression level of *ETV2* in H1 hPSCs following forced expression of ETV2 or control. Data was normalized to β -actin.

(H) Confocal images of hPSC-derived endothelial cells stained with antibodies against PECAM1 (CD31) and DAPI. Scale bar= 25 μm.

(I) Composite Z-stack confocal images of VMI organoids at day 14 after reaggregation stained with antibodies against INS, CD68, NKX6-1 and PECAM1 (CD31). The white arrows highlight the co-localization of INS and NKX6-1. Scale bar= 100 μm.

(J) Confocal images of VMI organoids stained with antibodies against PECAM1 (CD31) and Dil-Ac-LDL. Scale bar= 50 μm.

(K) ELISA assay showed the secretion of GCG in VMI organoids and separately cultured endocrine cells.

(L) Quantification of calcium signaling in VMI organoids upon high glucose stimulation. High glucose: 20 mM D-glucose. Each frame was captured every 500ms.

(M) Live cell imaging of VI organoids and monocytes exposed to mock or CVB4 (2x10⁶ PFU/ml) at 24 hpi and 48 hpi. Scale bar= 100 µm.

(N) Schematic illustration of the sample preparation for scRNA-seq and snATAC-seq.

(O) Chromatin accessibility signals of cell markers for each cluster as analyzed using snATAC-seq.

(P) Violin plot analysis of β cell associated genes in β cell cluster of VMI organoids at day 7 after reaggregation and separately cultured cells as analyzed by scRNA-seq.

(**Q**) Violin plot analysis of endothelial cell associated genes in endothelial cell cluster of VMI organoids at day 7 after reaggregation and separately cultured cells as analyzed by scRNA-seq.

N=3 independent biological replicates. Data was presented as mean \pm STDEV. ***P < 0.001. Figure S5

Figure S5. Activation of proinflammatory macrophages and β cell pyroptosis were detected in hPSC-derived VMI organoids exposed to viruses. Related to Figure 5.

(A and B) Confocal images (A) and quantification (B) of hPSC-derived VMI organoids exposed to viruses or mock conditions stained with antibodies against INS, CD68 and CD80 (SARS-CoV-2: MOI=0.5; CVB4: $2x10^{6}$ PFU/mI). Scale bar= 50 µm. The white arrows highlight the CD68⁺CD80⁺ cells.

(C and D) Confocal images (C) and quantification (D) of hPSC-derived VMI organoids exposed to viruses or mock conditions stained with antibodies against INS and CASP1 (SARS-CoV-2: MOI=0.5; CVB4: $2x10^{6}$ PFU/mI). Scale bar= 50 µm. The white arrows highlight the INS⁺CASP1⁺ cells.

(E) Schematic illustration of the stimulation of macrophages to proinflammatory macrophages.

(F) Heatmap showing the expression of macrophage associated genes in hPSCderived macrophages with or without 2 days treatment with 100 ng/ml LPS and 20 ng/ml IFN-γ.

(**G**) The secretion of cytokines, including IL-1 β and IL-6 in the supernatant of hPSC-derived macrophages with or without 2 days treatment with 100 ng/ml LPS and 20 ng/ml IFN- γ .

(H) Chromatin accessibility signals of the β cluster of VMI organoids at day 7 after reaggregation containing unstimulated macrophages or proinflammatory macrophages as analyzed using snATAC-seq. The normalized signal shows the averaged frequency of sequenced DNA fragments within a genomic region. The fragment shows the frequency of sequenced fragments within a genomic region for individual cells.

(I) Jitter plot analysis of β cell dedifferentiation associated genes in β cell cluster of VMI organoids with unstimulated macrophages or proinflammatory macrophages at day 7 after reaggregation as analyzed by scRNA-seq.

N=3 independent biological replicates. Data was presented as mean ± STDEV. **P* < 0.05, ***P* < 0.01, ****P* < 0.001.

Figure S6. TNFSF12 expression in human islets exposed to CVB4 or SARS-CoV-2, and VMI organoids with proinflammatory macrophages. Related to Figure 6.

(A) Confocal images of TNFSF12 in human islets exposed to mock, CVB4 (2x10⁶ PFU/ml) or SARS-CoV-2 (MOI=0.5). The inserts show a high magnification of cells.
Scale bar= 25 μm.

(B) Confocal images of TNFSF12 in VMI organoids containing unstimulated or proinflammatory macrophages at day 7 after reaggregation. Scale bar= 20 μm.

(**C and D**) Confocal images (C) and quantification (D) of the CASP1 expression in INS^+ cells of VMI organoids exposed to SARS-CoV-2 (MOI=0.5) and treated with control, 10 µg/ml TNFSF12 blocking antibody, 5 µg/ml IL-1 β blocking antibody or 10 µg/ml TNFSF12 + 5 µg/ml IL-1 β blocking antibodies. The inserts show a high magnification of cells. Scale bar= 50 µm.

(E and F) Confocal images (E) and quantification (F) of the CASP1 expression in INS⁺ cells of VMI organoids exposed to CVB4 ($2x10^6$ PFU/mI) and treated with control, 10 µg/mI TNFSF12 blocking antibody, 5 µg/mI IL-1 β blocking antibody or 10 µg/mI TNFSF12 + 5 µg/mI IL-1 β blocking antibodies. The inserts show a high magnification of cells. Scale bar= 50 µm.

(G) Normalized counts of pyroptosis associated genes expression in control or COVID-19 samples examined by GeoMx transcriptomic assays. Each dot represents one count in each ROI.

(H) Cell chat analysis showed the interactions from β cells to immune cell subpopulations, including DC cells, immune progenitors, T cells and macrophages in human islets exposed to SARS-CoV-2 (MOI=1) or CVB4 (2x10⁶ PFU/mI).

N=3 independent biological replicates. Data was presented as mean ± STDEV. ****P* < 0.001. Table S1. Patient information. Related to Figures 1, 2, 6 and Figures S1, S2,

S3, S6.

Table S2. Antibodies used for immunocytochemistry, intracellular flowcytometry analysis. Related to STAR Methods.

Usage	Antibody	Clone #	Host	Catalo g #	Vendor	Diluti on
Immunostaining	Polyclonal Guinea Pig Anti-Insulin	Polyclon al	Guinea Pig	#A056 4	Dako	1:500
Immunostaining	Glucagon Rabbit Ab	Polyclon al	Rabbit	#2760	Cell Signalin g	1:100 0
Immunostaining	Polyclonal Rabbit Anti-Somatostatin	Polyclon al	Rabbit	#A056 6	Dako	1:100 0
Immunostaining	Human CD31/PECAM-1 Antibody	Polyclon al	Sheep	#AF80 6	R&D System s	1:100 0
Immunostaining	Purified anti- human CD68 Antibody	Monoclo nal	Mouse	# 33380 2	Biolege nd	1: 100
Immunostaining	Cleaved Caspase- 1 (Asp297)	Monoclo nal	Rabbit	# 4199	Cell Signalin g	1: 200
Immunostaining	hPDX-1 Affinity purified goat igG	Polyclon al	Goat	# AF241 9	R&D System s	1:500
Immunostaining	Nkx6.1 (D8O4R) Rabbit mAb	Monoclo nal	Rabbit	#5455 1	Cell Signalin g	1: 500
Flow Cytometry	APC anti- mouse/human CD11b Antibody	Monoclo nal	Rat	#1012 12	Biolege nd	1: 50
Flow Cytometry	APC anti-human CD206 (MMR) Antibody	Monoclo nal	Mouse	#3211 09	Biolege nd	1:50
Flow Cytometry	APC anti-human CD14	Monoclo nal	Mouse	#3018 08	Biolege nd	1:100

GeoMx	Insulin Monoclonal Antibody (ICBTACLS), Alexa Fluor™ 488	Monoclo nal	Mouse	# 53- 9769- 82	Thermo Fisher Scientifi c	1:200
GeoMx	Cytokeratin, pan Antibody (AE- 1/AE-3) [DyLight 594]	Monoclo nal	Mouse	# NBP2- 33200 DL594	Novus Biologic al	1:200
Immunostaining	caspase-1 Antibody (14F468)	Monoclo nal	Mouse	#sc- 56036	Santa Cruz	1:200
Immunostaining	Enterovirus (Concentrate)	Monoclo nal	Mouse	#M706 4	Dako	1:500
Immunostaining	CD163 (D6U1J) Rabbit mAb	Monoclo nal	Rabbit	#9349 8	Cell Signalin g	1:200
Immunostaining	Anti-PRSS1 antibody produced in rabbit	Polyclon al	Rabbit	#HPA0 63471	Sigma Aldrich	1:500
GeoMx	Purified anti- Cytokeratin 19	Monoclo nal	Mouse	#6285 02	Biolege nd	1:100 0
Immunohistoch emistry	Human B7-1/CD80 MAb (Clone 37711)	Monoclo nal	Mouse	# MAB1 40-100	RnD	1:500
Immunostaining	Alexa Fluor 488 AffiniPure Donkey Anti-Guinea Pig IgG (H+L)	Polyclon al	Donke y	#706- 545- 148	Jackson Immuno researc h Labs	1:500
Immunostaining	Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 594	Polyclon al	Donke y	#A- 21203	Thermo Fisher Scientifi c	1:500
Immunostaining	Donkey anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 594 conjugate	Polyclon al	Donke y	#A- 21207	Thermo Fisher Scientifi c	1:500
Immunostaining	Donkey anti-Rabbit IgG (H+L)	Polyclon al	Donke y	#A- 31573	Thermo Fisher	1:500

	Secondary Antibody, Alexa Fluor 647 conjugate				Scientifi c	
Immunostaining	Donkey anti-Mouse IgG (H+L) Secondary Antibody, Alexa Fluor 647	Polyclon al	Donke y	#A- 31571	Thermo Fisher Scientifi c	1:500
Immunostaining	Donkey anti-Goat IgG (H+L) Cross- Adsorbed Secondary Antibody, Alexa Fluor 647	Polyclon al	Donke y	#A- 21447	Thermo Fisher Scientifi c	1:500
Immunostaining	Donkey anti-Sheep IgG (H+L) Cross- Adsorbed Secondary Antibody, Alexa Fluor 647	Polyclon al	Donke y	#A- 21448	Thermo Fisher Scientifi c	1:500
Immunostaining	Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 405	Polyclon al	Donke y	#A482 57	Thermo Fisher Scientifi c	1:500

Table S3.	Primers	used for	qRT-PCR.	Related to	STAR Methods.
			-		

Primer name	Sequence
ACTB-Forward	CGTCACCAACTGGGACGACA
ACTB-Reverse	CTTCTCGCGGTTGGCCTTGG
ETV2-F	GAAGGAGCCAAATTAGGCTTCT
ETV2-R	GAGCTTGTACCTTTCCAGCAT