
SUPPLEMENTARY MATERIAL

Relationship between weights, auto and cross-correlation:
Following the notation in the Methods section, let and denote the speeds of the input and focal fish,𝑣
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demonstrating that unique filters can be identified that relate state-conditioned autocorrelated movement𝑊
from some input signal to the cross-correlation with the focal signal.

M-step update equations for unconstrained weights, constant biases:
We now consider multiple linear models for states using a hidden Markov model (HMM) framework.𝑘 = 1,..., 𝐾
Following Bishop & Nasrabadi 2006, we optimize the expected complete-data log likelihood (ECLL)
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We denote the speed of the input and focal fish as and , respectively, for and𝑣
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for . Each vector captures the symmetrically time-lagged speeds about index .𝑡 = 1,..., 𝑇 𝑡 + 𝐿

We consider an input-driven spherical-Gaussian observation model with covariance tied acrossΣ(𝑘) = σ2𝐼
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For applications within this paper, we constrain the biases to be a constant vector and the𝑏
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weights matrix to have a symmetric Toeplitz structure. The constraints placed on require the M-step𝑊(𝑘) 𝑊(𝑘)

be carried out using a numerical optimization algorithm. We refer to this model as a constrained linear-model
HMM (cLM-HMM).

To gain insight into the role of the weights matrix, and to see how the Toeplitz structure naturally arises, we
consider maximization of the unconstrained model parameters. Maximization of the ECLL with respect to the
biases reveals
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where we approximated to arrive at the first equality and re-indexed in the last equality. Next, we µ
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which is valid in the short-lag regime when the duration of each state is typically longer than the lag . We can𝐿

further express . Combining expressions, we find𝐶
𝑖𝑗
(𝑘) =

𝑙=0

2𝐿

∑ 𝑊
𝑖𝑙
(𝑘)𝐵

𝑙𝑗
(𝑘)

𝑅
21
(𝑘)(𝑗 − 𝑖)≈

σ
1
(𝑘)

σ
2
(𝑘) [𝑤

→

𝑖

 (𝑘)
* 𝑅

1
(𝑘)](𝑗)

where denotes the row of the weights matrix. The shift invariance of this expression with respect to𝑤
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This results in a weights matrix with approximately Toeplitz structure.

Dual Fit Model
To simultaneously fit both permutations of the selected input and output signals, we construct the
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SUPPLEMENTAL FIGURES

Figure S1. A.) Body length by age. B.) Statistical quantification of 2-dimensional histograms of distance and relative
angle. Colors represent the percentage of pairs that are greater than the 95th percentile of the opposing
(observed/shuffled) distribution, showing a significant bias in the observed data towards close and parallel/anti-aligned
configurations C.) 2D histogram of distance and relative angle for adult pairs of zebrafish. D.) Median interbout interval as
a function of age. E.) Median interbout intervals for each fish plotted against the median interbout interval of their partner.
Shuffled data is presented in orange. Linear correlations for observed (R2 = .321, p < 0.001) and shuffled (R2 = .002, p =
0.739).
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Figure S2. A.) Inferred weights from shuffled dataset. B.) 2D histograms of adult zebrafish in all sensory
conditions. C.) Distance histograms of juvenile zebrafish. D.) Percentage of time spent in blind spot
across conditions. E.) Instantaneous velocity correlations as a function of distance across sensory
conditions. F.) Total distance traveled across sensory conditions, with lines connecting individuals in the
same experiment, and total distance traveled for an individual plotted against the distance traveled by its
partner. Asterisks indicate a p value below an alpha of 0.05 corrected for multiple comparisons with a
Šidák adjustment.
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Figure S3. A.) Distributions of state duration by distance. B.) Representative local inferred weights for the
synchronized state in 4 light pairs. C.) Average central row of the local inferred weights matrices for all
sensory conditions.
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