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Supplementary Methods 
 

Participants 

This study included 3746 individuals (1865 healthy controls, HC; 1833 cases across six different 

diagnostic categories) from 14 separate, independently acquired dataset and 25 scan sites. 

Full details on study design and clinical characteristics have been described previously for 

each dataset (see Table 1 for relevant references). Ethnicity was not reported in many of the 

datasets, and for those datasets that did report ethnicity, most, if not all participants were 

Caucasian. Each study was approved by the relevant ethics committee and written informed 

consent was obtained from each participant.  

 The final sample we examined was taken from a larger pool of individual recruited 

across the 14 datasets. In addition to the specific quality control procedures used within each 

study (references in Table 1), we performed a series of additional quality control checks and 

exclusions for our analysis. Specifically, we excluded participants who: 

• Were below 18 years or above 64 years of age (N=346) 

• Lacked the necessary clinical data (such as a clinical diagnosis or, for healthy controls, 

the absence of any clinical diagnosis) or demographic information (age and sex, N=53) 

• T1-weighted structural magnetic resonance imaging (MRI) scans failed the 

preprocessing pipeline (N=63) 

• Had T1-weighted MRI scans that did not pass our rigorous manual (N=53) and 

automated quality control procedures (N=153), as detailed in Segal et al. (1) 

• Were from sites with fewer than 10 individuals in the same group and sex (described in 

the Normative model section below; N=217) 

Thus, our final sample for analysis included 2,759 individuals (1,465 controls and 1,294 cases). 

Table 1 presents demographic details of this cohort. 

 

Anatomical data 

Quality assurance procedures and the data processing pipeline, which was applied to all raw T1-

weighted images obtained for each dataset, are provided in detail in Segal et al. (1), with image 

acquisition parameters for each dataset provided in Table S1 in Segal et al. (1).  

 Briefly, voxel-wise WMV was estimated using the Computational Anatomy Toolbox(2) 

(CAT12 r113, http://dbm.neuro.uni-jena.de/cat/), which is included as an extension of 

Statistical Parametric Mapping software (SPM12, 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12) in MATLAB v9.8 using the default settings. 

http://dbm.neuro.uni-jena.de/cat/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12


 4 

First T1-weighted images were corrected for bias-field inhomogeneities, segmented into grey 

matter, white matter, and cerebrospinal fluid, then spatially normalised to the SPM MNI IXI555 

template (https://brain-development.org/ixi-dataset/). The normalised segmented white matter 

images were modulated and spatially smoothed with an 8mm full width at half maximum 

(FWHM) Gaussian smoothing kernel. This approach allowed us to assess voxel-wise differences 

in the absolute amount (volume) of white matter, taking the extent of voxel-wise volumetric 

adjustments needed to align each participant with the registration template into account. Finally, 

to exclude non-white matter voxels from our analysis, we generated a mean image from all the 

normalized unmodulated white matter maps and retained voxels with a tissue probability ≥ 0.2. 

 

Normative modelling 

Normative models estimate the centiles of variation around the mean (referred to as the 

normative range) of a response variable such as WMV from a set of clinically relevant covariates, 

such as age and sex, across a large control sample (defined      here as a group of people without 

a psychiatric diagnosis), referred to as a training set. These estimates are then used to quantify 

deviations from the normative range of individuals in the test set, which typically consists of 

cases of interest and a held-out set of controls for comparison.(3–5) 

 As per Segal et al.(1), the training set (HCtrain, n = 1,465) for the normative model was 

created by randomly selecting from each scanner site either 90% of controls or all controls if the 

sample size for that site was less than 30. The test set consisted of all clinical data (n = 1,294), 

as well as the remaining controls from each scan site (HCtest, n = 269), which offered a normative 

benchmark for assessing case-specific model deviations.  

 B-spline basis expansion over age was used to model non-linear effects, and likelihood 

warping was used to model non-Gaussian and heteroscedastic imaging phenotypes.  To handle 

the site effect, we included scan site as a covariate (6), as in (7). 

To identify positive and negative extreme deviations in white matter voxel (WMV) 

estimates from the normative model, we thresholded the deviation maps at |z| > 2.6 (p < .005) 

and applied a 10-voxel extent threshold (Figure 1d). This method was used for each individual in 

both clinical and control (HCtest) groups. We chose this approach for consistency with previous 

work (1,8) and because it provides a uniform definition of extreme deviations, unlike adaptive 

thresholding methods like the false discovery rate (FDR) (9), which vary per individual. 
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Evaluation of model performance 

We assessed model fit for each brain region by evaluating five performance metrics: (i) 

explained variance (EV); (ii) the standardized mean-squared error (SMSE); (iii) the mean 

standardized log-loss (MSLL); (iv) skew; and (v) kurtosis. We removed voxels with poor 

performance (SMSE > 1.5, MSLL > 0.5, or skew > 1.5), which amounted to 1.7% voxels in total 

(Figure S1). We also evaluated the model’s efficacy in partitioning site-related variance in the 

data using linear support vector machines. Specifically, we used a series of one-versus-all linear 

support vector machines (with default slack parameter = 1) trained on the deviation z-maps from 

the HCtest subset to classify scan sites. For each site, we ran a 2-fold SVM classifier to obtain the 

mean balanced accuracy score for the given site. In this analysis, a balanced accuracy close to 

chance-level (50%) indicates that the resulting deviations were not contaminated by residual site 

effects (Table S2) 

 

Characterizing voxel-wise heterogeneity of extreme deviations 

We characterized the heterogeneity of thresholded person-specific extreme deviation maps for 

each disorder using a non-parametric approach, following Segal et al. (1). This procedure 

involved subtracting the HCtest overlap map from each disorder’s overlap map, resulting in an 

overlap difference map for each disorder, separately for positive and negative extreme 

deviations. For each disorder, we then permuted group labels (i.e., HC, case) and repeated the 

procedure 10,000 times to derive an empirical distribution of overlap difference map under the 

null hypothesis of random group assignment. For each white matter voxel, we obtained 𝑝-values 

as the proportion of null values that exceeded the observed difference. The tails of the null 

distribution (i.e., values associated with p<0.10) were approximated using a generalized Pareto 

distribution (10), as implemented in the Permutation Analysis of Linear Models software package 

(PALM alpha116) (11), to allow inference at arbitrarily high levels of precision. Statistically 

significant effects were identified using an FDR-corrected (9) threshold of pFDR<.05, two-tailed. 

 

 

Diffusion-weighted imaging acquisition parameters and processing  

We used diffusion tractography to identify the axonal pathways that intersected each WMV 

deviation (Figure 1f-h). We then used this information to build matrices encoding the specific 

tracts affected by WMV deviations (Figure 1i-k). The deviation-related structural circuitry was 

mapped in an independent cohort as high-quality DWI data is essential for accurate estimate of 
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tractograms and such data was not available for all clinical samples. This logic precisely aligns 

with the logic of standard lesion network mapping studies of neurological patients (12–16). We 

focused on the same sub-sample of 150 people in the HCP dataset as Segal et al (1) to minimise 

the computational burden.  

Data were acquired on a customized Siemens 3 T Connectome Skyra scanner at 

Washington University in St. Louis, MO, USA, using a multishell protocol for the diffusion 

weighted imaging with the following parameters: 1.25-mm3 voxel size; repetition time (TR) = 5520 

ms; echo time (TE) = 89.5 ms; field of view (FOV) of 210 mm by 180 mm; 270 directions with b = 

1000, 2000, 3000 s/mm2 (90 per b value); and 18 b = 03 volumes. Structural T1-weighted data 

were acquired with 0.7-mm voxels, TR = 2400 ms, TE = 2.14 ms, and an FOV of 224 mm by 224 

mm.  

The diffusion data used underwent the HCP minimal pre-processing pipeline,(17) which 

included normalization of mean b = 0 images across diffusion acquisitions and correction for 

echo-planar imaging susceptibility and signal outliers, eddy current–induced distortions, slice 

dropouts, gradient nonlinearities, and participant motion. T1-weighted data were corrected for 

gradient and readout distortions before being processed with FreeSurfer.(18) The details of this 

pipeline are provided in more detail elsewhere.(19) Using the corrected diffusion data, we 

estimated fibre orientation distributions (FODs) using multishell Constrained Spherical 

Deconvolution,(20) which formed the basis for probabilistic tractography with the Fibre 

Orientation Distributions (iFOD2) algorithm, as implemented in MRtrix3.(21–24) We applied 

Anatomically Constrained Tractography (ACT) to improve the biological accuracy of the 

structural networks.(25) ACT uses multi-tissue segmentation to ensure streamlines are 

beginning, traversing, and terminating in anatomically plausible locations. A total of 10 million 

streamlines were generated using dynamic seeding along with default MRtrix3 parameters.(21–

24,26) 

 

Streamline region assignments 

We examined streamline estimates of connectivity between 132 regions, defined by 

combining well-validated parcellations of the cortex (Schaefer 100 region 7 network 

parcellation)(27) and subcortex (Tian Subcortical Atlas Scale II, 32 region parcellation).(28) The 

atlas was then transformed from the template surface to the surface of each individual in the 

HCP150 sample based on the spherical registration procedure implemented in FreeSurfer.(18) 

Next, the parcellation was projected to a volumetric image and resampled to the same resolution 

as the HCP150 diffusion data using FSL’s applywarp with nearest-neighbour interpolation.(29) The 
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parcellation was subsequently      combined with each person’s tractogram and streamlines were 

assigned to the nearest brain region within 5     mm of the streamline endpoints using MRtrix3 (v 

3.0) tck2connectome function.(24,30) 

The tractograms were transformed to MNI IXI555 space to facilitate interpretation with 

respect to the individual-specific WMV deviation maps. To this end, we used FSL(v 6.0.6) FLIRT 

and FNIRT(29,31) to generate and compose transforms for co-registering each HCP150 

participant’s diffusion data to their T1-weighted volume, and their T1-weighted volume to the 

SPM MNI IXI555 template. Finally, we used MRtrix’s tcktransform to warp the tractogram to MNI 

IXI555 space using the composed warp. 

 

Identifying streamlines intersecting with WMV deviations 

To construct the dysconnection overlap matrices, we used the extreme WMV deviation cluster 

map (Figure 2a) of each patient/control to filter each HCP150 individual's tractogram (Figure 2b-

c) to retain only streamlines intersecting with at least one WMV cluster from the deviation 

maps. This generated a filtered streamline count matrix (𝐶’), indicating pairwise connections 

affected by deviations. We binarized 𝐶’, setting 𝐶’!"  to 1 if the filtered edge's streamline count 

exceeded 10, and 0 otherwise (Figure 2d). 

The 𝐶’ matrices were aggregated across HCP150 individuals to create a consensus matrix 

(𝐶#), which encoded the proportion of participants for whom each edge was present in 𝐶’. This 

matrix estimates the probability that a given connection is associated with observed WMV 

deviations in that participant in the clinical group (or HCtest group), given individual variability in 

normative connectome architecture. A separate 𝐶#matrix was obtained for each individual in 

the clinical and HCtest groups. We binarized 𝐶#, setting edges with weights less than 50% to 

zero, to encode connections affected by a WMV extreme deviation (termed extreme edge 

deviation matrix; Figure 2e). We repeated the analysis with a 75% threshold to validate our 

findings (see Figure S3). 

Finally, we aggregated these binary 𝐶#  matrices for each clinical and HCtest group, 

separately for positive and negative deviations, creating group-specific overlap matrices. Each 

element in these matrices shows the proportion of individuals in each group affected by an 

extreme deviation in that pairwise connection, referred to as the dysconnection overlap matrix 

(Figure 2f). 

To evaluate group differences using permutation-based inference, similar to the voxel-

scale deviation analysis, we subtracted the HCtest group's dysconnection overlap matrix from 

each clinical group's matrix and performed mass univariate testing across connectome edges. 
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Significant differences in dysconnection overlap were identified using an empirical null 

distribution from 10,000 permutations and a generalized Pareto tail approximation (10), with a 

threshold of pFDR < .05, two-tailed. This was done separately for positive and negative extreme 

deviations. 

 

Supplementary Results 

Model evaluation 

The results from the linear support vector machine indicated that the balanced accuracy 

scores ranged between 49.71 and 58.53% across all sites, suggesting that resulting deviations 

were not contaminated by residual site effects (Table S2).  

Rank correlations indicated that scan quality (as measured by CAT12’s IQR) was weakly 

associated with extreme deviation burden for the cases (rho = 0.07, p=.02), but not for HCtest 

(rho = -0.04, p=.55), however this difference was not statistically significant (Fisher’s z-

transformation, z = 1.64, p = 0.10). 

 

Analysis of positive deviations  

Despite both cases and controls generally showing more extreme positive than negative 

deviations (Figure S6), there were few differences in the extent of overlap, with <1% of edges 

show significantly greater overlap in ASD and SCZ (Figure S7) compared to controls, and 76.52% 

of regions and all networks showing significantly greater overlap in ASD, relative to controls 

(Figure S8 and Figure 9 respectively). No other disorders at any of the spatial scales showed 

significantly greater overlap compared to controls after correcting for multiple comparisons.  

 

Supplementary Tables 
Table S2. Balanced classification accuracy scores (%) from the linear support vector machines 

from the held-out controls and cases 

 
Dataset Site Held-out controls (HCtest) 

ABIDE I CALTECH N/A 
CMU N/A 
LEUVEN_1 N/A 
MAX-MUN 50.00 
NYU 50.00 
PITT N/A 
SBL N/A 
USM 50.00 

ABIDE II BNI 50.00 
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IU N/A 
ASRB BRIS 50.00 

MELB 54.81 
PERT N/A 
SYDN  50.00 

FEMS  50.00 
MON  56.42 
IMPACT  58.53 
KANMDD  N/A 
MITASD  50.00 
OCDPG  50.00 
RUSMDD  50.00 
SPAINOCD  49.71 
TOP15  51.44 
WASHASD  50.00 
YoDA  56.25 

*N/A = collection sites where data for HCs was < 30, therefore all HC data was included in training 
set.   
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Table S3. Deviation burden at the tract-scale 

 
 Negative extreme deviations Positive extreme deviations 
 Participants 

with 
deviation, % 

Max 
overlap, % 

Significant loci at 
p<.05 (pFDR<.05), % 

 
Participants 
with 
deviation, % 

Max 
overlap, % 

Significant loci at p<.05 
(pFDR<.05), % 

   PAT HC   PAT HC 
HCtest 19.7 8.18   58.36 30.86   
ADHD 16.34 6.54 0 0.31 (0) 67.97 35.95 0.32 (0) 0.16 (0) 
ASD 31.68 11.88 37.89 

(6.08) 
0 70.79 40.1 17.26 

(0.02) 
0 

BP 19.74 6.14 0.60 (0) 0.01 (0) 58.77 32.02 0.18 (0) 1.83 (0) 
MDD 19.25 6.21 0.21 (0) 0 50.93 22.36 0 7.72 

(0.01) 
OCD 10.18 4.19 0 1.86 (0) 62.87 29.94 0 4.18 (0) 
SCZ 35.77 15.4 19.99 

(3.33) 
0 63.19 39.16 2.59 

(0.10) 
0 

 
Table S4. Deviation burden at the tract-scale (weight threshold 75%) 

 
 Negative extreme deviations Positive extreme deviations 
 Participants 

with 
deviation, % 

Max 
overlap, % 

Significant 
connections at p<.05 
(pFDR<.05), % 

 
Participants 
with 
deviation, % 

Max 
overlap, % 

Significant connections 
at p<.05 (pFDR<.05), % 

   PAT HC   PAT HC 
HCtest 19.7 6.69   58.36 28.62   
ADHD 16.34 6.54 0.01 0.14 (0) 67.97 33.99 0.17 (0) 0.21 (0) 
ASD 31.68 10.40 27.68 

(1.21) 
0 70.3 37.13 11.41(0) 0 

BP 19.74 4.82 0.71 (0) 0 58.77 29.39 0.13 (0) 1.62 (0) 
MDD 19.25 5.59 0.26 (0) 0 50.93 19.88 0 5.60 

(0.03) 
OCD 10.18 3.59 0 0.69 (0) 62.87 25.15 0 3.83 (0) 
SCZ 35.77 13.84 12.53 (0) 0 63.19 36.55 1.65 (0.06) 0.05 (0) 

 

Table S5. Deviation burden at the region-scale 

 
 Negative extreme deviations Positive extreme deviations 
 Participants 

with 
deviation, % 

Max 
overlap, % 

Significant regions at 
p<.05 (pFDR<.05), % 

Participants 
with 
deviation, % 

Max 
overlap, % 

Significant regions at 
p<.05 (pFDR<.05), % 

   PAT HC   PAT HC 
HCtest 19.7 14.87   58.36 53.53   
ADHD 16.34 15.03 0 1.51 (0) 67.97 60.13 10.61 (0 0 
ASD 31.68 27.23 86.36 (84.85) 0 70.79 64.85 83.33 (75) 0 
BP 19.74 17.11 0 0 58.77 56.58 0 0 
MDD 19.25 13.04 0 0 50.93 46.58 0 30.30 (0) 
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OCD 10.18 8.98 0 31.82 
1.51 

62.87 58.08 0 0 

SCZ 35.77 33.42 92.42(90.91) 0 63.19 59.79 8.33 (0) 0  
 

 

Table S6. Deviation burden at the functional network-scale 

 
 Negative extreme deviations Positive extreme deviations 
 Participants 

with 
deviation, % 

Max 
overlap, % 

Significant networks at 
p<.05 (pFDR<.05), % 

Participants 
with 
deviation, % 

Max 
overlap, % 

Significant networks 
at p<.05 (pFDR<.05), % 

   PAT HC   PAT HC 
HCtest 19.7 18.86   58.36 57.25   
ADHD 16.34 16.34 0 0 67.97 66.67 0 0 
ASD 31.68 31.68 100 (100) 0 70.79 69.31 100 

(100) 
0 

BP 19.74 19.74 0 0 58.77 58.77 0 0 
MDD 19.25 18.01 0 0 50.93 50.93 0 0 
OCD 10.18 10.18 0 90 (90) 62.87 61.68 0 0 
SCZ 35.77 35.25 100 (100) 0 63.19 63.19 0 0 

 

Table S7. Deviation burden at the functional network-scale (20 network) 

 
 Negative extreme deviations Positive extreme deviations 
 Participants 

with 
deviation, % 

Max 
overlap, % 

Significant networks at 
p<.05 (pFDR<.05), % 

Participants 
with 
deviation, % 

Max 
overlap, % 

Significant networks 
at p<.05 (pFDR<.05), % 

   PAT HC   PAT HC 
HCtest 19.7 18.96   58.36 57.25   
ADHD 16.34 16.34 0 0 67.97 66.67 0 0 
ASD 31.68 31.68 100 (100) 0 70.79 69.31 95 (95) 0 
BP 19.74 19.74 0 0 58.77 58.33 0 0 
MDD 19.25 16.15 0 0 50.93 50.93 0 10 (0) 
OCD 10.18 10.18 0 80 (80) 62.87 61.68 0 0 
SCZ 35.77 35.25 100 (100) 0 63.19 63.19 0 0 
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Supplementary Figures 

 
Figure S1. Performance metrics from the normative models. These metrics measure the accuracy 
with which our normative model estimated the relationship between GMV and age, sex, and site. The 
distributions of i) explained variance (EV; higher is better), ii) Standardized mean squared error (SMSE; 
lower is better), iii) Mean standardized log-loss (MSLL; lower is better), iv) Skew (close to zero is better), v) 
Kurtosis (close to zero is better) across WMV voxels. The left panel presents data for the HCtest cohort, the 
right panel presents data for the cases.  
 
 

HCtest Cases

i) EV

ii) SMSE

iii) MSLL

iv) Skew

v) Kurtosis
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Figure S2. Distribution of negative extreme WMV deviation overlap in HCtest cohort across scales.  

 

 
Figure S3. Connections affected by extreme negative WMV deviations, using a weight threshold of 
75%. (a) Matrices showing the tract-scale dysconnection for each clinical group and the held-out control 
group (HCtest). (b) Histograms showing the distribution of overlap percentages observed across all inter-
regional connections. (c) Matrices showing edges structurally connected to extreme negative WMV 
deviations (Z < - 2.6, cluster threshold=10) with significantly greater overlap in cases, compared to 
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controls (top), and significantly greater overlap in controls, compared to cases (bottom, p < .05, two-
tailed).  
 

 
Figure S4. Functional networks affected by extreme negative WMV deviations using 20 network 
parcellation. (a) Network maps quantifying the proportion of individuals showing a significant deviation 
in each network, for each diagnostic group. (b) The network-scale difference in percent overlap for 
extreme negative WMV deviations (z < - 2.6, cluster threshold=10) between each clinical group and the 
control cohort. ** corresponds to pFDR < .05, two-tailed, * corresponds to p < .05, two-tailed. The solid 
black line indicates -log10 p =1.6 (p=.05, two-tailed, uncorrected).  

Figure S5. Distribution of positive extreme WMV deviation overlap in HCtest cohort across scales 
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Figure S6. Spatial overlap in extreme positive WMV deviations. (a) Spatial map which quantifies the 
proportion of individuals showing significant an extreme deviation in a given voxel, yielding an extreme 
deviation overlap map. (b) Statistical plots showing voxels with significantly greater overlap in cases, 
compared to controls (left) and significantly greater overlap in controls, compared to cases in extreme 
positive deviations (top), and greater overlap in controls compared to cases (bottom, p < .05, two-tailed). 
p < .05, two-tailed) 
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Figure S7. Connections affected by extreme positive WMV deviations. (a) Matrices showing the tract-
scale dysconnection for each clinical group. (b) Histograms showing the distribution of overlap 
percentages observed across all inter-regional connections. Note that the y-axis is broken so can see the 
distribution of non-zero values. (c) Matrices showing edges structurally connected to extreme positive 
WMV deviations (Z < 2.6, cluster threshold=10) with significantly greater overlap in cases, compared to 
controls (top), and significantly greater overlap in controls, compared to cases (bottom, p < .05, two-
tailed). 
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Figure S8. Regions attached to connections affected by extreme positive WMV deviations. (a) Spatial 
maps quantifying the proportion of individuals showing significant structural connectivity in each region, 
yielding a region-scale dysconnection map for each diagnostic group. (b) Histograms showing the 
distribution of overlap percentages observed across all regions. (c) Statistical maps showing regions 
structurally connected to extreme positive WMV deviations (z < - 2.6, cluster threshold=10) with 
significantly greater overlap in cases, compared to controls (top), and significantly greater overlap in 
controls compared to cases (bottom, p < .05, two-tailed). 
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Figure S9. Functional network affected by extreme positive WMV deviations. (a) Network maps 

which quantify the proportion of individuals showing a significant deviation in each network, yielding a 
network-scale dysconnection map for each diagnostic group. (b) The network-scale difference in percent 
overlap for extreme positive WMV deviations (Z > 2.6, cluster threshold=10) between each clinical group 
and the control cohort. ** corresponds to pFDR < .05, two-tailed, * corresponds to p < .05, two-tailed 
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