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Extended Figures 1 

 2 

ExtendedDataFig. 1 | Sequencing quality of ribosome profiling data with matched RNA-seq 3 

data when available (supplementary text): a, Distribution of read counts for ribosome profiling 4 

data in RiboBase. In all figure panels, the horizontal line corresponds to the median. The box 5 

represents the interquartile range and the whiskers extend to 1.5 times of it. b, Distribution plot 6 

similar to panel A for ribosome profiling data with matched RNA-seq. c, Distribution of the 7 

proportion of read count aligned to transcripts, read counts with high-quality alignments, and the 8 

percentage of reads remaining after PCR deduplication, relative to the total number of reads from 9 

panel A. d, Similar plot as panel C for ribosome profiling with matched RNA-seq.  10 
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 11 

ExtendedDataFig. 2 | Length distribution of RPFs for human and mouse samples: a, The read 12 

length distribution of RPFs aligned to coding sequences for all human experiments. The color in 13 

the heatmap represents the z-score adjusted RPF counts (Methods). Each experiment where the 14 

percentage of RPFs mapping to CDS was greater than 70% and achieving sufficient coverage of 15 

the transcript (>= 0.1X) was annotated as QC-pass. b, Similar to panel A for mouse samples. 16 
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 17 

ExtendedDataFig. 3 | Schematic for method to select range of RPF lengths: a, RPFs shorter 18 

than 21 nucleotides were removed, then we identified the RPF length with the highest number of 19 

reads mapping to CDS to serve as the starting point. Subsequently, we compared one nucleotide 20 

longer or shorter than the first and chose the length with the most reads again. This looping process 21 

continued until at least 85% of the total CDS mapping RPFs were included. b, We compared the 22 

usable reads selected with two different boundary cutoffs (y-axis) and the proportion of these 23 

selected reads that map to the coding regions (x-axis) for each ribosome profiling experiment. 24 
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 26 

ExtendedDataFig. 4 | Data quality of ribosome profiling experiments from 2016 to 2021: a, 27 

The percentage of ribosome profiling experiments from GEO that pass or fail quality control (the 28 

percentage of RPFs mapping to CDS was greater than 70% and achieving at least 0.1X coverage 29 

of the transcript as QC pass). 30 
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 31 

ExtendedDataFig. 5 | Three nucleotide periodicity of ribosome profiling data: a-d, In 32 

ribosome profiling experiments from RiboBase, samples were classified according to distinct 33 
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periodicity patterns (Methods). For all figure panels, we added error bars to represent the standard 34 

deviation across samples. Statistical significance was assessed using the Wilcoxon test, and the p-35 

values were subsequently adjusted for all 33 comparisons using the Benjamini-Hochberg method. 36 

We considered the Group 1 pattern as indicative of the expected three nucleotide periodicity 37 

patterns.  38 
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 39 

 40 

ExtendedDataFig. 6 | Validation of ribosome profiling and RNA-seq matching and gene 41 

selection for TE calculation: a, We calculated the coefficient of determination (R²) between a 42 

specific ribosome profiling experiment and its corresponding RNA-seq from RiboBase. 43 

Additionally, we determined the average R² for all other pairings for the same ribosome profiling 44 

sample with other RNA-seq data from the same study. The matching score represents the 45 

difference in R² values between these two (x-axis; Methods). b, A dashed line at 0.188 serves as 46 

the threshold to identify samples with poor matching. In each figure panel containing boxplots, the 47 

horizontal line corresponds to the median. The box represents the IQR and the whiskers extend to 48 

1.5 times of it. c, Distribution of standard error of TE values across tissue and cell lines (y-axis) 49 

for genes with polyA and without polyA tails.  50 
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 51 

ExtendedDataFig. 7 | Detailed workflow of data processing for TE and TEC calculations: a, 52 

We selected ribosome profiling data with matched RNA-seq and removed duplicated reads with 53 

identical positions and lengths (PCR-deduplication). We set the RPF read length range for 54 

individual samples with our dynamic cutoff and filtered out ribosome profiling experiments that 55 

failed quality control. After selecting high-quality samples, we reprocessed all these ribosome 56 

profiling experiments using the winsorization method with non-deduplicated data. We removed 57 
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genes without polyA tails and kept genes with sufficient counts per million RPFs. After obtaining 58 

RPF counts from the coding regions for both ribosome profiling and RNA-seq, we performed CLR 59 

normalization and compositional linear regression, defining the residuals as TE for each gene in 60 

each sample. We averaged this sample-level TE based on cell lines and tissues. TEC is further 61 

calculated with rho scores50. To build an RNA co-expression matrix, we transformed CDS counts 62 

from RNA-seq experiments using CLR, averaged them based on cell lines and tissue, and 63 

calculated pairwise proportionalities (rho scores).  64 

https://paperpile.com/c/CEMLEM/FcZm
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 65 

   66 

ExtendedDataFig. 8 | Spearman correlation between TE and protein abundance: a, The 67 

correlation between protein abundance and clr-transformed RPF counts from ribosome profiling 68 

(left), clr-transformed read counts from RNA-seq (middle), or TE calculated with winsorized RPFs 69 

counts using the linear regression model (right). Individual dots indicate specific experiments 70 

colored according to study. In the boxplot, the horizontal line corresponds to the median. The box 71 

represents the IQR and the whiskers extend to 1.5 times of this range. b, TE was calculated with 72 

winsorized RPF counts without deduplication or with deduplication based on position and 73 

fragment length. The Spearman correlation coefficient between TE calculated with winsorized 74 

RPF counts and protein abundance100 (y-axis) was plotted against “delta correlation” (x-axis) 75 

defined by subtracting the correlation values obtained with PCR deduplication from those obtained 76 

with the method using winsorized RPF counts without deduplication. 77 

 78 

https://paperpile.com/c/CEMLEM/UesM
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 79 

ExtendedDataFig. 9 | PCR vs. UMI deduplication comparison for GSE144140: a, Metagene 80 
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plots centered on the start codon for samples GSM4282032 (RPFs range: 28-36 nt), GSM4282033 81 

(RPFs range: 28-36 nt range), and GSM4282034 (RPFs range: 26-35 nt range) were plotted using 82 

three different deduplication methods: non-deduplication (ND), UMI-deduplication (UMI), and 83 

PCR-deduplication (PCR). b, Correlation of gene counts for GSM4282032 between the three 84 

deduplication methods. A blue diagonal line represents a 1:1 ratio in all figure panels. Same 85 

analysis as panel B for GSM4282033 c, and GSM4282034 d. 86 
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 87 

ExtendedDataFig. 10 | PCR vs. UMI deduplication comparison for GSE115162: Similar 88 

analysis as ExtendedDataFig. 7 for GSM3168387 (RPFs range: 24-34 nt), GSM3168389 (RPFs 89 
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range: 23-33 nt), and GSM3168390 (RPFs range: 23-35 nt).  90 
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 91 

 92 

ExtendedDataFig. 11 | PCR vs. UMI deduplication comparison for GSE158374: Similar 93 

analysis as figure S7 and S8 for GSM4798525 and GSM4798526, both in the 28-32 nt RPFs range. 94 
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 95 

ExtendedDataFig. 12 | Conservation of gene expression between human and mouse: a, The 96 

relationship between the mean RNA expressions (clr-transformed counts) of 9,194 orthologous 97 

genes across two species is plotted. Dots represent genes in all figure panels. b, The variability of 98 

genes’ RNA expression was quantified with metric standard deviation (msd; Methods) across 99 

different cell lines and tissues in either human or mouse. To account for the correlation between 100 

mean RNA expression and its variability, we adjusted the msd values with their mean values 101 

(Methods). c, The scatter plot shows the adjusted msd values (y-axis; Methods) and the average 102 

TE across different cell types (x-axis) for human genes. d, Similar analysis as in panel c for mouse 103 

genes. 104 
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 105 

ExtendedDataFig. 13 | Evaluating the performance of eight methods to associate ribosome 106 

occupancy covariation with biological function: a, The AUROCs for biological functions were 107 

calculated using the similarity scores among genes at ribosome occupancy level determined by 108 

eight distinct methods (Methods). In the boxplot, the horizontal line corresponds to the median. 109 

The box represents the IQR and the whiskers extend to the largest value within 1.5 times the IQR 110 

from the hinge. The dot in this figure represents the AUROC for human 5’ TOP mRNAs.  111 

 112 

ExtendedDataFig. 14 | Lack of correlation in TEC across orthologous gene pairs between 113 

human and mouse using shuffled TE: a, TE values that were randomly reassigned from the 114 

original data for each gene (shuffled) and TEC was calculated. In the figure panel, we plotted the 115 

number of orthologous gene pairs within specified ranges. Each dot represents the aggregated 116 

log10-transformed counts of these gene pairs. The dashed line captures 95% of the data.  117 
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 118 

ExtendedDataFig. 15 | RBP regulon correlation distribution for regulons with high TEC: a, 119 

Distribution of Pearson correlation coefficients between RBP RNA expression and TE of the 120 

conserved regulon are shown for RBP regulons with mean abs(TE rho) > 90th percentile. 121 

Ribosomal protein genes are omitted except for FAU, as a representative example. Numbers in 122 

parentheses denote the number of genes in the conserved RBP regulon. 123 
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 124 

ExtendedDataFig. 16 | Ribosome profiling and RNA-seq of RBP KO cell lines: For b through 125 

e, ribosome footprints between 28 and 35 nt were used. a, Read length distributions of ribosome 126 

footprints. b, Metagene plot at the start site. c, Location of mapped ribosome footprints. d, PCA 127 

was performed on standardized counts per million (CPM) reads for transcripts whose sum of CPMs 128 

across cell lines and replicates is in the top 80th percentile. PCA of RNA-seq counts. e, Same as D 129 

for ribosome profiling read counts. f, Differential RNA expression of KO cell lines. A significance 130 

threshold of FDR < 0.05 was used.  131 



 

 

 

20 

 132 

ExtendedDataFig. 17 | TEC and RNA co-expression among genes with shared functions in 133 

human: a, A comparison between the number of human GO terms that have AUROC of 0.8 or 134 

higher with either TEC or RNA co-expression. b, Motif enrichment in human GO terms. RNA 135 

binding proteins (RBPs) from oRNAment134 or Transite133 are indicated. P-values were corrected 136 

using the Holm method and those kmers with a p-value < 0.05 are shown.  137 

https://paperpile.com/c/CEMLEM/Ztcv
https://paperpile.com/c/CEMLEM/Isms
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 138 

ExtendedDataFig. 18 | TEC and RNA co-expression among genes with shared functions in 139 

mouse: a, Venn diagram for mouse GO terms that achieve an AUROC of 0.8 or higher with 140 
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proportionality scores (rho) among genes at either TE or RNA expression level. b, The AUROC 141 

plot was calculated with genes associated with mannosyltransferase activity in mice. c, The 142 

connections represent absolute rho values above 0.1 in either TE pattern alone (green), in both 143 

RNA co-expression and TE pattern (blue), or RNA co-expression alone (gray). d, We summarized 144 

GO terms where genes exhibit greater similarity at the TE level than at the RNA expression level 145 

(AUROC with TEC > 0.8, and different AUROC between TEC and RNA co-expression > 0.1) in 146 

mice. We visualized the distribution of absolute rho score for gene pairs within each specific GO 147 

term (bottom; gene pairs with abs(rho) > 0.1) at the TE level. e, Motif enrichment in mouse GO 148 

terms. RNA binding proteins (RBPs) from oRNAment134 or Transite133 are indicated. P-values 149 

were corrected using the Holm method and those kmers with a p-value < 0.05 are shown.  150 

 151 

ExtendedDataFig. 19 | 3D structure of the interaction between LRRC28 with FOXK1: a, 152 

AlphaFold2-multimer predicted binding between LRRC28 and FOXK1.  153 

https://paperpile.com/c/CEMLEM/Ztcv
https://paperpile.com/c/CEMLEM/Isms
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 154 

ExtendedDataFig. 20 | Rho scores enrichment of gene pairs with a distance of less than 50 155 

kilobases on the same chromosome: a, Rho scores enrichment for 5,999 human gene pairs with 156 

a distance of less than 50 kilobases at either RNA expression or TE level. 157 

  158 
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Supplementary Text 159 

1: Inaccurate and incomplete metadata examples from GEO 160 

We observed recurrent issues regarding cell line identification in GEO. For instance, several 161 

studies categorize cell lines merely as “erythroid cells” without providing specifics. Similarly, 162 

descriptions of mouse embryonic stem cells (mESCs) often lack detail regarding subtypes, such as 163 

v6.5, which are either vague or missing. Inconsistencies in library strategies present additional 164 

challenges. While most researchers categorize ribosome profiling under OTHER in the library 165 

strategy, some entries label ribosome profiling as RNA-seq, ncRNA-seq, and miRNA-seq. Such 166 

nonstandard information lead to significant errors in large-scale data reanalysis, emphasizing the 167 

need for data curation.  168 

2: Summary of sequencing quality for ribosome profiling and matched RNA-seq  169 

The median number of reads for all human ribosome profiling samples was approximately 43.2 170 

million, and after removing the adapter sequences the corresponding median was 35.5 million 171 

(ExtendedDataFig. 1a; table S2). For mouse samples, the median number of reads was around 37.5 172 

million, compared to 29.7 million reads with adapters (ExtendedDataFig. 1a; table S3). On 173 

average, only 17% of reads could be aligned to the transcriptome, with 13% having a mapping 174 

quality higher than 20 in human samples (ExtendedDataFig. 1c). After removing duplicate reads 175 

with the same position and length (PCR-deduplication), 5% of the total ribosome profiling reads 176 

were retained (ExtendedDataFig. 1c). The mouse data showed a similar trend, with 13% alignment, 177 

10% above a mapping quality of 20, and 3% retention after PCR-deduplication (ExtendedDataFig. 178 

1c).  179 

Furthermore, in our comparative analysis between ribosome profiling and the corresponding RNA-180 

seq data, we observed that ribosome profiling experiments were generally sequenced at a higher 181 

depth compared to RNA-seq. The median reads for ribosome profiling were 45.6 million for 182 

human experiments and 43.1 million for mouse experiments, compared to 36.2 million and 37.1 183 

million reads for the matched RNA-seq, respectively (ExtendedDataFig. 1b; table S4-5). However, 184 

ribosome profiling demonstrated a lower alignment percentage to transcriptome than RNA-seq, 185 

with only 13% in human and 14% in mouse experiments, as opposed to 48% and 47% in RNA-186 

seq for human and mouse samples, respectively (ExtendedDataFig. 1d). This discrepancy is 187 

explained by the substantial presence of ribosomal RNA in ribosome profiling samples.  188 

3: Comparison of different methods for removing duplicated reads  189 

Removing duplicated reads with the same position and length is commonly used in sequencing 190 

data processing to minimize biases introduced by PCR amplification. A key concern is the 191 

inadvertent removal of ribosome footprints that are identical in sequence and length but originate 192 

from different templates, leading to misinterpretation of the data. To evaluate the impact of 193 

deduplication strategies on ribosome profiling data, we analyzed samples that incorporated unique 194 

molecular identifiers (UMIs). Our findings indicate a significant loss of reads originating from 195 

unique molecules when using PCR deduplication based on position and fragment length 196 

(ExtendedDataFig. 9-11). This discrepancy was exacerbated in samples with higher coverage. 197 
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Given the limited adoption of library preparation method that introduce UMIs in ribosome 198 

profiling experiments, we used a winsorizing-based method to process non-deduplicated ribosome 199 

profiling sequencing data, aiming to mitigate this bias by capping excessively high-depth regions 200 

(Methods). 201 

We compared linear regression-based TE calculated by winsorized non-deduplicated and PCR-202 

deduplicated data. The winsorized method showed a slightly higher mean correlation than the 203 

PCR-deduplicated method (ExtendedDataFig. 8b), indicating the PCR-based deduplication 204 

approach, which relies on identical position and length, could obscure the actual biological insights 205 

obtainable from ribosome profiling.  206 

4: RBPs may coordinate TEC 207 

We identified RBP regulons in which the component genes had high TEC, as this might indicate 208 

a direct influence of the RBP on TE. Salient examples of RBPs which were previously linked to 209 

translation regulation and had conserved regulons with high TEC were VIM and PARK7 (also 210 

known as DJ-1). Although VIM is a primary component of intermediate filaments, its RNA 211 

expression was negatively correlated with TE of genes encoding proteins in the electron transport 212 

chain and ribosomal proteins. VIM was previously found to repress translation of the mu opioid 213 

receptor164. Similarly, expression of PARK7 was predominantly negatively correlated with TE, in 214 

line with a prior study that PARK7 represses translation165,166 (68% and 79% of regulon genes 215 

having negative correlations in human and mouse, respectively). There was not a significant 216 

overlap between PARK7 targets determined by RIP-seq analysis in human neuroblastoma cells165 217 

and the human or mouse PARK7 regulons (hypergeometric test p-values 0.84 and 0.23, 218 

respectively). Nevertheless, thirty-three PARK7 RIP-seq targets were present in both human and 219 

mouse regulons, including glutathione peroxidase 4 (GPX4), Sm-like proteins (LSM1/3/5), and six 220 

genes encoding ubiquinone-oxidoreductase subunits, indicating PARK7 regulates a diverse set of 221 

biological processes extending beyond the oxidative stress response. Among genes with positive 222 

correlations with PARK7 expression, subunits of calcium channels such as CACNB1 and 223 

CACNA2D1 were notable, consistent with data that PARK7 increases nascent protein synthesis 224 

of CACNA2D1 despite not significantly binding it166. Altogether, these data suggest largely 225 

indirect influences of PARK7 on TE, and a smaller set of direct target genes. 226 

We selected VIM, PARK7, and USP42 for further experiments, as their regulons exhibited distinct 227 

correlation distributions for RNA expression and gene TE (ExtendedDataFig. 15) and are not 228 

essential genes, facilitating knockout experiments. These RBPs had high HydRA167 scores (>0.89, 229 

scale 0 to 1) and detectable RNA binding domains, supporting their role as bona fide RBPs. 230 

Surprisingly, knockout of these RBPs and subsequent matched ribosome profiling and RNA-seq 231 

(ExtendedDataFig. 16a-e, Methods) indicated no changes in TE for the genes in these RBPs’ 232 

regulons, with one exception (VIM KO led to lower VIM TE). However, we found a small subset 233 

of genes with altered RNA abundance upon knockout of each RBP (ExtendedDataFig. 16f). For 234 

example, knockout of VIM led to increased RNA abundance of several genes involved in 235 

cytoskeletal function, including SPTBN1, SPTBN2, MACF1, IQGAP1, FLNB, DST, DIAPH1, and 236 

DBN1. 237 

https://paperpile.com/c/CEMLEM/f12V
https://paperpile.com/c/CEMLEM/KO3e+r46s
https://paperpile.com/c/CEMLEM/KO3e
https://paperpile.com/c/CEMLEM/r46s
https://paperpile.com/c/CEMLEM/rDd4
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We note that the lack of genes with significantly altered TE upon KO of these RBPs may be due 238 

to several reasons: 1) these RBPs exert an indirect- rather than direct- influence on TE; 2) the 239 

associations between RBP expression and gene TE were identified across diverse cell lines, 240 

whereas the association was only tested in the HEK293T cell line; 3) use of heterogenous knockout 241 

populations (not single clones), and limited efficiency of knockout as measured by the observed 242 

RNA-seq fold changes (PARK7: 0.37, USP42: 0.44, VIM: 0.13) may limit sensitivity to observe 243 

effects on TE. Further work will be needed to validate the role of PARK7, USP42, and VIM on 244 

translational regulation. 245 

5: TEC among genes is associated with shared biological functions in mouse 246 

We identified 25 GO terms including protein palmitoylation, palmitoyltransferase activity, and 247 

metallocarboxypeptidase activity which exhibited AUROC scores that were at least 0.1 lower at 248 

the RNA expression level compared to the TE level (AUROC calculated with TEC > 0.8; 249 

ExtendedDataFig. 18). For example, mannosyltransferase activity demonstrated a significant 250 

difference between the two levels (ExtendedDataFig. 18c). This difference was further highlighted 251 

by the observation that 22 gene pairs in this biological function had absolute rho above 0.1 252 

exclusively at the TE level, compared to only two at the RNA expression level for this term 253 

(ExtendedDataFig. 18d). In summary, we found genes from certain biological functions are more 254 

likely to be regulated at the translational level rather than the transcriptional level, in both humans 255 

and mice. 256 

We predicted novel functions for genes associated with 31 mouse GO terms. These predictions are 257 

based on either significant covariation in TE greater than RNA expression (AUROC measured 258 

with TEC > 0.8; different AUROC measured with TEC and RNA co-expression > 0.1; table S16; 259 

Methods) or new functional predictions were only achievable with TEC (AUROC measured with 260 

TEC > 0.8, difference AUROC measured with TEC and RNA co-expression < 0.1, ranking of the 261 

predicted gene with RNA co-expression < top 50%; table S16; Methods). For instance, we 262 

identified Cenpf as highly correlated with the function of mitotic spindle midzone. This aligned 263 

with findings in human cell lines, where CENP-F has been observed assembling onto kinetochores 264 

at late G2 and detected at the spindle midzone during anaphase151. Another prediction linked 265 

Arhgap31 with the antiviral innate immune response. This prediction has been supported by 266 

previous research that has recognized the ARHGAP family as novel biomarkers associated with 267 

immune infiltration158.  268 

https://paperpile.com/c/CEMLEM/urX3
https://paperpile.com/c/CEMLEM/lTU5

