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Supplementary Table 1. Validation set results across several architectures and backbones for 
the well pad detection model. The highest-performing model, shown in bold, was selected for 
the basin-scale deployments. The results are reported as the mean and standard deviation (SD) 
across 10 runs.

Supplementary Table 2. Validation set results across several backbones for the well pad 
verification model. The highest-performing model, shown in bold, was selected for the 
basin-scale deployments.

Backbone Overall F1

Inception-v3 0.993
ResNet-50 0.996
ResNet-101 0.996

ResNeXt-101 0.997
DenseNet-121 0.998
EfficientNet-b3 0.999

Architecture Backbone
Average 
Precision 

(Mean ± SD)

SSD VGG-16 0.844 ± 0.003
YoloV3 DarkNet-53 0.834 ± 0.004

RetinaNet

ResNet-50 0.980 ± 0.001
ResNet-101 0.971 ± 0.002

ResNeXt-101 0.972 ± 0.002
RegNetX-3.2GF 0.973 ± 0.002

ResNest-50 0.953 ± 0.002
Res2Net-101 0.923 ± 0.002

EfficientNet-b3 0.972 ± 0.002

FasterRCNN

ResNet-50 0.974 ± 0.003
ResNet-101 0.970 ± 0.002

ResNeXt-101 0.970 ± 0.003
RegNetX-3.2GF 0.972 ± 0.002

ResNest-50 0.974 ± 0.002
Res2Net-101 0.977 ± 0.001



Supplementary Table 3: Validation set results in the Permian and Denver basins with the 
standalone detection model, and with the detection and verification models (i.e. the full detection 
pipeline). We note that the Average Precision of the former cannot be fairly compared to the 
latter: Any falsely unverified true positives are filtered out by the verification model, introducing 
an upper bound on achievable recall which penalizes Average Precision at high thresholds. 
Thus, we only use precision and recall at a single threshold to evaluate the verified detection 
predictions. The results are reported as the mean and standard deviation (SD) across 10 runs.

Precision (Mean ± SD) Recall (Mean ± SD)

Permian
Detection Model 0.962 ± 0.004 0.932 ± 0.001

Detection and 
Verification Models 0.975 ± 0.002 0.932 ± 0.003

Denver

Detection Model 0.937 ± 0.007 0.895 ± 0.001

Detection and 
Verification Models 0.946 ± 0.004 0.895 ± 0.005

Supplementary Table 4. Validation set results (Average Precision) of the well pad 
detection model. Comparison of models trained in individual basins compared to the model 
jointly trained in both basins (bold), which achieves the highest performance. The results are 
reported as the mean and standard deviation (SD) across 10 runs.

Validation Set

Training Set Permian 
(Mean ± SD)

Denver 
(Mean ± SD)

Permian 0.986 ± 0.001 0.872 ± 0.007

Denver 0.861 ± 0.003 0.963 ± 0.004

Both 0.990 ± 0.001 0.969 ± 0.003



Supplementary Table 5: Well pad detection model performance and dataset counts in the 
evaluation basins. Results from the Permian/Denver test set (from Table 1) are shown for 
comparison. We note that the results shown in the evaluation basins were produced solely by 
the detection model, as the verification model did not improve model performance, while the 
results shown in the Permian/Denver regions leverage the verification model. As such, Average 
Precision  cannot fairly be compared between the Permian/Denver regions and the evaluation 
basins and is not presented here (see Supplementary Table 3). The results are reported as the 
mean and standard deviation (SD) across 10 runs.

Basin Precision 
(Mean ± SD)

Recall 
(Mean ± SD)

# Positive 
Images

# Negative 
Images

Permian/Denver 0.955 ± 0.004 0.904 ± 0.006 1,202 7,764

Appalachian 0.647 ± 0.031 0.552 ± 0.020 574 4,111

TX-LA-MS Salt 0.866 ± 0.016 0.806 ± 0.014 614 4,045

Anadarko 0.906 ± 0.016 0.856 ± 0.019 676 4,121

Uinta-Piceance 0.948 ± 0.009 0.943 ± 0.010 625 4,329

Supplementary Table 6. Percent of total area covered by acquisition year for the Google 
Earth satellite basemap in the Permian and Denver basins. 

% Total Area Covered

Year Permian Denver

2013 0 19.30

2014 0.04 0.31

2015 0.34 16.55

2016 9.30 32.40

2017 21.65 0.43

2018 21.00 0.50

2019 47.66 30.50



Supplementary Table 7. Validation set results across several architectures and 
backbones for the storage tank detection model. The highest-performing model, shown in 
bold, was selected for the basin-scale deployments.

Supplementary Table 8: Storage tank detection model performance and dataset counts in 
the evaluation basins. 

Basin Average 
Precision Precision Recall # Positive 

Images
# Negative 

Images

Permian/Denver 0.986 0.962 0.968 162 380

Appalachian 0.505 0.517 0.550 405 222

TX-LA-MS Salt 0.876 0.880 0.851 399 229

Anadarko 0.960 0.935 0.939 520 72

Uinta-Piceance 0.943 0.904 0.906 461 83

Architecture Backbone Average 
Precision 

SSD VGG-16 0.969
YoloV3 DarkNet-53 0.973

RetinaNet

ResNet-50 0.955
ResNet-101 0.599

ResNeXt-101 0.957
RegNetX-3.2GF 0.952

ResNest-50 0.312
Res2Net-101 0.954

EfficientNet-b3 0.952

FasterRCNN

ResNet-50 0.965
ResNet-101 0.960

ResNeXt-101 0.968
RegNetX-3.2GF 0.966

ResNest-50 0.973
Res2Net-101 0.977



Supplementary Table 9. Deployment results of the best storage tank detection model. The 
mean number of storage tanks per well pad was calculated across well pads containing storage 
tanks.

Total # of Detected 
Storage Tanks

Total # of Well 
Pads with 

Detected Storage 
Tanks

Total # of Well 
Pads without 

Detected Storage 
Tanks

Mean # of Storage 
Tanks per Well 

Pad

Permian 147,116 35,077 159,896 4.194

Denver 28,880 8,502 28,089 3.397

Overall 175,996 43,579 187,985 4.039

Supplementary Table 10. Dataset counts for the well pad detection task in the Permian 
and Denver basins.

Training Validation Testing

# Positive 
Images

# Negative 
Images

# Positive 
Images

# Negative 
Images

# Positive 
Images

# Negative 
Images

Permian 4,499 17,512 1,106 3,481 739 2,267

Denver 2,987 17,275 638 3,545 463 2,433

Other N/A 23,436 N/A 4,599 N/A 3,064

Supplementary Table 11. Dataset counts for the storage tank detection task in the 
Permian and Denver basins. 

Training Validation Testing

# Positive 
Images

# Negative 
Images

# Positive 
Images

# Negative 
Images

# Positive 
Images

# Negative 
Images

Permian 786 1,581 130 332 92 213

Denver 632 1,080 123 229 70 167
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Supplementary Fig. 1. Satellite imagery of well pads. a,b Small (<41m2), c,d medium 
(41-164m2), and e,f large (>164m2) well pads with manually obtained annotations overlaid. 
Performance on small well pads is considerably lower than on medium and large-sized well 
pads in both basins, and is poorest on small well pads in the Denver basin, where there are few 
discernible features on single wellhead pads and a higher likelihood of incurring false positives. 

Supplementary Fig. 2: Subset of high-producing sedimentary basins in the U.S. The 
model was trained in the Permian and Denver basins, and evaluated in all basins shown here. 
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Supplementary Fig. 3. Satellite imagery of well pads in evaluation basins. The model was 
evaluated in the a Appalachian, b TX-LA-MS Salt, c Anadarko, and d Uinta-Piceance basins, 
which were unseen during training. 
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Supplementary Fig. 4. Random sample of well pad locations from the Enverus dataset 
that were undetected by the model. Well pads are shown from the Permian (top two rows) 
and Denver (bottom two rows) basins. a For the sample of well pads constructed from 
1950-2015, the missed well pad locations primarily consist of small well pads and images with 
no visible well pad, indicating that the reported datasets include some data with inaccurate 
and/or outdated locations. b For the sample of well pads constructed from 2015-2021, the 
missed well pad locations also contain no visible well pad; however, these recent examples can 
be attributed to outdated imagery. c The same locations are shown with 2021 PlanetScope 

imagery, where well pads are clearly visible in the images.
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Supplementary Fig. 5. Example satellite images in the training dataset. Manually obtained 
well pad annotations used to train and evaluate the models are overlaid on the images in the a 
Permian and b Denver basins. c Example satellite images of negatives in both basins which 
were curated (from left to right) by random sampling within basin boundaries, within city 
boundaries, roads, wind turbines, and land use / land cover similar to well pads and surrounding 
landscapes collected using GeoVisual similarity search. Negative images are displayed larger 
for figure visualization but all images in the dataset are the same size.

Map Data: Google, ©2013-2019

Supplementary Fig. 6. Well pads with ground truth (red) and predicted (black) bounding 
boxes overlaid. In each example the IoU is greater than 0.3 and less than 0.5. During model 
evaluation, we determined matches between predicted and ground truth bounding boxes using 
an IoU threshold of 0.3, a lower value than conventionally used for evaluation in object detection 
(which typically range from 0.5-0.95). We justified this choice based on the ambiguities in 
defining well pad boundaries for many well pads. The figure shows such examples, where the 
predictions show reasonable localizations of the well pads despite IoU < 0.5, which motivated 
our choice of the 0.3 IoU threshold. 



Supplementary Fig. 7: Precision-recall curve of the a well pad detection and b storage tank 
detection models in the Permian and Denver basins. The selected threshold value, and the 
corresponding precision and recall values, are shown in the legend. 
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Supplementary Fig. 8. Example satellite images of well pads with storage tanks. Manually 
obtained storage tank annotation, shown in red, in the a Permian and b Denver basins were 
used to train and evaluate the models.



Supplementary Note 1: Construction of Well Pad Datasets

To verify and evaluate model detections during deployment, we leveraged the HIFLD and 
Enverus (2021 version) well datasets. To match the well datasets to the well pad model 
detections, we first clustered the well datasets into well pads. We used DBSCAN, a spatial 
clustering algorithm, with parameters min_samples set to 1 and eps set to 50m. We considered 
each well cluster as a well pad, and chose the centroid of well coordinates as the well pad 
location. 

Other well-level data were also aggregated. For most categorical variables (Well Type, 
Production Type, Operator, etc.) the mode value in the cluster was assigned to the well pad. 
Dates were assigned according to the semantic meaning of the variable (ie, the oldest date was 
selected for First Production Date, while the most recent date was chosen for Completion Date). 
Production-related variables, i.e. kBOE/d (only available in the Enverus dataset) were summed 
for the cluster. The active/inactive status of a well pad was determined as follows: For the 
Enverus dataset, if the mode Well Status (“ENVWellStatus”) was “PRODUCING” or 
“COMPLETED” and the summed kBOE/d (“kboed”) was greater than 0, the well pad was 
considered active. All other well pads were considered inactive. For the HIFLD dataset, if the 
mode Well Status (“STATUS”) was “PRODUCING WELL” or “ACTIVE WELL”, the well pad was 
considered active; all other well pads were considered inactive.  

The Enverus and HIFLD well databases were clustered and well pad datasets formed 
independently. Because the former contained some locations not present in the latter, we also 
formed a joint dataset constructed as the union of the locations in both datasets (Enverus + 
HIFLD), with duplicates within 25m removed. The joint dataset was leveraged in particular for 
determining which model detections could be considered “new”. 

Supplementary Table 12: Number of wells in the original Enverus and HIFLD datasets, as well 
as the number of well pads constructed using the methodology above.

# Wells 
(Original database)

# Well pads 
(Constructed database)

Permian

Enverus 150,542 134,039

HIFLD 190,797 161,023

Enverus + HIFLD 200,318 183,325

Denver

Enverus 22,148 13300

HIFLD 30,988 24316

Enverus + HIFLD 37,308 26285


