Science Advances

Supplementary Materials for

Epinephrine promotes breast cancer metastasis through a ubiquitin-specific peptidase 22-mediated lipolysis circuit

Yuanzhang Zhou et al.

Corresponding author: Hongjiang Wang, hjwang@dmu.edu.cn; Zhaolin Sun, zlsun56@yeah.net; Deyu Fang, fangd@northwestern.edu

Sci. Adv. **10**, eado1533 (2024) DOI: 10.1126/sciadv.ado1533

This PDF file includes:

Figs. S1 to S16 Tables S1 to S6 Figure s1

Fig. s1: Statistical analysis to determine the correlation between serum Epi levels and tumor volume. (n = 65). Pearson correlation coefficient was used to as a measure of association.

Figure s2

Fig. s2. Analysis of the serum EPI concentrations in mice treated with the EPI and the PBS (N = 10 each group). Data are expressed as mean \pm SD. Statistical significance was determined by unpaired Student's *t* test. Statistical significance was concluded at ****P* < 0.001.

Fig. s3. Analysis of the effects of EPI on 4T1 cell growth and migration. (A) The effect of *USP22* knock out on the 4T1 cell proliferation in the presence of Epi or not were determined by the WST-8

reagent (n = 3). (**B** & C) Transwell assays were conducted to assess the migratory capacity of the indicated types of 4T1 cells (n = 3). Representative images are shown in (B), scar bar: 100µm, and migrated cells were counted from five random fields (C). Statistical significance was determined by unpaired Student's *t* test or one-way ANOVA test. Data are expressed as mean \pm SD of three independent experiments. Statistical significance was concluded at **P* < 0.05, ***P* < 0.01, ****P* < 0.001; ns represents no statistical significance.

Figure s4

Fig. s4: Analysis of the lipid components in tumor and para-tumor tissues. (A-C) Relative levels of TAG (A), DAG (B), FFA (C) in 8 pairs of breast cancer and matched non-tumorous tissues (fold change of mean value of non-tumorous group) (para-tumor, n = 8; tumor, n = 8). (D-F) Relative levels of TAG (D), DAG (E), FFA (F) in 8 breast cancer tissues as indicated group (fold change of mean value of Epi ^{low} group) (Epi ^{high}, n = 4; Epi ^{low}, n = 4). Data are expressed as mean \pm SD. Statistical significance was determined by unpaired Student's *t* test. Statistical significance was concluded at **P* < 0.05, ***P* < 0.01. ****P* < 0.001; ns represents no statistical significance.

Fig. s5. The effect of EPI on 4T1 cell lipolysis. (A-D) Intracellular lipid analysis in WT and USP22null 4T-1 cells isolated from the xenograft tumors as shown in Fig. 2Q, including bodipy (A & B), DAG (C) and FFA (D). Data are expressed as mean \pm SD of five independent experiments. Statistical significance was determined by one-way ANOVA test or unpaired Student's *t* test. Statistical significance was concluded at **P* < 0.05, ***P* < 0.01. ****P* < 0.001; ns represents no statistical significance.

Figure s6

Fig. s6. The effect of ATGL inhibitor on EPI-induced lipolysis. WT and USP22 KO 4T1 cells were treated with EPI or further with ATGL specific inhibitor Atglistatin (50 μ M) for 24 hours. (A & B) The bodipy staining and (C & D) the levels of DAG (C) and FFA (D) were analyzed (N=3). Statistical significance was determined by one-way ANOVA test or unpaired Student's *t* test. Data are expressed as mean±SD of three independent experiments. Statistical significance was concluded at **P* < 0.05, ***P* < 0.001; ns: no statistical significance.

Fig. s7. Analysis of the effects of ATGL expression on USP22-null 4T1 cell growth and migration. (A) The effect of overexpression of *ATGL* in the knockout on the 4T1 cell proliferation were determined by the WST-8 reagent. (B-C) Transwell assays were performed to evaluate the migratory capacity of the indicated types of 4T1 cells (n = 3). Representative images are presented in (B), scar bar: 100µm, and the number of migrated cells was quantified from five random fields (C). Statistical significance was determined by unpaired Student's *t* test or one-way ANOVA test. Data are expressed as mean \pm SD of three independent experiments. Statistical significance was concluded at **P* < 0.05,

P* < 0.01, *P* < 0.001; ns: no statistical significance.

Fig. s8: Analysis of the effects of ATGL expression on USP22-null 4T1 tumor metastasis. (A-D) A total of $0.5*10^{5}$ WT, USP22-KO + ATGL 4T1 cells or USP22-KO 4T1 cells transduced with ATGL were injected via the tail vein into BALB/C mice. Lung metastases were measured by luminol fluorescence (A & B) and H & E staining (C & D). Statistical significance was determined by unpaired Student's *t* test or one-way ANOVA test. Data are expressed as mean ± SD of five independent experiments. Statistical significance was concluded at **P* < 0.05, ***P* < 0.01, ****P* < 0.001; ns: no statistical significance.

Fig. s9. Analysis of USP22, FOXO1 and ATGL expression levels by immunohistochemistry in syngeneic tumor tissues as shown in Fig. 2Q. Representative images (A), scale bar: 50 μ m and quantification data (B-D) are shown. Statistical significance was determined by one-way ANOVA test or unpaired Student's *t* test. Data are expressed as mean \pm SD of five independent experiments. Statistical significance was concluded at **P* < 0.05, ***P* < 0.01, ****P* < 0.001; ns: no statistical significance.

Figure s10

Fig. 10. Analysis of EPI-induced USP22 and lipolysis in MCF-7 and SK-BR-3 cells. (A & B) Analysis of USP22, ATGL, FOXO1 protein expression in MCF-7 cells (A) and SK-BR-3 cells (B) after treated with Epi for 48h. (C-J) Intracellular lipid analysis, including bodipy, DAG and FFA in indicated types of SK-BR-3 cells (C-F) or MCF-7 cells (G-J). (n = 3). Statistical significance was determined by one-way ANOVA test or unpaired Student's *t* test. Data are expressed as mean \pm SD of three independent experiments. Statistical significance was concluded at **P* < 0.05, ***P* < 0.01, ****P* < 0.001; ns: no statistical significance.

Figure s11

Fig. s11. Analysis of EPI-induced AKT phosphorylation. (A) Immunoblot analysis of p-AKT-473 protein expression in MDA-MB-231 cells treated with EPI or PBS for indicated times. (B).

Immunoblot analysis of p-USP22-thr-147 protein expression in MDA-MB-231 cells treated with EPI or PBS for indicated times. (C) <u>WT or USP22/T147A mutants with or without AKT were transfected to USP22 KO 4T1 cells. USP22 phosphorylation was determined by immunoblotting with anti-p-147-USP22 Ab (top panel). The expression levels of total USP22 (middle panel) and AKT (bottom panel) were confirmed.</u>

Figure s12

Fig. s12. The effect of USP22 phosphorylation on lipolysis in 4T1 cells. (A) Analysis of USP22, FOXO1, ATGL protein expression in USP22-KO MDA-MB-231 cells transfected with the WT-USP22 plasmid or the TP-USP22 plasmid and treated with Epi or PBS. (B-C) The effect of EPI on FOXO1 protein expression in USP22-KO MDA-MB-231 cells transfected with the WT-USP22 plasmid or the TP-USP22 plasmid. Statistical significance was determined by one-way ANOVA test or unpaired Student's *t* test. Data are expressed as mean \pm SD of five independent experiments. Statistical significance was concluded at **P* < 0.05, ***P* < 0.01, ****P* < 0.001; ns: no statistical significance.

Fig. s13. The effect of AKT inhibition on USP22 phosphorylation in tumors. (A-C) Triple-negative

breast cancer 4T1 cells were injected into mammary fat pad of BALB/c mice (N=3 each group). Tumor volume (A), and tumor weight (B & C) were measured. (D) Analysis of USP22 and p-USP22-T-147 protein expression in tumor tissue from (B). (E-F) Quantitative analysis of USP22 and p-USP22-T-147 protein expression in the (D). Beta-actin used as a control to quantify the expression of USP22 (E). Quantification of phosphorylation is presented as ratios of signal intensities of phosphorylated protein (p-USP22-T-147) to total protein (USP22) (F). Statistical significance was determined by one-way ANOVA test or unpaired Student's *t* test. Data are expressed as mean \pm SD of three independent experiments. Statistical significance was concluded at **P* < 0.05, ***P* < 0.01, ****P* < 0.001; ns: no statistical significance.

Figure s14

Fig. s14: (A) Analysis of USP22(A), FOXO1(B), ATGL(C), p-USP22-T147(D) expression of human para-breast cancer tissues in EPI ^{high} and EPI ^{low} patients (Epi^{low}, n = 33; and Epi^{high}, n = 32). Statistical significance was determined by unpaired Student's *t* test. Data are expressed as mean \pm SD. Statistical significance was concluded at **P* < 0.05, ***P* < 0.01, ****P* < 0.001; ns: no statistical significance.

Figure s16.

Fig. s16: Representative immunohistochemistry photomicrographs of tissues stained with USP22, FOXO1, ATGL from the tumor in the Fig. 7A, scale bar: $50 \mu m$.

characteristics of breast cancer patients				
Variable	All case N (%)	Patient # Plasma EF	YI Low & High	P ^A
		Low High		
HER2				0.321
—	52 (80)	28	24	
+	13 (20)	5	8	
PR				0.812
-	15 (23)	8	7	
+	50 (77)	25	25	
ER				0.294
-	11 (16.9)	4	7	
+	54 (83.1)	29	25	
Tumor Stage				0.426
0	1 (1.55)	0	1	
1	27 (41.5)	13	14	
2	31 (47.7)	16	15	
3	5 (7.7)	4	1	
4	1 (1.55)	0	1	
^A x ² test; $n = 65$. ER+: ER \geq + and \geq 1%; ER-: ER $<$ 1%; PR+: PR \geq +and \geq 1%; PR-: PR $<$ 1%;				

Supplementary Table1 Association of plasma epinephrine level with clinical and pathological characteristics of breast cancer patients

Supplementary Table 2. gRNAs used for USP22 KO in mouse and human breast cancer cells.

HER2+: HER2 3+ or HER2 2+ and FISH +; HER2-: HER2 0 or 1+ or HER2 2+.

Sample	sg-RNA Sequence	
sgRNA for human USP22	sgRNA-A1:	
	TTCAAAGCAGCCAATACTCCAGG	
	sgRNA-A2:	
	GATGCGAGCCCTTCGTGTTGAGG	
sgRNA for mouse USP22	sgRNA-A1:	
	GTTGTCCGCATTAACAATGCTGG	
	sgRNA-A2:	
	AGATGTGGACGGTGCACGCGAGG	

Supplementary Table 3: PCR primers for USP22 analysis.

	Primer for PCR	Sequence
F	Primer for exon of	For: 5' - CCCCTGTACTTAAGGTAAGAGTAGC -
	human USP22	3'
		Rev: 5' - TAGCATGCACTGAGGTTGGG -3'
F	Primer for exon of	For: 5'-ATTCCTTCATTCCCAGGGCG-3'
	mouse USP22	Rev: 5'-CAGGGATCATGTCGGGAAGT-3'

Supplementary Table 4: Primers used for ChIP-qPCR analysis.

Primer for ChIP	sg-RNA Sequence
Primer for promoter of	For 5'- TTCATGGGTGAGGGTGCTTC- 3'
PNPLA2	Rev: 5'- ACATCACTCCCTCATGGCAG – 3

Antibodies reagent	Source	Catalog
FOXO1	Cell Signaling Technology	2880
USP22	Abcam	ab195289
pan-AKT	Proteintech	60203-2-Ig
p-AKT-473	Cell Signaling Technology	4051
Phospho-USP22(thr147)	Invitrogen	PA5-105351
Phosphoserine/threonine	Invitrogen	MA5-38234
ATGL	Absin	abs137233
HA-tag	Cell Signaling Technology	3724S
His-tag	Cell Signaling Technology	12698S
Flag-HRP	Sigma	A8592
Flag	Sigma	F-1804
HA-tag	Santa-cruze	sc-7392
myc-tag	Cell Signaling Technology	2276S
myc-HRP	Cell Signaling Technology	2040S
β-actin	Proteintech	66009-1-lg
GAPDH	Proteintech	10494-1-AP
anti-rabbit IgG antibody	Cell Signaling Technology	7074S
anti-mouse IgG antibody	Cell Signaling Technology	7076S

Supplementary Table 5. Abs used for the study.

Supplementary Table 6. Primers for real-time RT-PCR analysis.

	v v
Primer name (RT-qPCR)	Sequence(5'-3')
human-ATGL-F	CCATCACAGTGTCCCCCTTC
human -ATGL-R	AACTGGATGCTGGTGTTGGT
human -USP22-F	CTGGGACATCAGCTTGGATCT
human -USP22-R	CTTTCCCCGTTTACCACGTTG
human -FOXO1-F	TTCACCCAGCCCAAACTACC
human -FOXO1-R	GAGTCCAGGCGCACAGTTAT
human -ACTB-F	GGGAAATCGTGCGTGACATT
human -ACTB-R	GGAACCGCTCATTGCCAAT