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A Cellular composition of synovial tissues

A.1 Clustering Synovial tissues according to cell-type enrichment scores

We collected a bulk RNA-Seq gene study of synovial biopsies (GSE89408) [26, 105], containing the
gene expression profiles of 28 healthy, 152 RA and 22 osteoarthritis (OA) patients over ∼25k genes.
We selected 13 cells that were previously reported in synovial tissues [15, 16, 14] and leveraged
xCell [36] to infer cell-type enrichment scores from gene expression profile of each tissue in the data
(Figure S1A). Then, we clustered the tissues in two clusters with hierarchical clustering, by defining
the distance between patients and the Euclidean distance between their normalized xCell enrichment
scores (Figure S1B).

Figure S1: Cellular composition of synovial tissues. (A) The enrichment scores of 13 selected cell types are
normalized and displayed in a bar plot for each sample. The samples are grouped according to their pathology:
Normal, Osteoarthritis (OA), Arthralgia (AG), early RA and late RA. (B) Heatmap of the normalized Euclidean
distance matrix between all synovial tissues, ordered according to their clusters from hierarchical clustering. The
mean cellular composition of the two clusters (C1 and C2) is depicted on the right. Note that here we show only
13 cell types for visualization purpose.

We obtain one cluster (C1), mainly characterized by endothelial cells and fibroblasts, while the
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other one (C2) contains a collection of immune related cell-types. We thus refer to these clusters
as Leukocyte-poor and Leukocyte-rich, respectively. While all healthy tissues were clustered in the
Leukocyte-poor cluster, a subset of early and established RA tissues were also classified in C1. Zhang
& al. [15] observed a similar pattern in their study and they discuss this observation as a potential
source of heterogeneity in the effectivity of RA treatments. Interestingly, they find a positive correlation
between the number of leukocyte and the level of inflammation in the tissue.

A.2 Deconvolution with CIBERSORT

In the main text, we tested for differential enrichment scores across RA and control synovial tissues with
xCell [36], which provided an enrichment score for each tested cell-types. As deconvolution methods
for cellular composition are typically prone to error [115], we verified if our results were consistent
with other existing methods. An extensively used pipeline for this task is CIBERSORT [40], which
deconvolute directly the cellular composition of the tissues from a signature matrix comprised of barcode
genes that are enriched in each cell-type of interest (Figure S2). To run CIBERSORT, We used the
web-tool CIBERSORx (https://cibersortx.stanford.edu/runcibersortx.php) with a pre-loaded
signature matrix comprising 22 immune cells.

Figure S2: CIBERSORT inferred cellular composition in synovial tissues. cell-type with significantly different
composition (p < 0.05, t-test) in both RA vs normal and RA vs OA tissues are shown on the left. Error bars are
95% confidence intervals defined as std/

√
N.

Overall, we find a good agreement between CIBERSORT and xCell results (Table ??). The output
agrees on Plasma cells, memory B cells, CD4+ memory T cells, and Dentritic cells. On the other hand,
a few cells with significant differential enrichment with xCell were not in CIBERSORT (Eosinophils,
Monocytes). Note that we could not compare other cell-types in the xCell tool, as the singular matrix for
non-immune related cell-types were not available in the CIBERSORTx webtool. A complete comparison
would require the construction of a signature matrix comprising all cell-types.

Page 27 of 36

https://cibersortx.stanford.edu/runcibersortx.php


Cell-Specific Gene Networks and Drivers in Rheumatoid Arthritis Synovial Tissues

Table S1: Agreement between xCell and CIBERSORT cellular deconvolution on relevant cell types. Here we
only show cell types that (i) could be evaluated by both tools and (2) that were overrepresented (UP) or
underrepresented (DOWN) in RA synovial tissues against both OA and healthy synovial tissues with xCell
enrichment scores. NS indicates non significant.

Cell Type xCell CIBERSORT
Memory B cells UP UP
Plasma cells UP UP

CD4+ memory T cells UP UP
Dentritic cells UP UP
Monocytes UP NS
Eosinophils DOWN NS

A.3 Explained variance of the RNA expression

A linear regressor (with coefficients denoted as β) was fitted to predict the gene expression values from
the normalized enrichment scores from xCell (ci, i ∈ cell-type), and the explained variance was then
quantified as the R-Squared (R2) score between the predicted and original gene expression (Ypredict

and Y, respectively).

For each gene k in sample s, we
predict the gene expression value as

Ypredict
ks =

[
β0,k +

ci

∑
cells

βci,k xci,s

]
,

Then, we compute

Explained variance = R2score
(

Y, Ypredict
)

(6)

Strikingly, we found that the 18 cell-types discussed in the main text (Figure 1B) cumulatively account
for the majority of the variance (R2 = 61%) in the gene expression data (Figure S3). As expected, the
explained variance increases as the enrichment scores of more cell-types are used to predict the gene
expression values (from 16% with MSC only to 61% with the 18 cell-types).
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Figure S3: Cumulative explained variance of the cellular composition of the synovial tissue to gene expression. A
linear regressor is fitted to predict the gene expression from each gene, where the enrichment score of the cell
written in abscise is added to the previous ones (on its left) to train the linear regression.

B RA associated genes

B.1 Differentially expressed genes in synovial tissues

As discussed in the article, the variation of cellular composition in synovial tissue accounted for a large
portion of gene expression variability. To capture gene expression variation caused by a changes in
actual molecular state rather than changes in cellular composition across samples, we corrected the
gene expression profiles to account for the tissue’s cellular composition. More specifically, we considered
as confounding factors the enrichment scores of cell types differentially enriched (p < 0.05, Student’s
t-test) between both RA vs OA and RA vs normal group (18 cell types), which we corrected with a
simple linear regression model (Method 2.2 of the main text). Then, we used these corrected gene
expression data to perform differential gene expression analysis. Differentially expressed genes (DEGs)
were defined as genes obtaining a p-value lower than 0.05 in a Student’s t-test between the RA and
the control group, after an FDR=0.05 correction with the Benjamini & Hochberg procedure [29]. We
obtained 279 DEGs.

Figure S4: UMAP representation of bulk gene expression data from both cell-type specific and synovial tissues
samples. The UMAP representation does not show a clear separation between RA and control groups, indicating
a small difference in their gene regulation.

To complement this analysis, we also performed DEG analysis in cell-type specific gene expression
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data of synovial tissues from [15]. The data consists of both bulk and single-cell gene expression data
from monocytes, fibroblasts, B cells, and T cells of RA and OA synovial tissues. As the single-cell data
included only 3 control patients (OA), we performed our differential expression analysis on the bulk
data. Interestingly, we actually did not find any DEG for these cell types, mainly because only at most
∼30 samples were available for each of them. It is consistent with the gene expression data of RA and
control overlapping each other in the UMAP and TSNE space (Figure S4). This observation supports the
results of the first section of the main text, and confirm that there is limited gene regulatory difference
between RA and control patient when the analysis is not biased by cellular composition.

B.2 Building a list of RA associated genes from databases & literature

As the DEG list we obtained in our study relies on both (i) the correct estimation of cellular composition
in synovial tissues and (ii) the correction for it, it alone cannot provide a reliable list of DEGs. Thus,
We combined our DEGs to several meta-analysis [58, 59, 60, 12, 13] from synovial tissues in order to
obtain a robust list of DEGs. Interestingly, there were several genes differentially expressed in at least
two studies. We kept the 93 genes that were found in at least 2 studies (Figure S5A).

Figure S5: Number of genes across various studies & datasets involved in RA. They are colored depending
on if the gene is found only in one study (black) or in at least 2 studies (red). (A) DEGs from various meta-
analyses of RA synovial tissues. In addition to our own study, the list of DEG were obtained from Study1 [59],
Study2 [60], Study3 [58], Study4 [12], Study5 [13] and Study6 [13] (which contains genes selected with a
random forest classifier). (B) RA-associated genes from different databases. Drug_target [66], Drug_Bank [67],
GWAS1 [61], GWAS2 [10], GWAS3 [62] (SNP-Disease Associations), DisGeNet [63], DISEASES_knowledge [64],
DISEASES_experiments [64], DISEASES_textmining [64] and CTD [65] (kept genes with a score > 50).

Likewise, we performed an extensive literature review to aggregate known genes associated with
RA from different contexts. Most recent GWAS revealing genetic risk factors associated with RA were
collected from studies [61, 10] and the GWASdb SNP-Disease Associations [62] database. Various genes
associated with RA susceptibility were fetched from the publicly available database DISEASES [64],
DisGeNet [63] and the Comparative Toxicogenomics Database (CTD) [65] databases (score > 50). We
also collected drug targets either already on the market or undergoing clinical trial from review [66] as
well as from the DrugBank database [67] (https://go.drugbank.com/categories/DBCAT003604).
Genes that were identified in at least two of the lists or databases were kept as the gene literature list,
containing 259 genes (Figure S5B).
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Below we provide the Literature list and DEG list that we used in our KDA analysis. Genes identified
in GWAS studies [61, 10, 62] are shown in bold.

DEG_list (93 genes with 13 in GWAS):
RFX5, IRF9, TFEC, DDX60, TNFAIP6, TNFSF10, DRAM1, NMI, TNFAIP8, PLEKHO1, GZMA, IL2RG,
SAMSN1, SEL1L3, LEPROTL11, ECE1, TRPV2, ENTPD1, JAK2, SLAMF8, CCL18, LY96, GZMB, TRAF3IP3,
AKAP1, LPXN, PTTG1, SYK, LRMP, ANK3, CTSH, S100A8, SDC1, CECR1, AIM2, TAPBPL, GPR65, PRDX6,
NKG7, COMMD8, OPN3, NAT1, NAGA, OSBPL3, CD38, IL32, DDX24, TLR7, EVI2A, GUCY1B3, MGAT4A,
SEMA4D, CD8A, GALNT6, LPIN3, SLC38A6, PLCG2, QPCT, TXNDC9, IFIT1, RFTN1, TRIM21, TNS3,
SRRM2, AREL1, KIAA0125, LRRC15, LCK, DNAJC15, SIRPG, FAS, GZMK, GZMH, SYNGR2, ADAMDEC1,
C1GALT1C1, UCP2, FKBP11, IL21R, CXCL9, DENND1B, RASGRP1, PSMB8, CSF1R, SMCO4, TPD52,
HLA-DOB, PRKCB, ALOX5, CLIC1, MYC, IRF8, PTPRC, GSN.

Lit_list (259 genes with 189 in GWAS):
VEGFA, SAA1, CLEC16A, IL1RN, CXCR4, IL19, IL17A, IL4, IL18, CAT, FCGRT, CCL2, HSPD1, LTA, IFNG,
MECP2, CXCL10, CD14, CCL5, PIP4K2C, ALB, JAK3, TLR4, IL6, IL10, TP53, TGFB1, SPP1, IL1A, IL1B,
CD19, GPX3, CYP3A4, GGT6, CCR5, NFKBIA, CCR7, CXCR3, HMOX1, IL6ST, CASP8, TAP1, CD80, IGF1,
RBPJ, CCL20, PADI1, ICAM1, FAS, FLNB, PADI6, CXCL16, AGBL2, COMP, PADI3, IL15, DHODH, IL13,
MMP9, SAG, VIM, CXCR5, TNFRSF1B, EOMES, LPP, MTF1, PRDM1, ILF3, HLA-DRB1, CDK2, IQGAP1,
C2, C5, TRAF1, MBL2, BCL2L15, UBASH3A, PXT1, IKZF3, CSF2, IRF8, ARAP1, MSH5, CTLA4, CCR6,
C5orf30, IL11RA, TRAF6, LBH, ETS1, RASGRP1, NFKBIL1, ANKRD55, AIRE, KIAA1109, LST1,
SMG7, VTCN1, CD40, ABCB1, GSDMB, HLA-DQA1, IFNGR2, CARD8, CXCL13, NOTCH4, PRRC2A,
PLD4, FADS2, PTPN11, IRF5, LY6G5C, RCAN1, HLA-DPB1, CFB, HLA-DMB, LOC100506023, CCL19,
FOXO1, PRMT1, IL2RB, BACH2, IRF4, CD2, CCL27, PSMB9, PTPN2, NFKBIE, CCL21, PADI4, CLIC1,
LOC145837, PRKCQ, BLK, BCL3, DCLRE1C, HLA-DMA, RUNX1, HLA-DPA1, PUS10, FAM107A,
BAD, SWAP70, RCOR1, NGF, BAG6, CLNK, APOM, RAD51B, TNFRSF14, UBE2L3, TAGAP, PSMB8,
COG6, BAX, ZNF438, TNPO3, CALCR, ATM, GATSL3, AFF3, RELA, CD28, DDX6, IL21, IL20RA,
HSPA14, FADS1, RTKN2, TNFAIP3, CD5, TXNDC11, ETV7, PAPOLG, FGFR1OP, FCGR2B, ICOS,
STAT4, P2RY10, PANK4, FCGR2A, TEC, REL, HLA-C, ATG5, CDK5RAP2, CFLAR, C1QBP, PDE2A,
PRKCB, PTPRC, CD83, PLCL2, ISG20, MICA, SPRED2, TYK2, TAPBP, CEP57, FADS3, ANXA3, FNDC1,
IL2RA, PTPN22, IL6R, CD226, TAP2, JAZF1, TPD52, HLA-DOB, IL23R, KIF5A, ARID5B, MYC, CSF3,
GATA3, TNF, SYNGR1, ANXA6, FCRL3, DPP4, AHNAK2, CSNK2B, ICOSLG, DOK6, CELF2, AIF1,
LY6G6F, ACOXL, NCF2, PADI2, WDFY4, GPANK1, YDJC, MMEL1, CDK6, PPIL4, PXK, IL2, LY6G6C,
SLAMF6, CD84, ZMIZ1, PRKCH, FAM167A, SH2B3, HLA-B, IRAK1, HLA-DQB1, HLA-A.
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C Shared Key driver genes (KDGs) across networks

In the main text, we identified many key driver genes (KDGs) across the tested networks with key driver
analysis (KDA). We checked if these KDGs tend to be the same across networks or if on the other hand,
the identified genes across networks were independent. Our results, displayed in Figure S6, indicated
that a subset of KDGs were found consistently in the majority of the network. More precisely, the top
20 genes were found in 75% of the networks and more than 500 were found in more than half of the
tested networks. This is much higher than what we would expect if the KDG were independent (red
line in Figure S6).

Figure S6: Gene distribution of the proportion of networks in which a given gene was found. The
most commons KDGs are found in 80% of the networks while only 25% would be expected if genes
were randomly assigned as KDG (red line).

Top 100 KDG list (ordered from highest to lowest score, 11 KDGs were also in GWAS [61,
10, 62] marked in bold): PTPN6, HLA-E, HLA-F, GBP1, LCP2, GLIPR1, HLA-A, CTSS, SRGN, CTSH,
CASP1, HLA-B, HLA-C, CD44, IFI30, TNFAIP8, CCL5, PSMB8, TAP1, ICAM1, ARHGDIB, PSME1, B2M,
THEMIS2, SP100, MYD88, TNFAIP3, PLAUR, ARPC1B, ITGB2, HLA-DMA, CYBA, HLA-G, PSMB9,
CXCL10, IL7R, CTSC, BCL2A1, CTSB, TNFSF10, SP110, CD86, CD48, CORO1A, PSMB10, PLEKHO2,
LYN, EVI2B, TPP1, IFITM2, ISG20, NCF4, BTN3A3, IFITM3, UBE2L6, CFLAR, MAN2B1, STK10, NCF2,
WARS1, CD53, IFITM1, FAS, RGS19, LAPTM5, PLEK, RAC2, CD74, TNFAIP2, PECAM1, PLAAT4, HLA-
DQB1, BIRC3, TIMP1, IL1B, NFKBIA, IRF1, STAT1, PHF11, IFIT2, COTL1, NMI, PLSCR1, OAS1, MX2,
IFNGR1, CAPG, LGALS3, NFKBIE, HMOX1, RAB27A, RAB31, GBP2, CCL2, FYN, TNFRSF1B, ADGRE5,
CXCR4, SERPINB1, LITAF.
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D Supplementary Figures and Tables

Table S2: List of networks involved in our study. GIANT RIMBANET and PPI were downloaded from a public
database while PANDA and LIONESS networks were computed specifically for this study. H refers to healthy
donors.

Network(s) name Type Method Used for Number of networks
PANDA_Synovial_Tissue Bipartite PANDA, LIONESS* TF reg. score 152 RA, 22 OA
PANDA_FLS Bipartite PANDA, LIONESS* TF reg. score 18 RA, 12 OA
PANDA_Synovial_Monocyte Bipartite PANDA, LIONESS* TF reg. score 17 RA, 13 OA
PANDA_Synovial_Bcell Bipartite PANDA, LIONESS* TF reg. score 8 RA, 7 OA
PANDA_Synovial_Tcell Bipartite PANDA, LIONESS* TF reg. score 17 RA, 13 OA
GIANT_DC Bayesian GIANT§ KDA 1
GIANT_NKT Bayesian GIANT§ KDA 1
GIANT_Monocyte Bayesian GIANT§ KDA 1
GIANT_Tcell Bayesian GIANT§ KDA 1
GIANT_Bcell Bayesian GIANT§ KDA 1
GIANT_Fibroblast Bayesian GIANT§ KDA 1
GIANT_Adipocyte Bayesian GIANT§ KDA 1
GIANT_Tonsil Bayesian GIANT§ KDA 1
GIANT_LN Bayesian GIANT§ KDA 1
GIANT_Blood Bayesian GIANT§ KDA 1
GIANT_Spleen Bayesian GIANT§ KDA 1
RIMBANET_Multitissue Bayesian RIMBANET† KDA 1
PPI Undirected StringDB† KDA 1

* Computed in this study from bulk RNAseq [26, 15].
§ GIANT networks downloaded from https://hb.flatironinstitute.org/download.
† RIMBANET and PPI downloaded from http://mergeomics.research.idre.ucla.edu/samplefiles.php.

Figure S7: Heatmap of the Pearson correlation between the differ-
ential gene expression (t-score) in each tissue type (Synovial tissue,
monocyte, FLS, B cell, and T cell.
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Figure S8: (A) Number of key regulator TFs identified in each cell type. (B) Number
of cell type TFs regulators are identified into (note the log-scale on the y-axis).

Figure S9: (A) Number of differentiated pathways. (B) Occurence of each word in all the pathway
terms combined.
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Figure S10: TF-TF co-regulation networks of each cell type analyzed in this article. Network showing the major
TFs involved in FLS RA regulation, with nodes size proportional to both the degree and the TF regulatory score
(treg). Nodes are colored according to their clusters.
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