Primary structure of β_s -crystallin from human lens

Shamshad ZARINA, Atiya ABBASI and Zafar H. ZAIDI*

H.E.J. Research Institute of Chemistry, University of Karachi, Karachi-75270, Pakistan

The complete primary structure of β_s -crystallin from human lens is reported. The sequence was elucidated by automatic Edman degradation of tryptic and CNBr peptides. The blocked N-terminal dipeptide was identified by fast-atombombardment mass spectroscopy. The sequence comparison with other members of crystallin family reveals a closer relationship to human y-crystallin (53% identity) than with β A3/A1 crystallin (37% identity). The structure, evolutionary characteristics and role of β ,-crystallin in lens are discussed.

INTRODUCTION

Crystallins are the main structural proteins of mammalian eye lens. They are grouped into three classes, namely α -, β - and γ crystallins. The α - and β -crystallins are high-molecular-mass proteins reported to be present as aggregates, whereas γ -crystallin is in monomeric form (Harding & Dilley, 1976). In addition to these components, another low-molecular-mass protein, designated as β _s-crystallin and also referred as γ _s (Bloemendal *et* al., 1989), has been reported in mammalian lenses (van Dam, 1966). Initially, it was considered as a member of the β -crystallin family. However, recent studies have shown that $\beta_{\rm s}$ -crystallin lacks the characteristic N-terminal extension of the β -family, is monomeric and has a greater sequence resemblance to γ -crystallin (Quax-Jeuken et al., 1985). β_s -Crystallin has been detected in human, bovine, rabbit, avian, carp and rat lenses (Croft, 1973; McDevitt & Croft, 1977; Bindels et al., 1981; Zigler et al., 1981, 1986; Chang & Chang, 1987; Thomson et al., 1989). The amino acid sequence of the mammalian protein has not been reported so far, except for that deduced from the cDNA sequence for bovine (Quax-Jeuken et al., 1985) β -crystallin. In continuation of our earlier studies (Zarina et al., 1987, 1990; Zaidi et al., 1988), we now report the complete amino acid sequence of β . crystallin from human cataractous lens. This is the first sequence report for this protein.

EXPERIMENTAL

Human senile mature cataractous lenses were collected from the Anklesaria Hospital and the Rehmattullah Benevolent Eye Hospital, Karachi, Pakistan. Lenses were stored at -70 °C until analysed.

Isolation of proteins

Lenses were decapsulated, homogenized in deionized water at 0 °C and centrifuged at 20000 g for 20 min at 4 °C. The supernatant was collected and designated as the water-soluble protein fraction.

Gel chromatography

The fractionation of the water soluble protein fraction (100 mg) The Hackbondron of the water soldof protein Hackbon (100 mg)
and carried and eluted with 5 % (v/v) acetic acid.

R.p.-h.p.l.c.

Peak III from Sephadex G-50 chromatography was rechromatographed using Vydac- RP-C4 (Separation Group, Hesperia, CA, U.S.A.). The column was first equilibrated with 0.1 % trifluoroacetic acid (TFA) and samples (1 mg/100 μ l) were resolved by using a linear gradient of 0.1% TFA and acetonitrile $(0-100\%, v/v)$.

SDS/PAGE

Electrophoresis was performed as described by Laemmli (1970) with 12.5% (w/v) polyacrylamide gels.

Chemical cleavage

The purified fraction of β_s -crystallin was absorbed on a glassfibre disc and a solution of CNBr in 70% (v/v) formic acid (1 mg/ml) was added to the disc. The cartridge was sealed and the reaction was allowed to proceed for 16 h at 37° C. The cleaved peptides were then subjected to automated gas-phase sequence analysis (470 A; Applied Biosystems, Foster City, CA, U.S.A.). The amino acid phenylthiohydantoin (PTH) derivatives were identified by an on-line h.p.l.c./PTH analyser (120 A).

The results of cleavage in situ were supplemented by a normal digestion procedure (Gross & Witkop, 1961). Peptides were separated by reversed-phase h.p.l.c. $(r.p.-h.p.l.c.)$ on RP-C₂ (LiChrosorb) using a gradient of 0.1% TFA and acetonitrile $(0-100\%).$

Enzymic cleavage

The protein sample (500 μ g) was dissolved in 100 μ l of aq. 0.1 % NH₃ and the pH adjusted to 8.5–8.7 with 0.1 % acetic acid (Hirs, 1967). A 10 μ l portion of 0.5% tosylphenylalanylchloromethane ('TPCK')-treated trypsin solution was added to the sample and left for 70 min at 35 °C. The reaction was stopped by titration with 0.1 $\%$ acetic acid to pH 4.0. The whole solution was concentrated in vacuo and centrifuged at 3000 g. The tryptic ras concentrated *in vacuo* and centrifuged at 5000 g. The tryphe Equal products were subjected to n.p. I.c. on LIC acetonitrile
Lusing 0.1.⁰/ TFA and a linear gradient of 0.40.^{0/} acetonitrile C_2 using 0.1% TFA and a linear gradient of 0–40% acetonitrile and further purified by rechromatography on RP- C_{18} wherever necessary.

Sequencing

Amino-acid-sequence analysis was performed on a gas-phase μ shinio-acid-sequence analysis was performed on a gas-phase equencer (470 A) using the Edman degradation method (Edman).
C. Begg, 1967; Rodney et al., 1981). PTH amino acids were & Begg, 1967; Rodney et al., 1981). PTH amino acids were identified by an on-line h.p.l.c. PTH analyser (120 A) . The blocked *N*-terminal peptide was analysed by fast-atom-
bombardment m.s. (f.a.b.-m.s.) (Jeol; HX110).

 $A = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$, r.p. -h.p. -h.p. r.p. r.p. trifluoroacetic acid; PTH, phenylthiohydantoin; f.a.b. m.s., fast-atom-bombardment m.s.

^{*} To whom correspondence should be addressed.

ution prome or w $\begin{bmatrix} \text{otherwise} \end{bmatrix}$ continuous size: 115 cm $\begin{bmatrix} 2 & 0 \end{bmatrix}$ activities $\begin{bmatrix} 1 & 0 \end{bmatrix}$ activities activ

flution details: column size: 115 cm \times 2 cm; eluent 5% acetic.

E. ODOJI AQD OF PCAR III, HOM SUPRADA Q-50

Fig. 3. H.p.l.c. purification of peak III from Sephadex G-50 on RP- C_2

The column was eluted with a 0.1 $\%$ TFA/acetonitrile gradient. The flow rate was 60 ml/h, and absorbance was recorded at 214 nm.

Fig. 4. SDS/PAGE of peak II from RP-C₂

From left to right: 1, peak II; 2, molecular-mass (M) standards.

 T , T , μ , μ , μ in callon of trypic peptites from ρ_s -crystalini

The column was eluted with a 0.1 $\%$ TFA/acetonitrile gradient. The flow rate was 60 ml/h, and absorbance was recorded at 214 nm. T and A represent tryptic and unspecific cleavages respectively.

Fig. ¹ shows the elution profile of crude water-soluble lens

Fig. 1 shows the elution profile of crude water-soluble lens proteins on Sephadex G-50. SDS/PAGE revealed the presence of low-molecular-mass proteins in fraction III (Fig. 2). Rechromatography of this fraction on r.p.-h.p.l.c. showed the presence of two peaks (Fig. 3). These peaks were found to be pure on SDS/PAGE. The second peak showed a molecular mass of about 21 kDa on SDS/PAGE (Fig. 4). Both the peaks were subjected to Edman degradation. N -Terminal analysis of peak I revealed it to be γ -crystallin (Zarina et al., 1990), whereas peak II did not respond to Edman degradation, as β _s-crystallin has a blocked N-terminus (van Dam, 1966; Croft, 1973; Zigler et al., 1981). This fraction was subjected to cleavage in situ with CNBr, and subsequent sequence analysis confirmed the presence of a blocked N -terminus. The fraction (peak II from Fig. 3) was subjected to enzymic and chemical cleavage. Fig. 5 shows the elution profile of tryptic peptides, whereas Fig. 6 shows rechromatography of peptides eluted with injection spikes on

0.16 т., $T-18$ T-16 $T-19$ $\frac{3}{5}$ 0.08 \mathbf{o} 22.5 45 Time (min)

For details, see the text.

 $RP-C_{18}$. The purified peptides were subjected to automatic gasphase sequencing. Peptides T $3/4$ (7–18) and T 20/21 (158–173) were co-eluted, as polar groups preceding Arg or Lys reduce the rate of hydrolysis, whereas Lys-Pro or Arg-Pro bonds appear to be totally restricted to tryptic cleavage (Kasper, 1975). Multiple

Fig. 8. H.p.l.c. purification of CNBr peptides of β_s -crystallin on RP-C₂ CNBr and H represent CNBr and hydrolytic cleavages respectively.

Conditions were the same as those in Fig. 3.

forms of the same peptides were also observed, as is expected for tryptophan- and methionine-containing peptides. The blocked peptide (TI) was subjected to f.a.b.-m.s. and showed a protonated

Fig. 7. F.a.b.-m.s. spectra of peptide Tl

Fig. 9. Amino acid sequence of β_s -crystallin from human lens Sequences were determined by gas-phase sequence analysis (). The broken line indicates amino acid composition. Sequenced residues are

Sequences were determined by gas-phase sequence analysis $($ — $)$. The broken line indicates amino acid composition. Sequenced residues are connected by hyphens (-). Residues which have not been identified reliably but placed on the basis of amino acid composition and sequence similarity to other β _s-crystallins are connected by commas and given in parenthesis. The arrows indicate the position to which sequence analysis was carried out, and

molecular ion peak at m/z 276 (Fig. 7) representing the presence of N-acetylated serine followed by lysine, as has been reported by Quax-Jeuken et al. (1985) for bovine β -crystallin on the basis of cDNA studies. Fig. ⁸ shows the separation profile of CNBr peptides; seven peptides were resolved. Of these, CNBr ¹ had ^a blocked N-terminus, and thus could not be sequenced. CNBr 2, 3, 4, 5, ⁶ and ⁷ were. sequenced on gas-phase sequencer. Although CNBr is specific for cleavage of methionine residues, some hydrolytic cleavage was also observed at the Trp-Ala position (46-47). Fig. 9 presents the primary structure of $\beta_{\rm s}$ crystallin. A few residues which were not reliably identified but could be placed by sequence identity with other β -crystallins on the basis of amino acid analysis are given in parenthesis.

DISCUSSION

Primary structure and evolutionary relationship

 β .-Crystallin is a monomeric protein present in the lowmolecular-mass fraction of the lens (Bindels et al., 1981; Zigler et al., 1981, 1986; Thomson et al., 1989). The molecular mass of β -crystallin has been a matter of controversy for the last two decades. van Dam (1966), on the basis of amino acid composition and sedimentation analysis, reported it to be 28400 Da, whereas Bloemendal & Zweers (1976) estimated it to be ²²⁰⁰⁰ Da by SDS/PAGE. Bindels et al. (1981) found a similar discrepancy obtaining ^a molecular mass of 22000 Da by SDS/PAGE and

Table 1. Percentage identity between βy -crystallins as an index of evolutionary diversification

 R eferences: ${}^{8}H$ 0gg *et al.* (1986); ${}^{6}Me$ akin *et al.* (1987); ${}^{6}O$ uax-Jeuken et al. (1985).

Table 2. Percentage identity of β _s-crystallin with other proteins

References: ^aSummers et al. (1986); ^bCroft (1972); ^cDriessen et al. (1981); ^dQuax-Jeuken et al. (1985); ^eIngolia & Craig (1982); ^fCzarnecka et al. (1985); ^gRosen et al. (1985).

28500 Da by sedimentation-equilibrium analysis. Quax-Jeuken et al. (1985) found the molecular mass of bovine β -crystallin to be 20 773 Da on the basis of cDNA-derived sequence. According to our studies, based on its primary structure, the molecular mass of human β -crystallin is 20891 Da, which is very close to the one reported by Quax-Jeuken et al. (1985).

 β . Crystallin has been shown to be present in amphibian, avian and mammalian lenses (Croft, 1973; McDevitt & Croft, 1977; Bindels et al., 1981; Zigler et al., 1981, 1986; Chang & Chang, 1987; Thomson et al., 1989). However, the sequence data derived from cDNA have only been obtained for the bovine (Quax-Jeuken et al., 1985) and carp (Chang & Chang, 1987) proteins. Table ¹ shows a comparison of the amino acid sequence of human β -crystallin with other known sequences of β - and γ crystallins. Alignment of the β -crystallin sequence with the $cDNA$ -deduced γ -crystallin sequence from human shows 49-53 $\%$ identity (82-88 exchanges), whereas with human β A3/A1-crystallin the identity is only 37% (150 exchanges). A comparison of β -crystallin with the bovine one shows more than 93% identity. The observed exchanges include 10 Phe \rightarrow Tyr, 28 Asp \rightarrow Glu, 51 Arg \rightarrow Thr, 63 Arg \rightarrow Gln, 71 His \rightarrow Arg, 88 Ser \rightarrow Pro, 95 Leu \rightarrow Ile, 108 His \rightarrow Arg, 113 Asp \rightarrow Asn, 126 Val \rightarrow Ile, 135 Ala \rightarrow Val and 160 Val \rightarrow Ile. An important feature of β crystallin is the presence of N-terminal arms or extensions (Berbers et al., 1984) which has been reported to play a role in aggregation (Slingsby & Bateman, 1990). Human β -crystallin, like the bovine β_s -crystallin (Quax-Jeuken et al., 1985) is a monomer possessing a short N-terminal arm of four residues against 12-58 residues in other members of the β -crystallin family (Quax-Jeuken et al., 1985; Wistow & Piatigorsky, 1988). The carp β -crystallin sequence (Chang & Chang, 1987), however, lacks the N-terminal arm of bovine and human β -crystallin and resembles γ -crystallins in this respect.

Among other proteins, heat-shock proteins from Glycine max (soybean), Drosophila (fruitfly) and Dictyostelium (slime mould) and protein S from Myxococcus xanthus exhibit structural similarity with human β _s-crystallin. The percent identity in each case is presented in Table 2. Heat-shock protein from soybean has an identity of 18% with human β -crystallin. It has striking similarity to α -crystallins sequences, suggesting a possible similarity in function (Ingolia & Craig, 1982). Human and bovine β crystallin show 20 $\%$ and 17.1 $\%$ identity respectively with protein S. Quax-Jeuken et al. (1985) have constructed a phylogenetic tree for the $\beta\gamma$ -crystallin superfamily having Protein S at its roots, and concluded that bovine $\beta_{\rm s}$ is related more to γ - than to β crystallin. Our sequence studies on human β -crystallin also support this relationship.

The involvement of γ -crystallins in opacification has long been suspected because they are located in the lens nucleus and have been shown to be absent (Croft, 1973) or depressed during aging
een shown to be absent (Croft, 1973) or depressed during aging and cataractogenesis (Harding & Dilley, 1976; Siezen et al., 1985). As β_s - and γ -crystallin have a similar character, it would be $\sum_{i=1}^{3}$ more approximation in the role of β , or examine the role of β , or example in cataracters formation. Furthermore, it is well known that such synthesis of μ_s -classically in catalacterize formation. Furthermore, it is well known that synthesis of γ crystallin decreases sharply during aging, in contrast with β_s crystallin, which increases with age in both bovine and human lenses (Zigler et al., 1981). Further studies are required to evaluate the role of β_s - as well as γ -crystallin in human cataractogenesis.

Tertiary structure of β -crystallin A and according to μ and μ and μ and μ and μ identically identically identically identically identically in the shown as μ

 ϵ ϵ and ϵ and ϵ and ϵ and ϵ are sense alleged extending the alleged et al., 1981; Indeed et al., 1 ity between β - and y-crystallins (Driessen et al., 1981; Inana et al., 1982); a major difference is the presence of N - and C -terminal arms in β -crystallins (Wistow & Piatigorsky, 1988). The three-
dimensional structure of bovine γ II (now γ B) has revealed a

* * * * * * * .
C N S I R V E G ^R ^C NS ^I ^R Vf ^G C N S I R V E S

Nbs ^T K ^I , ,,,, Change Contract Contract

CR

F E D K N F Q G R H Y D S D
Y F D K N F Q G R R Y E C D

Motif ¹

^T F ^Y E 0 KN FQGR ^N ^Y dsd- ^c -dcaef hN - ^Y - -- ^L -S-

^T ^F ^Y ED ^R ^F ^Q GH ^C ^Y ^E ^C S- ^S - ^D ^C ^P N ^L O ^P - y . . - F S- GB G K ^I ^R C N S ^I ^R VD S ^I ^I ^F EOE ^N ^F ^O GH ^SH ^E ^L ^N ^G - ^P ^C ^P N L K E - T G- - V - E - SB2 P K ^I ^K A ^G ^S ^V ^L ^V G A

- ^D ^C SD ^F HA.

 $\overline{}$

 $L - S - R$ - L - N-

30

^T ^F ^F £ ^D K ^N ^F Q G ^R H YD ^S ^D - ^C - ^D C A ^D f N x -

Fig. 10. Amino acid sequence of four motifs from β_s -crystallin of human (Hbs), bovine (Bbs), carp (Cbs) and γ B (GB) and β B2 (BB2) crystallins are aligned having topologically equivalent residues in vertical rows

Motifs 1,3 and 2,4 are grouped together to depict their close similarity. Protein sequence is shown in single-letter code. Amino acid residues which could not be definitely placed in the sequence are given in lower-case letters. Gaps are introduced to optimize alignment. The numbering is based on the sequence of γ B-crystallin. Structurally conserved residues are shown by an asterix (*). Solid circles indicate residues required for maintaining tertiary structure (Wistow et al., 1981). The connector peptide is boxed.

four-fold internally repeating sequence corresponding to four 'Greek key' motifs arranged in two compact domains (Blundell *et al.*, 1981). The polypeptide contains some conserved residues (Fig. 10) which are required for a fold-over and for locking each motif. β -Crystallins also reportedly possess these amino acids, suggesting a similar tertiary fold (Wistow et al., 1981; Inana et al., 1983; Slingsby et al., 1988). However, a recent study on $\beta B2$ crystallin (formerly β Bp) has shown that its two domains are not as close together as in γ -crystallin, and, additionally, the contacts between the domains are largely intermolecular, favouring the formation of monomeric, dimeric and higher aggregate forms (Bax et al., 1990). In contrast, the contacts in γ -crystallins are predominently intramolecular. Another difference is the presence of a Gly residue at position 86 in γ -crystallin. This important feature allows a sharp turn in the molecule, making interaction between the domains possible. This amino acid has not been detected in this position in the β -crystallins so far studied. These contain an extended connecting peptide with bulky polar sidechain amino acids. However, the present study shows that the connecting peptide does possess Gly at position 86 (Fig. 10), and a comparison with cDNA-derived sequences of the same protein in the cow (Quax-Jeuken et al., 1985) and the carp (Chang & Chang, 1987) also show the same amino acid at position 86. This suggests a γ -crystallin-like interaction between the domains.

In the light of our findings, we feel that neither $\beta_{\rm s}$ nor γ F (as suggested by Quax-Jeuken et al., 1985) is the correct nomenclature for this protein. A comparison of amino acid sequence of human β , shows 37% identity with β -crystallin and 53% with γ crystallin. However, despite greater identity with ν -crystallin, especially at conserved residues, the sequence variation is twice that observed within the family members of γ -crystallin which ranges between 21 and 29 %. This suggests that the protein might belong to a group of its own. However, with the limited data available, it seems appropriate at present to classify them as γ like crystallins.

This study was funded by the Pakistan Science Foundation (grant S-KU (Med)/108). We are grateful to the late Dr. Jamshed H. Wania for providing cataractous lenses.

REFERENCES

- Bax, B., Lapatto, R., Nalini, V., Driessen, H., Lindley, P. F., Mahadevan, D., Blundell, T. L. & Slingsby, C. (1990) Nature (London) 347, 776-780
- Berbers, G. A. M., Hoekman, W. A., Bloemendal, H., de Jong, W. W., Kleinschmidt, T. & Braunitzer, G. (1984) Eur. J. Biochem. 139, 467-479
- Bindels, J. G., Koppers, A. & Hoenders, H. J. (1981) Exp. Eye Res. 33, 333-343
- Bloemendal, H. & Zweers, A. (1976) Doc. Ophthalmol. Proc. Ser. 8, $91 - 104$
- Bloemendal, H., Piatigorsky, J. & Spector, A. (1989) Exp. Eye Res. 48, 465-466
- Blundell, T., Lindley, P., Miller, L., Moss, D., Slingsby, C., Tickle, I., Turnell, B. & Wistow, G. (1981) Nature (London) 289, 771-777
- Chang, T. & Chang, W.-C. (1987) Biochim. Biophys. Acta 910, 89-92
- Croft, L. R. (1972) Biochem. J. 128, 961-970
- Croft, L. R. (1973) Ciba Found. Symp. 19, 207-226
- Czarnecka, E., Gurley, W. B., Nagao, R. T., Mosquera, L. A. & Key, J. A. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 3726-3730
- Driessen, H. P. C., Herbrink, P., Bloemendal, H. & de Jong, W. W. (1981) Eur. J. Biochem. 121, 83-91

Edman, P. & Begg, G. (1967) Eur. J. Biochem. 1, 80-91

- Gross, E. & Witkop, B. (1961) J. Am. Chem. Soc. 83, 1510-1511
- Harding, J. J. & Dilley, K. J. (1976) Exp. Eye Res. 22, 1-73
- Hirs, C. H. W. (1967) Methods Enzymol. 11, 216-222
- Hogg, D., Tsui, L.-C., Gorin, M. & Breitman, M. L. (1986) J. Biol. Chem. 261, 12420-12427
- Inana, G., Shinohara, T., Maizel, J. V. & Piatigorsky, J. (1982) J. Biol. Chem. 257, 9064-9071
- Inana, G., Piatigorsky, J., Norman, B., Slingsby, C. & Blundell, T. (1983) Nature (London) 302, 310-315
- Ingolia, T. D. & Craig, E. A. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2360-2364
- Kasper, C. B. (1975) in Protein Sequence Determination (Needleman, S. B., ed.), pp. 114-158, Springer-Verlag, Berlin and Heidelberg
- Laemmli, U. K. (1970) Nature (London) 277, 680-685
- McDevitt, D. S. & Croft, L. R. (1977) Exp. Eye Res. 25, 473-481
- Meakin, S. O., Du, R. P., Tsui, L.-C. & Breitman, M. L. (1987) Mol. Cell. Biol. 7, 2671-2679
- Quax-Jeuken, Y., Driessen, H., Leunissen, J., Quax, W., de Jong, W. W. & Bloemendal, H. (1985) EMBO J. 4, 2597-2602
- Rodney, M. H., Hunkapiller, M. W., Hood, L. E. & Dreyer, W. J. (1981) J. Biol. Chem. 256, 7990-7997
- Rosen, E., Sivertsen, A., Firtel, R. A., Wheeler, S. & Loomis, W. F. (1985) in Changes in Eukaryotic Gene Expression in Response to Environmental Stress (Atkinson, B. G. & Walden, D. B., ed.), pp. 257-278, Academic Press, Orlando
- Siezen, R. J., Fisch, M. R., Slingsby, C. & Benedek, G. B. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 1701-1705
- Slingsby, C. & Bateman, 0. A. (1990) Biochemistry 29, 6593-6599
- Slingsby, C., Driessen, H. P. C., Mahadevan, D., Bax, B. & Blundell, T. (1988) Exp. Eye Res. 46, 375-403
- Summers, L. J., Slingsby, C., Blundell, T., den Dunnen, J. T., Moormann, R. J. M. & Schoenmakers, J. G. G. (1986) Exp. Eye Res. 43, 77-92
- Thomson, J. A., Siezen, R. J., Kaplan, E. D., Messmer, M. & Chakrabarti, B. (1989) Curr. Eye Res. 8, 139-149
- van Dam, A. F. (1966) Exp. Eye Res. 5, 255-266
- Wistow, G. & Piatigorsky, J. (1988) Annu. Rev. Biochem. 57, 479-504 Wistow, G., Slingsby, C., Blundell, T., Driessen, H. P. C., de Jong, W. W. & Bloemendal, H. (1981) FEBS Lett. 133, 9-16
- Zaidi, Z. H., Zarina, S. & Wania, J. H. (1988) in Protein Structure-Function Relationship (Zaidi, Z. H., ed), pp. 337-344, Elsevier, Amsterdam
- Zarina, S., Wania, J. H. & Zaidi, Z. H. (1987) J. Pak. Med. Assoc. 37, 67-70
- Zarina, S., Abbasi, A., Wania, J. H. & Zaidi, Z. H. (1990) in Proc. Natl. Chem. Conf. 2nd (Kazmi, A., Naqvi, R. R., Zaidi, Z. H. & Atta-ur-Rahman, eds.), pp. 154-157, B.C.C. & T. Press, Karachi
- Zigler, J. S., Jr., Horwitz, J. & Kinoshita, J. H. (1981) Exp. Eye Res. 32, 21-30
- Zigler, J. S., Jr., Russell, P., Horwitz, J., Reddy, V. N. & Kinoshita, J. H. (1986) Curr. Eye Res. 5, 395-401

Received 4 October 1991/13 April 1992; accepted 23 April 1992