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13th Jun 23 

Dear Professor Tiemeier,  

Thank you for your patience during the peer-review process. Your manuscript titled "Multivariate 

brain-based dimensions of child psychiatric problems: degrees of generalizability" has now been 

seen by 4 reviewers, whose comments are appended below. You will see that they find your work of 

some potential interest. However, they have raised quite substantial concerns that must be 

addressed. In light of these comments, we cannot accept the manuscript for publication, but would 

be interested in considering a revised version that fully addresses these serious concerns.  

We hope you will find the Reviewers' comments useful as you decide how to proceed. Should 

additional work allow you to address these criticisms, we would be happy to look at a substantially 

revised manuscript. If you choose to take up this option, please highlight all changes in the 

manuscript text file, and provide a detailed point-by-point reply to the reviewers.  

Please bear in mind that we will be reluctant to approach the reviewers again in the absence of 

substantial revisions.  

The three reviewers fall into two categories: technical concerns and the quality of presentation. In 

revision, we ask that you perform all necessary further analyses to alleviate the referees' concerns 

regarding the strength of evidence for your conclusion. In terms of presentation, please ensure that 

the existing literature is well-integrated and discussed in sufficient detail; that remaining ambiguities 

and caveats, such as the concerns about how low within-sample correlation affects across-sample 

generalization are discussed in a section titled "limitations" in the Discussion; and finally, that the 

presentation of methods and results is clear and also includes the information from the reporting 

summary.  

If the revision process takes significantly longer than five months, we will be happy to reconsider 

your paper at a later date, provided it still presents a significant contribution to the literature at that 

stage.  

We would appreciate it if you could keep us informed about an estimated timescale for 

resubmission, to facilitate our planning.  

We are committed to providing a fair and constructive peer-review process. Please do not hesitate 

to contact us if you wish to discuss the revision in more detail.  

Please use the following link to submit your revised manuscript, point-by-point response to the 

Reviewers' comments with a list of your changes to the manuscript text (which should be in a 

separate document to any cover letter) and any completed checklist:  

[link redacted]  

** This url links to your confidential home page and associated information about manuscripts you 

may have submitted or be reviewing for us. If you wish to forward this email to co-authors, please 

delete the link to your homepage first **  

Decision letter and referee reports: first round 



Please do not hesitate to contact me if you have any questions or would like to discuss the required 

revisions further. Thank you for the opportunity to review your work.  

Best regards,  

Antonia Eisenkoeck  

Antonia Eisenkoeck  

Senior Editor  

Communications Psychology  

EDITORIAL POLICIES AND FORMATTING  

We ask that you ensure your manuscript complies with our editorial policies. Please ensure that the 

following formatting requirements are met, and any checklist relevant to your research is completed 

and uploaded as a Related Manuscript file type with the revised article.  

Editorial Policy: <a href="https://www.nature.com/documents/nr-editorial-policy-

checklist.pdf">Policy requirements </a> (Download the link to your computer as a PDF.)  

Furthermore, please align your manuscript with our format requirements, which are summarized on 

the following checklist:  

<a href="https://www.nature.com/documents/commspsychol-style-formatting-checklist-article-

rr.pdf">Communications Psychology formatting checklist</a>  

and also in our style and formatting guide <a 

href="https://www.nature.com/documents/commspsychol-style-formatting-guide-

accept.pdf">Communications Psychology formatting guide</a> .  

* TRANSPARENT PEER REVIEW: Communications Psychology uses a transparent peer review system. 

This means that we publish the editorial decision letters including Reviewers' comments to the 

authors and the author rebuttal letters online as a supplementary peer review file. However, on 

author request, confidential information and data can be removed from the published reviewer 

reports and rebuttal letters prior to publication. If your manuscript has been previously reviewed at 

another journal, those Reviewers' comments would not form part of the published peer review file.  

* CODE AVAILABILITY: All Communications Psychology manuscripts must include a section titled 

"Code Availability" at the end of the methods section. In the event of publication, we require that 

the custom analysis code supporting your conclusions is made available in a publicly accessible 

repository; please choose a repository that provides a DOI for the code; the link to the repository 

and the DOI must be included in the Code Availability statement. Publication as Supplementary 

Information will not suffice. We ask you to prepare and upload code at this stage, to avoid delays 

later on in the process.  



* DATA AVAILABILITY:  

All Communications Psychology research manuscripts must include a section titled "Data 

Availability" at the end of the Methods section or main text (if no Methods). More information on 

this policy, is available at <a href="http://www.nature.com/authors/policies/data/data-availability-

statements-data-citations.pdf">http://www.nature.com/authors/policies/data/data-availability-

statements-data-citations.pdf</a>.  

At a minimum the Data availability statement must explain how the data can be obtained and 

whether there are any restrictions on data sharing. Communications Psychology strongly endorses 

open sharing of da. If you do make your data openly available, please include in the statement:  

- Unique identifiers (such as DOIs and hyperlinks for datasets in public repositories)  

- Accession codes where appropriate  

- If applicable, a statement regarding data available with restrictions  

- If a dataset has a Digital Object Identifier (DOI) as its unique identifier, we strongly encourage 

including this in the Reference list and citing the dataset in the Data Availability Statement.  

We recommend submitting the data to discipline-specific, community-recognized repositories, 

where possible and a list of recommended repositories is provided at <a 

href="http://www.nature.com/sdata/policies/repositories">http://www.nature.com/sdata/policies/

repositories</a>.  

If a community resource is unavailable, data can be submitted to generalist repositories such as <a 

href="https://figshare.com/">figshare</a> or <a href="http://datadryad.org/">Dryad Digital 

Repository</a>. Please provide a unique identifier for the data (for example a DOI or a permanent 

URL) in the data availability statement, if possible. If the repository does not provide identifiers, we 

encourage authors to supply the search terms that will return the data. For data that have been 

obtained from publicly available sources, please provide a URL and the specific data product name in 

the data availability statement. Data with a DOI should be further cited in the methods reference 

section.  

Please refer to our data policies at <a 

href="http://www.nature.com/authors/policies/availability.html">http://www.nature.com/authors/

policies/availability.html</a>.  

REVIEWER EXPERTISE:  

Reviewer #1: RS fMRI connectivity, child psychiatry  

Reviewer #2: multivariate machine learning  

Reviewer #3:RS fMRI connectivity, child psychiatry  

Reviewer #1 (Remarks to the Author):  

The authors have attempted to delineate reproducible brain functional connectivity profiles that are 

associated with psychiatric problems in 10-11 year old children, across two large population-based 

cohorts. They employed sparse canonical correlations analysis and examined out-of-subsample and 

out-of-study generalizability. Modest brain-behavior associations were discovered in the ABCD data 

for three connectivity profiles that could be linked to meaningful CBCL correlates. However, out-of-



sample generalizability demonstrated a substantially weaker association in the test set compared to 

training set, and no out-of-study generalizability was observed. Major strengths of the work include 

the impressive source datasets, multivariate statistical approach and use of multiple approaches to 

generalizability. Nonetheless, there are several limitations to the approach that may have negatively 

impacted the results and interpretability of findings, as outlined below.  

1. The introduction is focused rather heavily on psychiatric disorders and does not provide a strong 

rationale for investigating brain-behavior associations with CBCL subscales in pre-adolescence. The 

rationale for using a dimensional approach to psychopathology needs to be elaborated on. Here, the 

neurally informed structuring of psychopathology dimensions seems more relevant than diagnostic 

classification.  

2. Introduction line 77-78 reads: “psychiatric neuroimaging studies have not generally adopted these 

external validation strategies” – this statement requires adequate referencing.  

3. The authors acknowledge that the fMRI pre-processing steps differed between the ABCD and 

Generation R cohorts. Can the authors comment more extensively on how this impacts out-of-study 

generalizability? The study would be strengthened if the authors could demonstrate that the 

findings are robust against the varying pre-processing methods, for example by comparing both 

approaches in a smaller subset of the data.  

4. Principal Component Analysis  

• The authors selected the first 100 principal components in the training dataset to protect against 

overfitting. Based on the loss in effect size between the training and test datasets, some overfitting 

has occurred. Would it be worthwhile to repeat the analysis with a smaller set of components, to try 

and avoid overfitting?  

• In lines 128-129 the authors describe out-of-sample generalisability as follows: “To reduce 

sampling biases, the split procedure was repeated 10 times, resulting in 10 pairs of independent 

train-test sets. Importantly, the analyses in ABCDTraining and ABCDTest sets were fully separated to 

safeguard the results from data leakage”. Could the principal components analysis (and other pre-

processing steps) result in data leakage between the test and training sets within the ABCD study? 

Given the relatively large sample size of ABCD relative to Generation R, could the ABCD training set 

not have been split in a nested cross-validation approach, whereby the 10 splits are isolated to the 

ABCD training set and therefore the ABCD test set remains fully independent of training?  

• How much variance did the 100 principal components explain in the training and test datasets?  

• The authors need to clarify how identified components were labelled as networks. How similar 

were the identified components between the ABCD and Generation R studies? Could differences in 

breakdown of networks have contributed to the lack of generalizability observed across studies?  

• The most influential components in figure 4b are not labelled as networks. Did the authors confirm 

that these components do not reflect noise?  

5. CBCL subscales  

• Is the number of CBCL items correct (118 instead of 113)? Could the authors state the CBCL version 

used from each study?  

• Can the authors please more clearly describe the calculation of subscale total scores in the 

methods (including the range), provide a motivation for using raw total scores rather than T total 

scores, and add subscale descriptives for each study to Table 1? Reporting corresponding T-scores or 

percentiles would assist with comparison to previous literature related to brain-based dimensions of 



CBCL syndrome scales.  

• Mean internalizing and externalizing scores appear to be rather low, do the samples have sufficient 

coverage of clinically relevant symptoms for detecting brain-behavior dimensions associated with 

child psychiatric symptoms? Can the authors comment on this explicitly in the results or discussion?  

• Have the authors confirmed that correlations were not impacted by CBCL outliers and the skewed 

distribution of CBCL scores?  

6. Generalizability  

• The authors describe one of their analyses (line 212) as “more commonly used qualitative 

replication”. While this type of replication is common in traditional statistical frameworks, it is much 

less common for complex multivariate and data-driven approaches such as sparse canonical 

correlation analysis. I suggest that the authors rephrase. In sentences 299-301 it needs to be clarified 

that the replication analyses were not repeated with the same multivariate model as in ABCD.  

• With the qualitative replication approach, Pearson correlations between CBCL canonical loadings 

of the ABCD and Generation R studies were relatively high. The comparison of loadings is presented 

in Figure 5. It would be very interesting if the authors could add more information about how 

comparable the brain canonical loadings were between both studies. It would for example be 

informative to show the Generation R equivalents of figures 3d-f.  

Reviewer #2 (Remarks to the Author):  

The authors use canonical correlation analyses to make functional connectomes to a validate 

questionnaire on youth mental health. Within a large dataset, ABCD, they find that these canonical 

factors generalize across train and test splits. With another large dataset, Generation R, they find 

that these canonical factors do not generalize across the cohorts. But they do find that the results 

replicate across cohorts. Strengths include the inclusion of two large datasets from different cultural 

backgrounds and two different forms of generalization. Limitations include some confusing language 

and over statement of results, which could also be put into better context with the existing 

literature.  

I have signed this review for transparency and am happy to discuss these comments if they are 

unclear. - Dustin Scheinost  

I think some additional details are needed to describe the prediction pipeline. What data is used in 

the SCCA? I believe is just the training data with inputs from the PCA (100 components run just of 

the training data) and CBCL. But this is not really detailed or shown in figure 1. Also is the data used 

to estimate the PCA’s the same as used in the SCCA? Finally, it is unclear where the elastic nets come 

in. Did the authors use an elastic net to create a predictive model or is it that the authors use an 

elastic net style penalty in the SCCA?  

Various part are worded a little strongly. For example, “in order to safeguard against overfitting …”. 

PCA on the connectivity matrices alone would not safeguard against overfitting. It would reduce the 

dimension of the data, which can help minimize overfitting. In general, it would be good if the 

authors could be very specific with their language. That will help any readers not misunderstand 

their findings.  



More than 10 splits might be helpful. There is a large variation in results for the first canonical factor 

(r=0.09-0.17).  

The culture between the Netherlands and the US are very different. The authors hint at this, but I 

think they could do a better job of situating this in terms of generalization. For example, even within 

ABCD prediction performance across different demographic groups exist, suggesting that 

generalizing mental health measures across cultures is hard. Indeed, we know that different 

communities have differences in symptom presentation, as well as differing perspectives on mental 

health more broadly. In all it is not surprising that models might not generalize across cultures. In 

other words, a lack of generalization might not be due to overfitting, bias, or poor methods. It may in 

fact represent a true difference in brain behavior associations between cohorts. See for example 

Tejavibulya L, et al. Predicting the future of neuroimaging predictive models in mental health. Mol 

Psychiatry. 2022 Aug;27(8):3129-3137. doi: 10.1038/s41380-022-01635-2. Epub 2022 Jun 13. PMID: 

35697759; PMCID: PMC9708554.  

This is especially true given the small effect sizes in the study. A correlation of <.1 does not have 

much room to lose any explained variance. For example, if the effects were around r=.5, loosing half 

of the effect would still lead to a significant result. But with r=.1 loosing half of the effect is likely to 

be insignificant.  

Relatedly, the authors make the point that different results might be seen in clinical samples and 

that these studies largely draw from health individuals. This is an important point as the authors also 

note that for clinical psychiatric care, we would a biomarker that generalizes well. But the authors do 

not test in a clinical group. So some of the writing about how these results impact mental health 

research might be a bit over interpreted.  

Did the authors try training in Generation R and testing in ABCD? It would be worth knowing if the 

same pattern of generalization (or lack thereof) is observed.  

It would also be good to explicitly define terms like generalization and replication. While the terms 

are often used interchangeability. They can be different things to different researchers.  

Reviewer #3 (Remarks to the Author):  

In this study the authors assess the external cross validation of data-driven child psychopathology 

from rsfMI connectivity and CBCL by utilizing the ABCD study baseline and the Generation R study 

samples. The question is important and merits scrutiny and publications from different groups, even 

if other work has already alluded to this issue.  

1) The study’s scope is presented in a manner that utilizing only one method does not seem 

comprehensive enough and other common methods than SCCA should be assessed and included 

somewhere, potentially in the supplementary section. Maybe at least one from the Kernel family 

(kernel ridge regression or support vector regression), as well as connectome-based predictive 

modeling, since these are used widely. Currently, only small variations in the SCCA are shown in the 

supplementary section.  

2) The correlations are not particularly high even in the internal cross-validation (e.g. r = .13 for the 



primary LV), which is consistent with other ABCD-based studies showing that, other than the 

cognitive domain, measures in the personality and mental health domains have low brain-

phenotype associations (e.g. Chen, J., Tam, A., Kebets, V. et al. Shared and unique brain network 

features predict cognitive, personality, and mental health scores in the ABCD study. Nat Commun 13, 

2217 (2022). https://doi.org/10.1038/s41467-022-29766-8). Given this, it is expected that such 

already small out-of-sample r would not survive an external cross-validation. I am wondering what 

the upper-bound of the cross-dataset validation is based on just the reliability of the 

psychopathology latent variables between ABCD and Gen R (i.e., ignoring brain)?  

3) line 78: I would also cite previous work recommending these such as e.g.: Scheinost, D., Noble, S., 

Horien, C., Greene, A. S., Lake, E. M., Salehi, M., ... & Constable, R. T. (2019). Ten simple rules for 

predictive modeling of individual differences in neuroimaging. NeuroImage, 193, 35-45). 

Additionally, I would include some studies from non-psychiatric neuroimaging domain that involve 

external cross-validation (in addition to internal) after “medical research” and before the 

“psychiatric neuroimaging” to both temper the sentence and make the gap clearer (e.g. Avery, E. W., 

Yoo, K., Rosenberg, M. D., Greene, A. S., Gao, S., Na, D. L., ... & Chun, M. M. (2020). Distributed 

patterns of functional connectivity predict working memory performance in novel healthy and 

memory-impaired individuals. Journal of cognitive neuroscience, 32(2), 241-255.; Kardan, O., Stier, 

A. J., Cardenas-Iniguez, C., Schertz, K. E., Pruin, J. C., Deng, Y., ... & Rosenberg, M. D. (2022). 

Differences in the functional brain architecture of sustained attention and working memory in youth 

and adults. Plos Biology, 20(12), e3001938.  

4) line 97: The sample size from ABCD in this study is much larger than other studies with adequate 

exclusion of head motion using ABCD rsfMRI (e.g. Wang, Z., Zhou, X., Gui, Y. et al. Multiple 

measurement analysis of resting-state fMRI for ADHD classification in adolescent brain from the 

ABCD study. Transl Psychiatry 13, 45 (2023). https://doi.org/10.1038/s41398-023-02309-5 or 

Sripada, C., Rutherford, S., Angstadt, M. et al. Prediction of neurocognition in youth from resting 

state fMRI. Mol Psychiatry 25, 3413–3421 (2020). https://doi.org/10.1038/s41380-019-0481-6). 

Please elaborate on this in the methods or discussion. 
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Reviewer #1 
The authors have attempted to delineate reproducible brain functional connectivity profiles that are 
associated with psychiatric problems in 10-11-year-old children, across two large population-based 
cohorts. They employed sparse canonical correlations analysis and examined out-of-subsample and 
out-of-study generalizability. Modest brain-behavior associations were discovered in the ABCD data 
for three connectivity profiles that could be linked to meaningful CBCL correlates. However, out-of-
sample generalizability demonstrated a substantially weaker association in the test set compared to 
training set, and no out-of-study generalizability was observed. Major strengths of the work include 
the impressive source datasets, multivariate statistical approach and use of multiple approaches to 
generalizability. Nonetheless, there are several limitations to the approach that may have negatively 
impacted the results and interpretability of findings, as outlined below. 
 
We are grateful to the reviewer for the valuable comments and suggestions.  
 
(1). The background information: the introduction is focused rather heavily on psychiatric disorders 
and does not provide a strong rationale for investigating brain-behavior associations with CBCL 
subscales in pre-adolescence. The rationale for using a dimensional approach to psychopathology 
needs to be elaborated on. Here, the neurally informed structuring of psychopathology dimensions 
seems more relevant than diagnostic classification. 
 
(1). We thank the Reviewer for this important comment and adapted the Introduction accordingly:  
 

Introduction (page 4): 
“This approach aims to identify neurally informed dimensions of psychopathology in the 
general population, transcending different domains of psychiatric problems and including the 
continuum of symptoms. This is complementary to approaches using diagnostic categorizations 
in clinical samples, which has faced challenges due to high heterogeneity within a given 
disorder and comorbidity across disorders1. Moreover, subthreshold cases which are close to 
but do not meet diagnostic criteria are also important for understanding psychiatric disorders2, 
but are not considered in dichotomization approaches. This is especially problematic for 
children, whose psychiatric disorders are widely recognized as dimensional3. The current study, 
therefore, adopted the dimensional approach in the general population in order to delineate 
novel neurobiological structures of child psychiatric problems.” 
 
Introduction (page 6): 
“By leveraging two large population-based samples, we were able to capture the continuum of 
psychiatric symptoms transdiagnostically. This enabled us to depict the brain-based dimensions 
of child psychopathology.” 

 
(2). Introduction line 77-78 reads: “psychiatric neuroimaging studies have not generally adopted these 
external validation strategies” – this statement requires adequate referencing. 
 
(2). We have referenced related studies and revised the Introduction to make the study gap more precise: 
 

Introduction (page 5): 
“One of the key elements that is largely missing from previous work is robust external 

validation in a fully independent dataset (i.e., not a held-out subsample from the same dataset). 

Author Responses: first round
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This has been widely implemented in the validation of prediction models in medical research4,5 
and recommended as a necessary step in prediction models6. While several non-psychiatric 
neuroimaging studies have established more standardized analysis pipelines7–9, most 
multivariate psychiatric neuroimaging studies have not generally adopted these stringent 
external validation strategies10–16.” 

 
(3). The authors acknowledge that the fMRI pre-processing steps differed between the ABCD and 
Generation R cohorts. Can the authors comment more extensively on how this impacts out-of-study 
generalizability? The study would be strengthened if the authors could demonstrate that the findings 
are robust against the varying pre-processing methods, for example by comparing both approaches in a 
smaller subset of the data. 
 
(3). We thank the Reviewer for raising this very important point. In the original manuscript, the 
preprocessing pipelines were different across cohorts (ABCD used the HCP pipeline, and Generation 
R used the fMRIPrep pipeline). We agree that the differences in preprocessing in the two cohorts could 
be concerning for the poor out-of-study generalizability. To address this concern, we extracted the 
recently available resting-state time data from the ABCD-BIDS Community Collection (ABCC), which 
underwent the same preprocessing procedure as Generation R (fMRIPrep preprocessing pipeline)17. 
We calculated the functional connectivity matrices in both cohorts using the same standard space 
template, time series confounder regressors, and brain atlas, and then re-ran our SCCA analysis pipeline. 
The analyses now represent a highly harmonized situation of the resting-state data across two 
independent cohorts. We updated the Methods, Results, and Discussion accordingly. Generally, the 
results remained largely the same. 
 
 

Methods (page 20): 
“fMRI pre-processing 
The BIDS data were preprocessed with the fMRIPrep pipeline17 both in ABCC (version 20.2.0) 
and GenR (version 20.2.7). Briefly, anatomical MRI data first underwent intensity 
normalization to account for B1-inhomogeneity and brain extraction, followed by nonlinear 
registration to MNI space and FreeSurfer processing. Functional MRI data underwent volume 
realignment with MCFLIRT (FSL). BOLD runs were then slice-time corrected with 3dTshift 
(AFNI), followed by co-registration to the corresponding T1w reference. Data were ultimately 
resampled to FreeSurfer fsaverage5 surface space. Of note, only the first run of resting-state 
data in ABCD was extracted to further optimize comparability with GenR.  
 
Parcellation and whole-brain connectivity estimation 
The connectivity estimation procedure was identical in ABCD and GenR. Briefly, whole-brain 
functional connectivity matrices were calculated using the Gordon cortical parcels18 and 
FreeSurfer subcortical segmentation19, yielding 349 distinct parcels consisting of 333 cortical 
and 16 subcortical regions. Briefly, after removing the first 4 volumes from each dataset to 
ensure magnetic stability, the BOLD signals were averaged across all voxels in each cortical 
and subcortical region. Then the extracted time series were adjusted for CSF and white matter 
signals (plus their temporal derivatives and quadratic terms), low-frequency temporal 
regressors for high-pass temporal filtering, and 24 motion regressors (6 base motion parameters 
+ 6 temporal derivatives + 12 quadratic terms). Pearson correlation was applied to estimate the 
temporal dependence between the residualized regional time series, and the estimated 

https://collection3165.readthedocs.io/en/stable/
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connectivity was Fisher z-transformed, resulting in a symmetric 349 × 349 functional 
connectivity matrix for each participant.” 

 

The updated processing pipeline not surprisingly led to changes throughout the Results Section. Though 
these changes are broad as many specific values (correlation coefficients, p-values, etc.) have changed, 
the general pattern of results remained highly similar. Below are some selected examples of the changes:  
 

Results (page 8): 
“Overall, we found evidence that the first canonical correlation was robustly identified across 
train-test splits, the second to a lesser extent, and the third failed to be validated, in the ABCDTest 
sets. Specifically, the first dimension was validated across 25 out of 30 splits (r1 = 0.12, ps < .05 
from permutation testing, Supplementary Table 3). This brain-symptom dimension captured 
the correlates between attention problems and connectivity patterns in connectivity networks 
involved in higher-order functions (salience, cingulo-opercular, and frontoparietal network)20, 
visual-spatial attention network (parietal occipital, medial parietal)21, and motor networks 
(Figure 3a, 3c). The second dimension was only evident in 13 out of 30 splits (r2 = 0.07, ps 
< .05 from permutation testing). This linked dimension delineated a relationship between rule-
breaking and aggressive behaviors and connectivity patterns in similar networks involved in 
higher-order and visual-spatial attention functions, with a larger contribution from subcortical 
areas and motor networks (Figure 3b, 3d).  Interestingly, across two linked dimensions, the 
salience, parietal occipital, motor, and cingulo-opercular networks, were overlapped. The third 
dimension was only observed in 4 of the 30 splits (r3 = 0.05, ps > .05 from permutation testing; 
all three presented correlations were averaged across 30 splits, and p-values were corrected for 
multiple testing using the False Discovery Rate), thus was not considered a stable, internally 
valid dimension.” 
 
Results (page 10): 
“In the gold-standard generalizability test, we only observed the first canonical correlations 
survived permutation testing in 1 of the 30 train-test splits (Supplementary Table 3). All other 
canonical correlations did not survive in GenR when we used the SCCA models trained in 
ABCD (r1 = 0.03, r2 = 0.03, r3 = 0.02, ps > 0.05; correlations averaged across 30 train-test splits, 
Table 3, Figure 2b).” 
 
Results (page 11): 
“After the permutation test, four significant canonical variates were identified in Generation R. 
Specifically, three similar canonical correlations were also observed in Generation R (Figure 
5a, 5b), showing a Pearson correlation of r = 0.87 in the CBCL canonical loadings of attention 
problems, r = 0.46 in aggressive and rule-breaking behaviors, and r = 0.31 in anxious and 
withdrawn behaviors.” 
 
Discussion (page 14): 
“In the present study, we observed highly similar behavioral dimensions when training the 
SCCA model independently in Generation R. The robust dimensions observed in the discovery 
set (ABCD), alongside the similar behavioral dimensions observed in the qualitative replication, 
lend support for the reasonable internal validity of the brain-behavior dimensions.” 
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Table 3 
Failed gold-standard generalizability test in Generation R  

 

 

 

 

 
Note. Canonical correlations in ABCD were averaged across the 30 train-test splits.  
r1 : * p < 0.05 in 25 train-test splits. r2: * p < 0.05 in 13 train-test splits.  
r1 Generation R: p < 0.01 in 1 train-test splits.  
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary table 3 
Canonical correlations in ABCD and Generation R (10 splits as an example) 

Canonical 
correlations 

ABCD 
Generation R 

training set test set 
r1 0.17 0.12* 0.03 
r2 0.16 0.07* 0.03 
r3 0.14 0.05 0.02 

 ABCD (n = 4,892) 
Generation R 

n = 2,043  Canonical 
Correlations Training Test Sparsity 

Split 1 

 n=4,255 n=637    
r1 0.23 0.13*** rs-fMRI 0.6 0.02 
r2 0.23 0.01 CBCL 0.5 0.03 
r3 0.19 0.08   0.02 

Split 2 

 n=4,092 n=800    
r1 0.23 0.13*** rs-fMRI 0.7 0.02 
r2 0.23 0.09* CBCL 0.5 0.01 
r3 0.21 0.10**   0.002 

Split 3 

 n=4,295 n=597    
r1 0.23 0.08 rs-fMRI 0.6 0.09 
r2 0.22 0.07 CBCL 0.5 0.04 
r3 0.21 0.01   0.01 

Split 4 

 n=3,976 n=916    
r1 0.24 0.15*** rs-fMRI 0.9 0.02 
r2 0.24 0.09* CBCL 0.5 0.01 
r3 0.22 0.03   0.001 

Split 5 

 n=4,167 n=725    
r1 0.24 0.11* rs-fMRI 0.8 0.03 
r2 0.24 0.02 CBCL 0.5 0.04 
r3 0.21 0.07   0.003 
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Note. The significance canonical correlations was assessed by permutation tests.  
P values were corrected for multiple testing by False Discovery Rate (FDR).  
* p < 0.05, ** p < 0.01, *** p < 0.001 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Split 6 

 n=4,401 n=491    
r1 0.20 0.07 rs-fMRI 0.4 0.02 
r2 0.19 0.07 CBCL 0.5 0.001 
r3 0.18 0.06   0.03 

Split 7 

 n=4,229 n=663    
r1 0.23 0.14*** rs-fMRI 0.6 0.01 
r2 0.22 0.12** CBCL 0.5 0.02 
r3 0.20 0.05   0.02 

Split 8 

 n=4,139 n=753    
r1 0.22 0.16*** rs-fMRI 0.6 0.03 
r2 0.21 0.10** CBCL 0.5 0.02 
r3 0.21 0.04   0.02 

Split 9 

 n=3,811 n=1,081    
r1 0.23 0.19*** rs-fMRI 0.8 0.01 
r2 0.24 0.16*** CBCL 0.5 0.01 
r3 0.21 0.08*   0.01 

Split 10 

 n=4,119 n=773     
r1 0.24 0.10* rs-fMRI 0.5 0.01 
r2 0.23 0.08* CBCL 0.5 0.02 
r3 0.19 0.04   0.01 
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Figure 2 
Associated dimensions of brain connectivity and CBCL syndrome scores in ABCD 

 
Note. SCCA identified brain-behavior correlates in training and test sets of ABCD. a. The first three 
canonical correlations were significant in the ABCDTraining sets. The canonical loadings of CBCL 
syndrome scores in the ABCDTraining set were averaged across 30 train-test splits. b. The mean and 
standard deviation of the first three canonical correlations across 30 train-test splits. c. Covariance 
explained in the training and test sets (example from one train-test split). The number of canonical 
variates in the ABCDTraining set that was put into the permutation test was selected based on the mean 
covariance explained. d. The first canonical variate was largely generalizable in ABCDTest set across the 
30 train-test splits, the second to a less extent, and the third was not generalizable. The red dotted lines 
represent the canonical correlations in the unshuffled data.  
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Figure 3 
Resting-state connectivity canonical variates in ABCD  

 
 
Note. Brain connectivity modules involved in the two identified canonical variates in ABCD. The 
contribution of each connectivity feature was determined by computing the correlations between the 
original connectivity matrix and the canonical variate scores of the brain connectivity extracted from the 
SCCA model (calculated by canonical loadings averaged across 30 train-test splits and the whole 
sample of ABCD), indicating the importance of each connectivity feature. After calculating the 
contribution of each connectivity feature, we summarized the contributions based on pre-assigned 
network modules and calculated the within and between-network loadings based on the network 
module analysis method in Xia, et al. (2018). a-b. The top 20% of the connectivity patterns that 
contributed most for each of canonical variate. The outer labels represent the names of network 
modules. The thickness of the chords showed the importance of different network modules. c-d. The 
connectivity patterns associated with the first two canonical variates. This is based on the z-scores of 
the within- and between-network loadings we calculated.  
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Figure 4 
Stability and sampling variability of canonical correlations and canonical loadings in ABCD 

(example) 

 
Note. Sampling variability and important contributors for the first three canonical variates. a. The 
variability for the canonical loadings of CBCL syndrome scores across 1000 bootstrap subsamples. The 
center line is median, the upper quantile is 75% and the lower quantile is 25%. b. The variability for the 
canonical loadings of brain PCs across 1000 bootstrap subsamples. The PCs presented here were 
selected based on the intersection of top 10 most important PCs for the first three canonical variates. 
c. The variability of the first three canonical correlations in ABCDTraining and ABCDTest set. The black dot 
is mean, and the vertical black line is standard deviation. Note that the bootstrap subsampling is 
conducted in one of the 30 train-test splits. CV1: canonical variate 1, CV2: canonical variate 2, CV3: 
canonical variate 3. 
 

Figure 5 
CBCL canonical loadings in ABCD and Generation R in qualitative replication 

 
 
Note. The comparison of canonical loadings for CBCL syndrome scores in ABCD and Generation R. 
a. The canonical loadings of CBCL syndrome scores in ABCD. b. The canonical loadings of CBCL 
syndrome scores in Generation R. CV1: canonical variate 1, CV2: canonical variate 2, CV3: canonical 
variate 3, CV4: canonical variate 4. 
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(4). Principal Component Analysis 

4a. The authors selected the first 100 principal components in the training dataset to protect 
against overfitting. Based on the loss in effect size between the training and test datasets, 
some overfitting has occurred. Would it be worthwhile to repeat the analysis with a smaller 
set of components, to try and avoid overfitting? 
4b. How much variance did the 100 principal components explain in the training and test 
datasets? 

 
(4a, 4b). We agree with the Reviewer’s suggestion and have implemented this, with adaptations to the 
Methods, Results, and Supplemental Information sections:  
 

Results (page 7): 
“Three brain-symptom dimensions (canonical variates) were identified from the functional 
connectivity data (100 principal components, with averaged explained variance of 61.9% across 
30 train-test splits) and the psychiatric symptom data (raw sum scores of the 8 CBCL syndrome 
scales).”  
 
Results (page 10): 
“We projected the SCCA model weights of the ABCDTraining set onto the first 100 brain PCs 
(explained variance 61.8%) and CBCL syndrome scores of Generation R.” 

 
The selection of the number of principal components in our study was based on previous studies22. We 
agree that reducing the number of PCs might mitigate overfitting. To address this point, we reran the 
analyses with different numbers of PCs (i.e., 50, 200) in 10 train-test splits in ABCD. Overall, the results 
remained similar to results from 100 brain PCs, suggesting that a smaller number of brain PCs did not 
change the poor out-of-study generalizability.  
 

Methods (page 29): 
“Fourth, we included different numbers of brain principal components to inspect possible 
fluctuation of results due to the dimensionality of brain data, which might be one of the reasons 
for overfitting.” 

 
Results (page 10): 
“These results are highly consistent when we put different numbers of brain PCs (i.e., 50 and 
200) in the model (Supplementary Table 7, Supplementary Table 8, Supplementary Figure 
1).” 
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Supplementary table 6 

Canonical correlations in ABCD and Generation R (50 brain PCs) 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note. The significance canonical correlations was assessed by permutation tests.  
P values were corrected for multiple testing by False Discovery Rate (FDR).  
* p < 0.05, ** p < 0.01, *** p < 0.001 
 

 ABCD (n = 4,892) 
Generation R 

n = 2,043  Canonical 
Correlations Training Test Sparsity 

Split 1 

 n=4,255 n=637    
r1 0.20 0.15*** rs-fMRI 0.8 0.05 
r2 0.18 0.08 CBCL 0.5 0.04 
r3 0.16 0.04   0.09* 

Split 2 

 n=4,092 n=800    
r1 0.20 0.13*** rs-fMRI 0.7 0.01 
r2 0.19 0.10** CBCL 0.5 0.001 
r3 0.15 0.08   0.005 

Split 3 

 n=4,295 n=597    
r1 0.21 0.06 rs-fMRI 0.8 0.07* 
r2 0.19 0.03 CBCL 0.5 0.04 
r3 0.17 0.03   0.05 

Split 4 

 n=3,976 n=916    
r1 0.19 0.15*** rs-fMRI 0.9 0.02 
r2 0.20 0.11*** CBCL 0.5 0.001 
r3 0.16 0.07   0.003 

Split 5 

 n=4,167 n=725    
r1 0.21 0.13** rs-fMRI 0.9 0.003 
r2 0.20 0.06 CBCL 0.5 0.007 
r3 0.16 0.08   0.002 

Split 6 

 n=4,401 n=491    
r1 0.20 0.09* rs-fMRI 0.7 0.06* 
r2 0.19 0.09 CBCL 0.5 0.07* 
r3 0.17 0.08   0.08* 

Split 7 

 n=4,229 n=663    
r1 0.20 0.14*** rs-fMRI 0.7 0.01 
r2 0.19 0.15** CBCL 0.5 0.02 
r3 0.17 0.07   0.02 

Split 8 

 n=4,139 n=753    
r1 0.20 0.17*** rs-fMRI 0.8 0.06* 
r2 0.19 0.10** CBCL 0.5 0.06 
r3 0.16 0.05   0.03 

Split 9 

 n=3,811 n=1,081    
r1 0.19 0.20*** rs-fMRI 0.9 0.01 
r2 0.18 0.14*** CBCL 0.5 0.01 
r3 0.18 0.08**   0.04 

Split 10 

 n=4,119 n=773     
r1 0.20 0.15*** rs-fMRI 0.7 0.11*** 
r2 0.18 0.11** CBCL 0.5 0.06 
r3 0.17 0.09*   0.12*** 
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Supplementary table 7 

Canonical correlations in ABCD and Generation R (200 brain PCs) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Note. The significance canonical correlations was assessed by permutation tests.  
P values were corrected for multiple testing by False Discovery Rate (FDR).  
* p < 0.05, ** p < 0.01, *** p < 0.001 
 

 ABCD (n = 4,892) 
Generation R 

n = 2,043  Canonical 
Correlations Training Test Sparsity 

Split 1 

 n=4,255 n=637    
r1 0.29 0.12*** rs-fMRI 0.8 0.03 
r2 0.27 0.05 CBCL 0.5 0.04 
r3 0.30 0.02   0.06 

Split 2 

 n=4,092 n=800    
r1 0.31 0.15*** rs-fMRI 0.8 0.02 
r2 0.28 0.08* CBCL 0.5 0.06* 
r3 0.29 0.14***   0.004 

Split 3 

 n=4,295 n=597    
r1 0.29 0.08* rs-fMRI 0.7 0.05 
r2 0.26 0.08 CBCL 0.5 0.05 
r3 0.29 0.04   0.03 

Split 4 

 n=3,976 n=916    
r1 0.29 0.16*** rs-fMRI 0.7 0.01 
r2 0.28 0.12** CBCL 0.5 0.01 
r3 0.28 0.06   0.01 

Split 5 

 n=4,167 n=725    
r1 0.29 0.14*** rs-fMRI 0.8 0.003 
r2 0.30 0.07 CBCL 0.5 0.01 
r3 0.26 0.06   0.02 

Split 6 

 n=4,401 n=491    
r1 0.24 0.06 rs-fMRI 0.4 0.04 
r2 0.24 0.07 CBCL 0.5 0.07* 
r3 0.22 0.08   0.06 

Split 7 

 n=4,229 n=663    
r1 0.29 0.13** rs-fMRI 0.7 0.06* 
r2 0.26 0.11** CBCL 0.5 0.06* 
r3 0.30 0.06   0.04 

Split 8 

 n=4,139 n=753    
r1 0.26 0.19*** rs-fMRI 0.5 0.04 
r2 0.24 0.09** CBCL 0.5 0.04 
r3 0.26 0.03   0.06* 

Split 9 

 n=3,811 n=1,081    
r1 0.29 0.18*** rs-fMRI 0.7 0.02 
r2 0.29 0.11** CBCL 0.5 0.01 
r3 0.28 0.08*   0.001 

Split 10 

 n=4,119 n=773     
r1 0.30 0.11* rs-fMRI 0.6 0.06* 
r2 0.26 0.11* CBCL 0.5 0.06* 
r3 0.27 0.06   0.03 
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Supplementary Figure 1 

Canonical correlations and CBCL loadings across 10 splits (different brain PCs) 

 

 
 
Note. a-b. Canonical correlations and CBCL loadings when we put 50 brain PCs in the SCCA model. c-d. 
Canonical correlations and CBCL loadings when we put 100 brain PCs in the SCCA model. e-f. Canonical 
correlations and CBCL loadings when we put 200 brain PCs in the SCCA model. 
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4c. In lines 128-129 the authors describe out-of-sample generalisability as follows: “To 
reduce sampling biases, the split procedure was repeated 10 times, resulting in 10 pairs of 
independent train-test sets. Importantly, the analyses in ABCDTraining and ABCDTest sets were 
fully separated to safeguard the results from data leakage”. Could the principal components 
analysis (and other pre-processing steps) result in data leakage between the test and training 
sets within the ABCD study? Given the relatively large sample size of ABCD relative to 
Generation R, could the ABCD training set not have been split in a nested cross-validation 
approach, whereby the 10 splits are isolated to the ABCD training set and therefore the 
ABCD test set remains fully independent of training? 

 
(4c). We thank the Reviewer for bringing up this point that we hope to clarify here. First, the principal 
component analysis (PCA) is unlikely to lead to data leakage in our analysis pipeline. The PCA was 
applied to the ABCDTraining set, and the eigenvectors (the rotation or weight vectors) retrieved from 
ABCDTraining set were then projected to ABCDTest set. In this way, we obtained the brain PCs in 
ABCDTest sets. We did not implement the PCA to the whole ABCD data set, which means the ABCDTest 
set was fully independent of the PCA implementation in the ABCDTraining set. This is now clarified in 
the manuscript as follows: 
 

Methods (page 23): 
“Importantly, all the analyses in ABCDTraining sets and ABCDTest sets were fully separated to 
protect the results from data leakage (Figure 1), including the residualization of brain data, 
weighted PCA, and the SCCA model. Specifically, the residualization was separately done in 
ABCDTraining sets and ABCDTest sets, and the weighted PCA was first implemented in 
ABCDTraining sets, then the PCA eigenvectors retrieved from ABCDTraining set were applied to 
ABCDTest set to derive brain PCs. Next, the SCCA model was trained in ABCDTraining set, where 
the penalty parameters of the SCCA models were selected in 100 further random splits of 
training (80% of ABCDTraining set) and validation set (20% of ABCDTraining set). After fitting the 
model with the optimal penalty parameters in the ABCDTraining set, the out-of-sample model 
generalizability was evaluated by projecting the CBCL and brain PCs loadings obtained from 
the ABCDTraining set to the ABCDTest set.” 

 
Second, if we understand correctly, the Reviewer meant that we could just split one training set 

and a small fully independent held-out data set from ABCD and implement 10-fold cross-validation 
within that one training set. We did this procedure in our original attempts to implement the SCCA 
model, however, we realized that the split of training and held-out data set could lead to sampling 
bias, which can be clearly seen in Figure 2b and Supplementary Table 3: different splits shown quite 
different generalizability (e.g., split 6 and 8). This motivated our design of repeating the split 30 times, 
which was also suggested by previous literature23, to inspect the possible sampling bias. Therefore, our 
analysis pipeline is not a typical nested cross-validation approach: the 30 train-test splits were not 
designed for tuning parameters or assessing out-of-sample performance in one held-out data set (that is 
why we did not present the average canonical correlations across the splits in Supplementary Table 
3). Instead, it is a multiple held-out framework, where we could observe possible fluctuation of results 
in different training and held-out sample split. This is especially relevant when we split the training and 
held-out data set based on study sites as it would be highly biased if we examine the out-of-sample 
performance only in certain held-out study sites, even though they are randomly assigned. This is now 
made clearer in the text as follows: 
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Methods (page 23): 
“To inspect potential sampling biases, the split procedure was repeated 30 times, resulting in 
30 pairs of independent train-test sets. This is suggested as a multiple held-out framework, 
which can examine and reduce possible fluctuation of results in different training and held-out 
sample split23,24.” 

 
 

4d. The authors need to clarify how identified components were labeled as networks. How 
similar were the identified components between the ABCD and Generation R studies? Could 
differences in breakdown of networks have contributed to the lack of generalizability 
observed across studies? 

 
(4d). To determine the importance of networks for each PC, we calculated the importance of each 
connectivity feature (60,726 vectorized connectivity) for each PC using the following equation: 

𝑤!"#

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑐")
 

𝑤!"  is the eigenvector (direction) for principal component i and connectivity feature j, and 𝑐"  is 
connectivity feature j. We then summarized each feature's importance into different networks (see the 
figures below). We found that the important networks contributing to the first PC were similar in ABCD 
and GenR but were different for other PCs across cohorts. However, the underlying distributions of the 
two data sets can be very similar despite their PCs being different. This characteristic of the data/PCA 
is important in the context of the SCCA. Specifically, it is not sensible to judge whether the SCCA 
model can be generalized across different studies by inspecting the similarity of PCs, as the PCs are 
new data space with minimal information loss rather than the original datasets.  
 
Moreover, as evidence of this, we also tried to project the rotation/eigenvectors derived from ABCD 
to Generation R, which is a typical way to calculate the “same” PCs across two cohorts. However, the 
out-of-study generalizability was even worse (none of the associations were generalizable across all 
the train-test splits). This again indicated that the different PCs across studies are unlikely driving the 
results. 
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4e. The most influential components in figure 4b are not labelled as networks. Did the authors 
confirm that these components do not reflect noise? 

 
(4e). We mapped two of the most influential components in Figure 4b (i.e., PC7 and PC12, see figure 
above). In ABCD, the Cingulo-opercular network and Auditory networks are the most important 
contributors to PC7, and subcortical areas is the important contributor to PC12. While we cannot rule 
out that any PC reflects noise, the possibility that these PCs only reflect noise is improbable. Our study 
design with stringent out-of-sample and out-of-study model performance tests can mitigate the 
possibility that the results are based on noise, which can be further supported by the consistent signals 
(i.e., the first brain-behavior dimension for attention problems) observed across train-test splits in 
ABCD. In fMRI studies, the boundary between noise and signals is not always clear. Noise fluctuations 
could be due to many reasons across individual subjects (e.g., motion, physiological fluctuations, 
system-related instabilities)25 and it is unlikely that SCCA can consistently predict the same noise 
coming from different sources in different resamples.  
 
 
(5). CBCL subscales 

5a. Is the number of CBCL items correct (118 instead of 113)? Could the authors state the 
CBCL version used from each study? 

 
(5a). We thank the Reviewer for spotting this mistake. The number of CBCL items should be 113. We 
have updated the Methods section accordingly:  
 

Methods (page 20): 
“Child psychiatric symptoms were assessed using the Child Behavioral Checklist (school-age 
version) in both cohorts. The CBCL is a 113-item caregiver report with eight syndrome scales.” 

 
 

5b. Can the authors please more clearly describe the calculation of subscale total scores in the 
methods (including the range), provide motivation for using raw total scores rather than T total 
scores, and add subscale descriptives for each study to Table 1? Reporting corresponding T-
scores or percentiles would assist with comparison to previous literature related to brain-based 
dimensions of CBCL syndrome scales. 

 
(5b). More detailed information about the subscale total scores of the CBCL and the descriptive 
statistics were provided in the manuscript. We relied on CBCL raw scores rather than T-scores because 
the authors of the instrument (Achenbach and Rescorla) explicitly state within the CBCL manual that 
raw scale scores should be used in statistical analysis in order to take account for the full range of 
variation in these scales (2001, p. 89)26. Thurber & Sheehan (2012) describe this issue in depth, noting 
that “the T transformation results in the elimination of the bottom part of the score distribution; lower 
scores at the mean and below are all assigned T scores of 50, not just the mean raw score as in non-
truncated T scores. Hence, T scores truncate or reduce the range of variation”27. Furthermore, the 
normative sample for the CBCL is decades old, so T scores may not be appropriate for the current 
samples due to cohort effects. In addition, the normative sample from which the T-scores were derived 
is smaller in size than the ABCD and GenR samples. 
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Methods (page 20): 
“The current analyses relied on raw scores from the CBCL, as is recommended by the 
instrument authors to preserve the full range of variation26. Items belonging to a given syndrome 
scale were summed. In the case of missing items, if the missingness was less than 25%, a sum 
score was created accounting for missing items. Higher scores represent more problems. For 
the detailed statistics for the eight syndrome scales in ABCD and Generation R, see 
Supplementary Table 9, Table 1.” 
 

 
Supplementary Table 9 
Descriptive statistics of CBCL in ABCD and Generation R 

 

 

 

 

 

  

CBCL syndrome 
scales 

ABCD (n = 4,892)  Generation R (n = 2,043) 

M(SD) 
(raw scores) 

Range 
(raw scores) 

M(SD) 
(T scores)  M(SD) 

(raw scores) 
Range 

(raw scores) 
M(SD) 

(T scores) 

Anxious/depressed 2.6(3.1) (0, 26) 53.5(6.1)  2.2(2.6) (0, 19) 52.7(5.0) 
Withdrawn/depressed 1.0(1.7) (0, 14) 53.3(5.6)  1.1(1.6) (0, 10) 53.7(5.6) 
Somatic 1.5(1.9) (0, 15) 54.9(6.0)  1.5(2.0) (0, 15) 54.8(6.0) 
Social 1.5(2.2) (0, 18) 52.5(4.4)  1.5(2.1) (0, 16) 52.5(4.3) 
Aggressive 3.1(4.2) (0, 36) 52.6(5.3)  2.7(3.5) (0, 28) 52.0(4.3) 
Rule-breaking 1.1(1.7) (0, 18) 52.5(4.5)  0.9(1.4) (0, 11) 52.0(3.6) 
Thought problems 1.5(2.1) (0, 18) 53.6(5.7)  1.5(2.0) (0, 15) 53.4(5.5) 
Attention problems 2.7(3.3) (0, 20) 53.5(5.8)  3.0(3.0) (0, 18) 53.6(5.0) 
Internalizing problems 5.1(5.6) (0, 51) 48.4(10.6)  4.7(5.0) (0, 37) 48.1(9.9) 
Externalizing problems 4.1(5.6) (0, 48) 45.2(10.0)  3.6(4.6) (0, 38) 44.4(9.2) 
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Table 1 
Descriptive statistics of the discovery set (example) and the external validation set 

 

 

 

 

 
  

Discovery set  External validation set 
ABCD 

n = 4,892 
 Generation R 

n = 2,043 

 ABCDTraining  ABCDTest            
 

  

N 4,230 662  N 2,043 

Age (years), M(SD) 10.0 (0.6) 10.0 (0.6)  Age (years), M(SD) 10.1 (0.6) 

Sex    Sex  

Girls, (%) 48.9 48.5  Girls, (%) 52.4 

Race/ethnicity (%)    Nation of birth (%)  

White 58.3 48.8  Dutch 66.1 

African American 12.0 11.2  Non-Dutch European 17.3 

Hispanic 19.3 15.1  Non-European 16.6 

Asian 1.5 5.9    

Others 8.9 18.0    

Parental education (%)    Maternal education (%)  

Low 4.8 5.1  Low 2.8 

Medium 38.1 39.1  Medium 34.5 

High 57.1 55.8  High 62.7 

Child Behavior Checklist (CBCL), M(SD)  Child Behavior Checklist (CBCL), M(SD) 

Anxious/depressed 2.5(3.1) 2.8(3.3)  Anxious/depressed 2.2(2.6) 

Withdrawn/depressed 1.0(1.6) 1.2(1.8)  Withdrawn/depressed 1.1(1.6) 

Somatic 1.5(2.0) 1.6(1.9)  Somatic 1.5(1.9) 

Social 1.5(2.1) 1.6(2.3)  Social 1.5(2.1) 

Aggressive 3.0(4.2) 3.3(4.2)  Aggressive 2.7(3.5) 

Rule-breaking 1.0(1.7) 1.2(1.9)  Rule-breaking 0.9(1.4) 

Thought problems 1.5(2.1) 1.8(2.3)  Thought problems 1.5(2.0) 

Attention problems 2.6(3.3) 3.0(3.4)  Attention problems 2.9(3.0) 

Internalizing scores 5.0(5.5) 5.6(5.9)  Internalizing scores 4.7(5.0) 

Externalizing scores 4.1(5.6) 4.5(5.7)  Externalizing scores 3.6(4.6) 

Total scores 16.9(17.2) 19.1(18.0)  Total scores 16.6(15.1) 

Note. Values are frequencies for categorical variables and means and standard deviations for continuous variables. 
The descriptive statistics for ABCD were based on one of the 30 train-test splits, other splits showed similar 
statistics.  
M = Mean, SD = Standard Deviation 
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5c. Mean internalizing and externalizing scores appear to be rather low, do the samples have 
sufficient coverage of clinically relevant symptoms for detecting brain-behavior dimensions 
associated with child psychiatric symptoms? Can the authors comment on this explicitly in 
the results or discussion? 

 
(5c). We thank the Reviewer for the comment. We acknowledge that we did not make the differences 
between the population-based samples included in this manuscript and the clinical samples clear. 
Population-based studies usually contain the full continuum of psychopathology in the general 
population. This means children with subthreshold, mild, and severe psychopathology were all included. 
About 6.9% of children in ABCD and 5.1% of children in GenR (based on the clinical cut-off of 93% 
quantile of CBCL total scores) have clinically relevant symptoms in our sample. We added this 
information to the Methods section. We have also now included text on this in the Discussion.  
 

Methods (page 19): 
“Accordingly, data from 4,892 participants, of which around 6.9% had clinically relevant total 
problem symptom scores, were available for analysis in ABCD.” 
“2,043 participants (of which 5.1% had clinically relevant total problem symptom scores) were 
included in the final sample for analysis in GenR.” 
 
Discussion (page 16): 
“Second, focusing on the general population might dilute the associations. The majority of 
previous studies drew from clinical samples with a clinical diagnosis, such as major depression 
or psychosis13,28. Since healthy individuals are overrepresented in population-based samples, 
the effect sizes will likely be smaller than in clinical samples and may be more difficult to 
capture.”  

 
 

5d. Have the authors confirmed that correlations were not impacted by CBCL outliers and the 
skewed distribution of CBCL scores? 

 
(5d). The possibility that the correlations were impacted by CBCL outliers and skewed distribution is 
small. First, the CBCL syndrome scores in our study are within the normal range of each subscale 
(Supplementary Table 9 in comment #5b) both in ABCD and GenR, thus we cannot describe points 
as outliers based on this. Second, SCCA is more robust to deviation from normality compared with 
traditional CCA29. Third, our study design of different resample methods and non-parametric approach 
can make the results robust to the potential impact of outliers and skewness. Lastly, the large sample 
size of this study can improve the robustness of the estimates obtained in non-ideal conditions such as 
non-normality and skewness30. We included text on this in the Methods section. 
 

Methods (page 19): 
“The raw sum scores of each syndrome scale were within the normal range both in ABCD and 
GenR.” 

 
Methods (page 25): 
“This method is more stable, more robust to deviation from normality, and does not have the 
main constraint of classic CCA: the number of observations should be larger than the number 
of variables11.” 



 19 

(6). Generalizability 
6a. The authors describe one of their analyses (line 212) as “more commonly used qualitative 
replication”. While this type of replication is common in traditional statistical frameworks, it 
is much less common for complex multivariate and data-driven approaches such as sparse 
canonical correlation analysis. I suggest that the authors rephrase. In sentences 299-301 it 
needs to be clarified that the replication analyses were not repeated with the same multivariate 
model as in ABCD. 

 
 
(6a). We thank the Reviewer for this critical comment and addressed the comment in the Results and 
Discussion sections. We agree that the implementation of qualitative replication is less common for 
other multivariate or data-driven methods in several fields. However, in studies in the field of psychiatry, 
this replication approach is more commonly used, and the interpretation of results remains subjective.  
 

Results (page 10): 
“In the other, more commonly used qualitative replication in doubly multivariate psychiatric 
studies11,12,31, a new SCCA model was trained in Generation R, yielding another set of canonical 
loadings.”  
 
Discussion (page 13): 
“One approach consists of repeating the analysis pipeline and training a new model in data that 
were previously ‘unseen’ by the multivariate algorithm, and then correlating the model weights 
across studies. This is often referred as ‘replication’, in a test set from the same large participant 
pool or an external dataset. Similarities of behavioral or brain loadings are frequently used to 
indicate a successful replication11,12.” 

 
 

6b. With the qualitative replication approach, Pearson correlations between CBCL canonical 
loadings of the ABCD and Generation R studies were relatively high. The comparison of 
loadings is presented in Figure 5. It would be very interesting if the authors could add more 
information about how comparable the brain canonical loadings were between both studies. It 
would for example be informative to show the Generation R equivalents of figures 3d-f. 

 
 
(6b). While the CBCL canonical loadings (i.e., attention problems, aggressive/rule-breaking behaviors, 
anxious/depressed) were highly similar in ABCD and GenR, the canonical correlations were not overly 
generalizable from ABCD to GenR. It can thus be expected that the similarities of the related networks 
were limited across cohorts. Indeed, Supplementary Figure 2 shows that there was some overlap of 
the most important networks in ABCD and GenR. However, the contributions of other networks were 
not the same across the two cohorts. This also reveals the subjectivity of the interpretation of a 
qualitative replication: it is not defined what constitutes ‘successful’, ‘partly’, or failed replication. We 
added this information in the Results section.  
 

Results (page 11): 
“Several of the most important brain connectivity networks involved were overlapping between 
ABCD and GenR (Supplementary Figure 2). For instance, both in ABCD and GenR, the 
salience, parietal occipital, and motor networks were the most crucial contributors to the 
association of attention problems and brain connectivity. Similarly, the motor, auditory 
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networks, and subcortical areas contributed most to the correlates of aggressive/rule-breaking 
behaviors and brain connectivity. However, the contributions of other networks, or the 
collective effects of all the networks, were not entirely the same across the two cohorts, 
suggesting that the variability in the brain phenotypes is underlying the poor out-of-study 
generalizability.” 
 

 

Supplementary Figure 2 
Important brain connectivity networks in Generation R 

 
Note. Important brain connectivity modules involved in the two identified canonical variates (attention 
problems, aggressive/rule-breaking behaviors), which are highly similar to the two identified in ABCD, 
in Generation R. a-b. The top 20% of the connectivity patterns that contributed most for each of 
canonical variate. The outer labels represent the names of network modules. The thickness of the 
chords showed the importance of different network modules. c-d. The connectivity patterns associated 
with the first two canonical variates. This is based on the z-scores of the within- and between-network 
loadings we calculated.  
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Reviewer #2 
The authors use canonical correlation analyses to make functional connectomes to a validated 
questionnaire on youth mental health. Within a large dataset, ABCD, they find that these canonical 
factors generalize across train and test splits. With another large dataset, Generation R, they find that 
these canonical factors do not generalize across the cohorts. But they do find that the results replicate 
across cohorts. Strengths include the inclusion of two large datasets from different cultural 
backgrounds and two different forms of generalization. Limitations include some confusing language 
and overstatement of results, which could also be put into better context with the existing literature.  
 
I have signed this review for transparency and am happy to discuss these comments if they are 
unclear. - Dustin Scheinost 
 
We thank the Reviewer for the valuable comments and advice.  
 
(1). I think some additional details are needed to describe the prediction pipeline. What data is used in 
the SCCA? I believe is just the training data with inputs from the PCA (100 components run just of 
the training data) and CBCL. But this is not really detailed or shown in figure 1. Also is the data used 
to estimate the PCA’s the same as used in the SCCA? Finally, it is unclear where the elastic nets come 
in. Did the authors use an elastic net to create a predictive model or is it that the authors use an elastic 
net style penalty in the SCCA?  
 
(1). We thank the Reviewer for these questions. The model was trained only in the ABCDTraining sets, so 
we input two datasets (per training-test split) into the SCCA model (i) the first 100 principal components 
of the vectorized resting-state connectivity data from ABCDTraining sets and (ii) the 8 CBCL syndrome 
scale scores from ABCDTraining sets. The input data used for PCA was the high-dimensional connectivity 
matrices from ABCDTraining sets, and the PCA was a dimensionality reduction step of the brain data prior 
to SCCA. The elastic nets were only used to determine the penalty parameters within the SCCA model29. 
One penalty was applied to each matrix of brain PCs and CBCL scores. For ABCDTest, as well as the 
out-of-study gold-standard test in GenR, we did not train the SCCA model. For the qualitative 
replication approach, we trained a new SCCA model in GenR. We modified Figure 1 to make our 
methods clearer. 
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Figure 1 

Analysis pipeline 

 
Note. a-b. ABCD was the discovery set and Generation R as the external validation set. The discovery 
set was divided into training and test sets 30 times, resulting in 30 train-test pairs in ABCD. The 
eigenvectors of PCA from the ABCDTraining set were applied to ABCDTest set to calculate the principal 
components, then the weight vectors (canonical loadings) obtained from the ABCDTraining set were 
projected to ABCDTest set to compute the out-of-sample correlations. Similarly, weight vectors of SCCA 
from the ABCDTraining set were then directly applied to Generation R to assess the out-of-study 
generalizability of the model. We also implemented the qualitative replication approach, in which we 
train the SCCA model independently in Generation R and compare the results across the two cohorts. 
Note that the sample size in ABCD is an example from one train-test split  
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(2). Various parts are worded a little strongly. For example, “in order to safeguard against 
overfitting …”. PCA on the connectivity matrices alone would not safeguard against overfitting. It 
would reduce the dimension of the data, which can help minimize overfitting. In general, it would be 
good if the authors could be very specific with their language. That will help any readers not 
misunderstand their findings.  
 
(2). We thank the Reviewer for the comments. We have revised the manuscript accordingly in several 
locations, see below some examples:  
 

Results (page 7):  
“Importantly, the analyses in ABCDTraining sets and ABCDTest sets were fully separated to help 
minimize the potential for data leakage (Figure 1).” 
 
Results (page 3):  
“To help mitigate possible overfitting problems, the connectivity matrices underwent 
dimensionality reduction by principal component analysis (PCA) with a weighting scheme (see 
Methods).” 
 
Discussion (page 13): 
“To improve the robustness and generalizability of brain-behavior associations in a fully 
independent sample, which is largely absent or sub-optimally done in previous research in 
doubly multivariate psychiatric neuroimaging literature.” 
 
“Using the largest multicohort study investigating the multivariate brain-behavior associations 
in pre-adolescence, the enhanced statistical power allowed us to examine whether robust 
associations can be detected and generalized in the general population.” 

 
 
(3). More than 10 splits might be helpful. There is a large variation in results for the first canonical 
factor (r=0.09-0.17).  
 
(3). We thank the Reviewer for this suggestion. We agree that additional splits would be helpful when 
inspecting variations resulting from sampling. Thus, we resampled 30 splits in ABCD. Briefly, the 
results with 30 splits were similar to the results from the 10 splits, showing a similar degree of 
generalizability in Generation R. We chose 30 splits because of our considerations regarding the 
computational demands and based on the central limit theorem.  
 
The new results were shown in Figure 2-5 and Supplementary Table 3, as well as the Results section. 
Please see the detailed results above in our reply to Question #2 from Reviewer #1.  
 
 
(4). The culture between the Netherlands and the US are very different. The authors hint at this, but I 
think they could do a better job of situating this in terms of generalization. For example, even within 
ABCD prediction performance across different demographic groups exist, suggesting that 
generalizing mental health measures across cultures is hard. Indeed, we know that different 
communities have differences in symptom presentation, as well as differing perspectives on mental 
health more broadly. In all it is not surprising that models might not generalize across cultures. In 
other words, a lack of generalization might not be due to overfitting, bias, or poor methods. It may in 
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fact represent a true difference in brain behavior associations between cohorts. See for example 
Tejavibulya L, et al. Predicting the future of neuroimaging predictive models in mental health. Mol 
Psychiatry. 2022 Aug;27(8):3129-3137. doi: 10.1038/s41380-022-01635-2. Epub 2022 Jun 13. PMID: 
35697759; PMCID: PMC9708554. 
 
This is especially true given the small effect sizes in the study. A correlation of <.1 does not have 
much room to lose any explained variance. For example, if the effects were around r=.5, losing half of 
the effect would still lead to a significant result. But with r=.1 losing half of the effect is likely to be 
insignificant.  
 
(4). We thank the Reviewer for this key comment. We agree that brain-behavior associations could be 
different across cultures and the associations are usually intertwined with other factors. This is now 
discussed in the Discussion section.  

 
Discussion (page 16): 
“Another possible explanation is that brain-behavior associations differ across populations and 
cultures due to unconsidered confounders and differences in presentation of symptoms. Model 
failures are usually interweaved with other factors32, such as differences in reporting preference 
and symptom presentation in diverse populations, which may correspond to divergent 
neurobiological underpinnings. The internally valid associations in ABCD could be cohort-
specific effects that are not entirely consistent with Generation R. Although the 8-syndrome 
structure of CBCL was shown to be stable across different societies33,34, our results could reflect, 
to some extent, the different brain-symptom construction across cultures.” 

 
While acknowledging the cultural differences, we believe that the ultimate aim of prediction 

models is to identify brain biomarkers that are clinically useful, not only for one cultural group. 
Therefore, cultural differences could be considered when training the model to improve generalizability. 
We discussed this further in the Discussion section.  
 

Discussion (page 15): 
“Nevertheless, the primary goal of machine learning models is to identify brain biomarkers that 
can improve the diagnoses, treatment, and prevention of psychiatric disorders, not only for one 
specific group. A more ideal approach could be similar to the risk calculator developed in 
medical research35, a more standardized protocol in genetic association studies36, or some 
prediction pipelines developed in non-psychiatric studies7. The common characteristic of these 
examples is that model weights (“gold-standard”) are applied to different populations with 
diverse backgrounds, which has a high demand for the model as well as the identification of 
common biomarkers. If model performance varied across some groups (e.g., sex, age, cultural 
backgrounds), the important predictors could be included in the extension and further validation 
of models to create a more generalizable, clinically useful model.” 

 
 
(5). Relatedly, the authors make the point that different results might be seen in clinical samples and 
that these studies largely draw from healthy individuals. This is an important point as the authors also 
note that for clinical psychiatric care, we would a biomarker that generalizes well. But the authors do 
not test in a clinical group. So some of the writing about how these results impact mental health 
research might be a bit over interpreted.  
 



 25 

We thank the Reviewer for this feedback. We acknowledge that the implication of our population-
based approach might not be extended to clinical studies. We updated the manuscript and emphasized 
that our study was especially informative for the general population and modified our Discussion 
accordingly.  
 

Discussion (page 13): 
“While these results reinforce previous work demonstrating the potential for brain-based 
dimensions of psychiatric problems, they also highlight the problem of the generalizability of 
findings in psychiatric neuroimaging studies, especially in the general population.” 
 
“In our study, the lack of this ‘gold-standard’ generalizability in an external, independent 
sample suggests limited external validity, meaning that the dimensions cannot be applied to 
other datasets as a potential biomarker in the general population.” 
 
Discussion (page 17): 
“Second, the conclusions drawn from the current study might not generalize to clinical groups. 
Although similar poor out-of-sample multivariate associations were seen in clinical samples37, 
prediction models built in clinical studies might be more robust due to potentially larger effect 
sizes. Yet, biomarkers emerging from the general population are useful in screening high-risk 
individuals, prevention, and health education, which are also of pivotal importance for 
improving health care quality.” 

 
 
(6). Did the authors try training in Generation R and testing in ABCD? It would be worth knowing if 
the same pattern of generalization (or lack thereof) is observed.  
 
(6). We chose to use ABCD as the discovery set for two main reasons. First, multivariate methods, 
especially CCA, are highly prone to overfitting when the sample/feature ratio is small38.  To mitigate 
the possibility of overfitting, we need a large data set. With the sample size of ABCD (n=4,892) and 
Generation R (n=2,034), it is safer to train the model in the larger sample. Second, ABCD is a multi-
site cohort with 21 study sites, which makes it a better sample to do leave-sites-out validation, which is 
a better approximation for true out-of-sample settings.  
 
However, we find this to be an important point, and following the suggestions from the Reviewer, we 
tried to train SCCA in Generation R and test the out-of-study performance in ABCD. We ran the same 
analysis pipe with GenR as the discovery set and ABCD as the external validation set. Overall, no 
associations were generalizable to ABCD. This is expected as the sample size of GenR is likely not 
sufficient to capture robust multivariate associations with this particular dimensionality of brain features. 
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Table  

Canonical correlations across Generation R and ABCD 

 Generation R (n = 2,043) 
ABCD 

n = 4,892  Canonical 
Correlations 

Training 
(n=1,430) 

Test 
(n=613) Sparsity 

Split 1 

      
r1 0.39 0.08 rs-fMRI 0.9 0.01 
r2 0.33 0.08 CBCL 0.5 0.008 
r3 0.36 0.08   0.02 

Split 2 

      
r1 0.42 0.03 rs-fMRI 0.7 0.003 
r2 0.27 0.03 CBCL 0.8 0.03 
r3 0.29 0.04   0.04 

Split 3 

      
r1 0.23 0.02 rs-fMRI 0.3 0.02 
r2 0.20 0.05 CBCL 0.9 0.007 
r3 0.16 0.06   0.02 

Split 4 

      
r1 0.36 0.07 rs-fMRI 0.5 0.006 
r2 0.36 0.05 CBCL 0.7 0.003 
r3 0.22 0.04   0.04 

Split 5 

      
r1 0.13 0.01 rs-fMRI 0.1 0.02 
r2 0.12 0.04 CBCL 0.5 0.01 
r3 0.13 0.05   0.01 

Split 6 

      
r1 0.32 0.05 rs-fMRI 0.4 0.008 
r2 0.19 0.03 CBCL 0.9 0.001 
r3 0.17 0.03   0.002 

Split 7 

      
r1 0.33 0.05 rs-fMRI 0.5 0.004 
r2 0.16 0.12* CBCL 0.9 0.07 
r3 0.19 0.02   0.04 

Split 8 

      
r1 0.10 0.01 rs-fMRI 0.1 0.001 
r2 0.10 0.01 CBCL 0.1 0.02 
r3 0.15 0.02   0.01 

Split 9 

      
r1 0.29 0.02 rs-fMRI 0.3 0.007 
r2 0.24 0.01 CBCL 0.4 0.03 
r3 0.27 0.03   0.03 

Split 10 

      
r1 0.37 0.11* rs-fMRI 0.8 0.02 
r2 0.38 0.01 CBCL 0.5 0.005 
r3 0.37 0.08   0.008 
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(7). It would also be good to explicitly define terms like generalization and replication. While the 
terms are often used interchangeably. They can be different things to different researchers. 
 
(7). We thank the Reviewer for this crucial question and have noticed this even in the literature. We 
have revised the Methods section accordingly.  
 

Methods (page 28): 
“We utilized two approaches to test the external validity: the qualitative replication and a gold-
standard generalizability test. Here, we define replication as repeating the analyses in different 
settings and observing the similarities of findings across studies, while generalization refers to 
the same statistical model successfully making predictions in different populations. Replication 
provides evidence of important correlations, and further generalizability tests are conducted to 
provide a realistic possibility for extending these discoveries into clinical applications .” 
 

 

 
 

Reviewer #3 
In this study the authors assess the external cross-validation of data-driven child psychopathology 
from rsfMI connectivity and CBCL by utilizing the ABCD study baseline and the Generation R study 
samples. The question is important and merits scrutiny and publications from different groups, even if 
other work has already alluded to this issue. 
 
We thank the Reviewer for the valuable comments and suggestions.  
 
(1). The study’s scope is presented in a manner that utilizing only one method does not seem 
comprehensive enough and other common methods than SCCA should be assessed and included 
somewhere, potentially in the supplementary section. Maybe at least one from the Kernel family 
(kernel ridge regression or support vector regression), as well as connectome-based predictive 
modeling, since these are used widely. Currently, only small variations in the SCCA are shown in the 
supplementary section.  
 
(1). We thank the Reviewer for the advice. We clarified in our Introduction that our study focuses on 
“doubly” multivariate techniques (“many-to-many” associations), in which multiple brain features 
and multiple behavioral features are fed into the model simultaneously, and the latent spaces from two 
datasets are captured. The CCA and PLS (Partial Least Squares) family emerged as two of the most 
widely used doubly multivariate methods and have been increasingly applied in neuroimaging studies. 
Other types of multivariate techniques, such as the kernel family and connectome-based predictive 
modeling the Reviewer mentioned, usually involve many brain features and one behavior feature (e.g., 
using a linear model to predict one cognitive ability or presence/absence of one disorder). Although 
similar problems of out-of-sample performance were reported23, some standardized prediction protocols 
have been established for these many-to-one prediction models7. Further, given the already extensive 
reporting required to address the main research question of the current study (i.e., proper 
generalizability testing a doubly multivariate technique), we have decided adding new models is beyond 
the scope of the current study. We have tried to clarify this point in the Introduction, particularly in 
making clear the goal of the present study:  
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Introduction (page 4): 
“Multivariate studies have either adopted multiple-to-one approach (e.g., support vector 
machine family) using many brain features to predict cognition or diagnoses of disease, or 
multiple-to-multiple (doubly) methods that can assess the covariation of many neural 
phenotypes (e.g., brain activity across regions) and many behavioral features simultaneously. 
One widely used doubly multivariate method in neuroimaging is canonical correlation analysis 
(CCA), a technique that aims to identify the common variation across phenotypes and dissect 
their complex relationships into a small number of distinct components40.” 

 
 
(2). The correlations are not particularly high even in the internal cross-validation (e.g. r = .13 for the 
primary LV), which is consistent with other ABCD-based studies showing that, other than the 
cognitive domain, measures in the personality and mental health domains have low brain-phenotype 
associations (e.g. Chen, J., Tam, A., Kebets, V. et al. Shared and unique brain network features predict 
cognitive, personality, and mental health scores in the ABCD study. Nat Commun 13, 2217 (2022).). 
Given this, it is expected that such already small out-of-sample r would not survive an external cross-
validation. I am wondering what the upper-bound of the cross-dataset validation is based on just the 
reliability of the psychopathology latent variables between ABCD and Gen R (i.e., ignoring brain)?  
 
(2). We agree that the effect sizes of brain-symptoms associations are much lower than those with 
cognition, which makes it challenging to identify generalizable associations across populations. To 
address this question, we used data only from the GenR study.  Specifically, we used the CBCL data in 
GenR to a.) calculate the CBCL canonical variates by training the SCCA in GenR and b.) deriving the 
canonical variates in GenR by apply the weight vectors obtained from training the SCCA in ABCD. We 
then calculated the Pearson correlation between these two sets of canonical variates (i.e., trained in 
GenR vs trained in ABCD). The correlation for the latent score of attention problems was r = 0.90, for 
rule-breaking behaviors is r = 0.93, and for anxious/depressed is r = 0.87. Thus, even when training in 
two separate samples, the results of canonical variate loadings are highly similar.  

Further, within ABCDTraining, we repeatedly subsampled the data and fit the SCCA. Across the 
repeated subsamples, the canonical loadings for the CBCL canonical variates were relatively stable 
(Figure 4a). Thus, we suggest that at least the CBCL latent variables are relatively reliable. In fact, the 
high correlations of the CBCL canonical variate scores across cohorts could be expected according to 
the similar CBCL loadings in the qualitative replication (Figure 5), suggesting brain connectivity 
difference is underlying the suboptimal generalizability, not the psychopathology phenotypes. See also 
above our reply to Reviewer #1 Comment #6b where we show the divergence of the brain phenotypes 
is likely driving the reduction in generalizability across the samples. This has been addressed in the 
Results and Discussion sections: 
 

Results (page 9): 
“While relatively stable contribution from the CBCL syndrome scores was observed, the 
instability of rs-fMRI canonical loadings manifested through more variability and less clear 
patterns in the canonical loadings for brain PCs (Figure 4a, 4b).” 

 
Discussion (page 16): 
“Third, resting-state fMRI data has intrinsic high inter-individual variability and smaller effect 
sizes at the individual level than other brain measures in psychiatry, thus extracting clinically 
important signals on an individual basis is difficult and generalizability across cohorts could be 
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especially challenging. This can be seen from our results: the psychopathology profiles were 
relatively stable within ABCD as well as across cohorts, but the brain phenotypes associated 
with the behavioral profiles were highly unstable.” 

 
 
(3). line 78: I would also cite previous work recommending these such as e.g.: Scheinost, D., Noble, 
S., Horien, C., Greene, A. S., Lake, E. M., Salehi, M., ... & Constable, R. T. (2019). Ten simple rules 
for predictive modeling of individual differences in neuroimaging. NeuroImage, 193, 35-45). 
Additionally, I would include some studies from non-psychiatric neuroimaging domain that involve 
external cross-validation (in addition to internal) after “medical research” and before the “psychiatric 
neuroimaging” to both temper the sentence and make the gap clearer (e.g. Avery, E. W., Yoo, K., 
Rosenberg, M. D., Greene, A. S., Gao, S., Na, D. L., ... & Chun, M. M. (2020). Distributed patterns of 
functional connectivity predict working memory performance in novel healthy and memory-impaired 
individuals. Journal of cognitive neuroscience, 32(2), 241-255.; Kardan, O., Stier, A. J., Cardenas-
Iniguez, C., Schertz, K. E., Pruin, J. C., Deng, Y., ... & Rosenberg, M. D. (2022). Differences in the 
functional brain architecture of sustained attention and working memory in youth and adults. Plos 
Biology, 20(12), e3001938.  
 
(3). We thank the Reviewer for the suggestions and included the recommendations and studies on 
non-psychiatric neuroimaging prediction models in the Introduction.  
 

Introduction (page 5): 
“This has been widely implemented in the validation of prediction models in medical research4,5 
and recommended as a necessary step in prediction models6. While several non-psychiatric 
neuroimaging studies have established more standardized analysis pipelines7–9, most 
multivariate psychiatric neuroimaging studies have not generally adopted these stringent 
external validation strategies10–16.” 

 
 
(4). line 97: The sample size from ABCD in this study is much larger than other studies with adequate 
exclusion of head motion using ABCD rsfMRI (e.g. Wang, Z., Zhou, X., Gui, Y. et al. Multiple 
measurement analysis of resting-state fMRI for ADHD classification in adolescent brain from the 
ABCD study. Transl Psychiatry 13, 45 (2023). https://doi.org/10.1038/s41398-023-02309-5 or 
Sripada, C., Rutherford, S., Angstadt, M. et al. Prediction of neurocognition in youth from resting 
state fMRI. Mol Psychiatry 25, 3413–3421 (2020). https://doi.org/10.1038/s41380-019-0481-6). 
Please elaborate on this in the methods or discussion. 
 

(4). We thank the Reviewer for the comment. We extracted the raw resting-state time series data 
from the recently released ABCD-BIDS Community Collection (ABCC), which is a community-shared 
and continually updated ABCD neuroimaging dataset. To address the concern of sample size, we 
implemented a stricter quality control process in the new data set we included. The final sample size (n 
= 4,892) was similar to studies using the earlier released resting-state data from the ABCC collection 
(Marek, S. et al. (2022), n = 3,928)41. The detailed inclusion criteria were updated in the Methods section.  
 

Methods (page 19): 
“Of the 9,441 children whose rs-fMRI data were available, we excluded 3,720 children who 
failed the quality control of the resting-state connectivity data (see below), 220 children with 
incidental findings, and 14 children with any missingness in behavioral measures and covariates. 

https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.proofpoint.com%2Fv2%2Furl%3Fu%3Dhttps-3A__doi.org_10.1038_s41398-2D023-2D02309-2D5%26d%3DDwMGAg%26c%3DWO-RGvefibhHBZq3fL85hQ%26r%3DL4aM4JEfwPQXF_GCD_sZoSumydYWLzQfifK3eBcfEYs%26m%3DfvaaHgr1jCmFOYoZSNNOcPATk6dlufZQBzuTJtDj4ccN4AcGPGQoOQOPAeK2rv2u%26s%3DgTPj19ltckiJm4kWl2kmNDKLw6Tgig4W7OMKii0b9Lc%26e%3D&data=05%7C01%7Cb.xu%40erasmusmc.nl%7C76dc46a9463e41fe196c08db70a6e06d%7C526638ba6af34b0fa532a1a511f4ac80%7C0%7C0%7C638227634895647879%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=EIACczA%2Fj45JhNHzMn32gj1442thWQ5fn%2FFM8B7b9S8%3D&reserved=0
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.proofpoint.com%2Fv2%2Furl%3Fu%3Dhttps-3A__doi.org_10.1038_s41380-2D019-2D0481-2D6%26d%3DDwMGAg%26c%3DWO-RGvefibhHBZq3fL85hQ%26r%3DL4aM4JEfwPQXF_GCD_sZoSumydYWLzQfifK3eBcfEYs%26m%3DfvaaHgr1jCmFOYoZSNNOcPATk6dlufZQBzuTJtDj4ccN4AcGPGQoOQOPAeK2rv2u%26s%3DPsooeL0FYzApOpaOohHdrm8FLL2KdP0XonE19A7ssUI%26e%3D&data=05%7C01%7Cb.xu%40erasmusmc.nl%7C76dc46a9463e41fe196c08db70a6e06d%7C526638ba6af34b0fa532a1a511f4ac80%7C0%7C0%7C638227634895647879%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=GPNmioP5gKnlQhblTS%2BV21fGj9qCgJ60WOk%2BjnDaT6o%3D&reserved=0
https://collection3165.readthedocs.io/en/stable/
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For families with multiple participants, one twin or sibling was randomly included (595 
excluded). Accordingly, data from 4,892 participants, of which around 6.9% had clinically 
relevant total problem symptom scores, were available for analysis in ABCD.” 
 
Methods (page 21): 
“Participants were excluded based on the ABCD recommended guidelines 
(imgincl_rsfmri_include = 1), which involve raw and postprocessing quality control, passed 
FreeSurfer QC, had more than 375 rs-fMRI frames after censoring, and other cut-off scores 
(see ABCD Recommended Imaging Inclusion), 1,310 participants were excluded due poor 
quality. We additionally excluded 2,410 participants with excessive motion (mean framewise 
displacement (FD) higher than 0.25 mm)42, and 220 participants with clinically relevant 
incidental findings.” 

 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://nda.nih.gov/data_structure.html?short_name=abcd_imgincl01
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