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Supplementary Note 1 

The largest number of MBHs was found between successive generations of the Metabolon platforms (PM 

 HDF), which is not surprising, given the technological similarity between them. Out of 369 identified 

hits, 291 paired identically annotated metabolites, 57 MBHs linked an unknown metabolite measured on 

the older platform generation to an annotated molecule measured on the more recent platform 

generation (e.g. X-18601  androstenediol (3beta,17beta)-monosulfate), and 21 MBHs linked apparently 

differing molecules in related pathways (7 molecules; e.g. threonate  oxalate) or unknowns (14 

molecules). As the Metabolon platforms differ with respect to the employed metabolite separation and 

detection methods (gas chromatography (GC) used for PM platform vs. liquid chromatography deployed 

for HDF (see methods)), this shows a robust concordance (79%) of platform performance and progressing 

component identification over time. 

Detailed IgG glycosylation was determined by two independent glycomics platforms from two 

independent labs, referred to as IgG and IgA.  Consequently, 29 out of 31 identified MBHs mapped to the 

same glycan structure, showing excellent agreement of 93% between both platforms.  

Two affinity proteomics platforms were used, one based on the SOMAscan aptamer technology (SOMA, 

1129 traits), and the other OLINK technology based on antibody pairs implementing the proximity 

extension assay (OLINK, 184 traits). Of 72 proteins that overlapped between both platforms, 52 were 

linked by MBH (72%). We found that overlapping proteins, which were not captured by a MBH, showed 

low correlation (Supplementary Data 10), further suggesting that those might be susceptible to different 

analytical parameters, hence should be validated with alternative technical platforms to ensure the 

correctness of the measurement.   

Supplementary Note 2 

We have investigated various GWAS associations to evaluate the performance of different platforms. For 

instance, SNP rs1047891 associated with glycine with a p-value = 7.4 x10-18 in 320 samples on targeted 

lipidomics BM platform, with p-value = 7.4 x10-15 in 291 samples on the HDF platform, and with p-value = 

7.1 x10-14 in 322 samples on the PM platform (Supplementary Figure 6A). In this example, the targeted 

assay appears to provide stronger signals, at least compared to the older PM platform, which was 

measured using an older generation of metabolic profiling described as HD2 by Metabolon. In another 

example however SNP rs1799958 associate with butyrylcarnitine (C4) with p-value = 7.9 x10-9 in 323 

samples on targeted lipidomics BM platform, and p-value = 2.3 x10-15 in 294 on the HDF platform, and 

with p-value = 1.6 x10-23 in 325 samples on the PM platform, suggesting that platform performance might 

depend on the molecule properties and how well a given molecule is captured by each platform 



(Supplementary Figure 6B). We have observed similar trend across other platforms including 

measurements of urine metabolome with CM and UM (for SNP rs9922704 with 3-hydroxyisovalerate 

(Supplementary Figure 6C)) and with plasma proteome SOMA and OLINK (for rs3896287 with LILRB2 

(Supplementary Figure 6D); for SNP rs8176693 with TIE1  (Supplementary Figure 6E); for SNP rs9892586 

with CCL14 (Supplementary Figure 6F)). 

Supplementary Note 3  

The number of identified partial correlations varies according to the platform. For instance, out of 6,183 

identified GGM’s, the largest number of 2,689 lipid-lipid associate ions were identified for the LD platform. 

At the same time, only one glycan-glycan association was found for the IgG platform (Supplementary Data 

2). The metabolite-metabolite associations in saliva, plasma, and urine were 56, 371, and 666, 

respectively.  GGM’s which we found can help explain biochemical processes by connecting chemical 

reactions as we find multiple substrate/product associations (e.g. cortisone/cortisol; fumarate/malate; 

glutamate/alpha-ketoglutarate), which shows how GGMs provide a simplified overview of the actual 

biological processes. GGM also help in the understanding of physiological processes such as the 

association between Luteinizing hormone (LHB) and follicle stimulating hormone (FSHB), which 

synergistically stimulate follicular growth and ovulation 1, as well as the metabolism and excretion of 

aspirin by indicating salicylate   salicilurate association in plasma and urine.  

Supplementary Note 4 

The composition of fatty acid (FA) side chains in complex lipids such as phosphatidylcholine or 

triacylglycerols play a role in a broad range of biological processes and it is thus critical to determine FA 

composition in measured lipids. This information is, however, not provided for phosphatidylcholines 

measured on the BM platform or triacylglycerols measured on the LD platform. We previously showed 

that the composition of phosphatidylcholines measured on the BM can be resolved by LD platform2 . Here, 

we investigated whether MBH may support more complete determination of the structural composition 

of complex lipids. Indeed, after examining MBH between the two lipidomics platforms (LD  BM) and 

between the metabolomics and lipidomics platforms (HDF  BM) and (HDF  LD), we resolved the FA 

side chain composition for a number of complex lipids. The side chain composition of 

phosphatidylcholines measured on the BM platform, for instance, were delineated using MBH (e.g. 

PC_aa_C32:1  PC(16:0/16:1), PC_aa_C40:6 PC(18:0/22:6)) (Supplementary Figure 7A), in line with 

our previous study2. The characterization of fatty acid chains in triacylglycerol was similarly refined 

(TAG48:2-FA14:0  myristoyl-linoleoyl-glycerol (14:0/18:2); TAG54:6-FA22:6  palmitoyl-

docosahexaenoyl-glycerl (16:0/22:6)) (Supplementary Figure 7B).  



These examples indicate how combining two technologically similar platforms can add valuable biological 

information, making them complimentary rather than redundant. 

Supplementary Note 5 

The multiomics GWAS conducted with all omics phenotypes measured across all platforms resulted in 

identification of 768 omicQTLs at 586 independent genetic loci that reached a significance level of     

p<5x10-8.   We used PhenoScanner database of human genotype-phenotype associations 3 to check for the 

replications and potentially novel findings. Majority of our findings replicated previous reports 

(Supplementary Data 7) We were able to replicate multiple hits including GWAS associations in blood 

with metabolites at the PYROXD2, NAT8, ACADS, NAT2, AGXT2, UGT1A4, CPS1, NAT16, and NAT16 loci 

(Gieger et al., 2008; Illig et al., 2010; Long et al., 2017; Shin et al., 2014; Suhre et al., 2011; Yu et al., 2014); 

with proteins including ACP1, ICAM1, FCGR2A, IL6R, ABO, SIGLEC9, ACP6, ENPP7, CCL15, PDGFRB (Di 

Narzo et al., 2017; Emilsson et al., 2018; Gilly et al., 2020; Suhre et al., 2017); with glycans including FUT6, 

ST6GAL1,  MGAT5, C1GALT1 (Huffman et al., 2011; Kiryluk et al., 2017; Sharapov et al., 2019); and in the 

urine PYROXD2 and AGXT2 (Raffler et al., 2015; Schlosser et al., 2020); and in saliva one genetic loci SLC2A9 

reported in the first and so far, the only one GWAS metabolomics study in saliva (Nag et al., 2020).  

We also replicated multiple EWAS hits including cg07839457 near NLRC5, cg08122652 near PARP9 

cg05575921 near AHRR, cg22910295 near ICAM5, cg13028630 near (C4B/C4A), and cg09488502 near 

SIGLEC4  4,5.  

Almost all of our TWAS with gene-traits replicated previous findings.  

Supplementary Note 6 

The metabolomics GWAS hits which we have identified as previously unreported included 42 plasma 

metabolites (22 HDF and 20 PM platforms) and 36 urine metabolomics (21 with CM and 15 with PM). 

Some of the urine GWAS identified on the CM platform were prolific; these include e.g. galactose with 7 

hits. The identified here urine GWAS hits including QTL near ALMS1, ACADS, NAT2, and RNU6-675P were 

previously reported in the blood 6-8 but not in the urine.  

We found 96 previously unreported protein GWAS hits (including 76 pQTLs with SOMA and 20 pQTLs with 

OLINK). Out of the top 10 previously unreported significant associations 7 were proteins measured on 

OLINK panel, which could be explained by the relatively limited number of studies deploying this 

technology. The previously unreported   pQTLs with the strongest association was between rs616114 

(near MEP1B and GAREM1 genes) and level of MEP1B (p-value = 2.1x10-45; beta = -0.88). The MEP1B is 

meprin β plasma membrane associated protein previously suggested to be involved in diabetic 



nephropathy 9. The MEP1B deficiency was shown to be associated with higher mortality rates and more 

severe diabetic kidney injury in mice with STZ-induced T1D 10, and was shown that MEP1B impacts 

complications of diabetes such as diabetic kidney injury by altering distinct metabolite profiles 11. 

 

Out of 38 identified lipidomics-QTLs we have only replicated one previously reported namely association 

between rs1799958 and plasma butyrylcarnitine (p-value = 7.9x10-10; beta = 0.50) 12. Among the remaining 

37 associations some including 18 between rs4493662 (near CTB-95D12.1/EEF1GP2) and various different 

triacylglycerols (TAG55 – TAG58) and 6 between rs79659787 (near RAB37) and different triacylglycerols 

(TAG48 – TAG52) were prolific. 

 

Supplementary Note 7 

We have identified 108, 77, 22, and 7 significant oQTM’s with IgA, OLINK, LD, and miRNA, respectively. 

The most prolific trait oQTL were among OLINK associations including TYMP (27 associations), ENPP7 (9 

associations), FCGR3B (6 associations), and FCRL1 (6 associations). We found that two of CPG’s associated 

with FCGR3B (cg26435281, and cg26561570) were on the gene locus of the associated protein 

(Supplementary Figure 8A) and out of nine CpG’s associated with ENPP7 protein, seven were on the gene 

locus of associated protein and two in very near proximity on the same chromosome. The ENPP7 

measured on OLINK showed MBH with ENPP7 measured on SOMA (p-value = 1.33x10-103, r = 0.83), which 

was associated with the same CpG’s (Supplementary Figure 8B). Additionally, the ENPP7 protein associate 

with SNP rs3923265 near ENPP7 (p-value = 2.8x10-24, beta = 0.67), which was previously reported (Sun et 

al., 2018). The ENPP7 (Ectonucleotide pyrophosphatase/phosphodiesterase family member 7) is an 

alkaline sphingomyelinase that hydrolysis sphingomyelin (SM) to ceramide and was identified as 

implicated in T2D by insulin signaling inhibition 13. Moreover, our recent study identified epigenetic 

modification of ENPP7 as factor contributing to T2D 14.  

Supplementary Note 8 

We have identified total of 1,381 (meQTL’s) associations between gene SNPs and methylation levels, 

15,991 (eQTM’s) associations between methylation levels and mRNA and 17 (eQTL’s) associations 

between gene SNPs and mRNA that reached a significance level of p<5x10-8. The meQTL’s consist of 203 

unique SNPs and 308 unique methylation sites among which prolific SNPs (e.g. rs8283 near ATF6B 

associated with 33 methylation sites; rs4251552 near IRAK4 associated with 21 methylation sites, or 

rs12924274 near CNTNAP4 with 19 methylation sides) and prolific methylation sites (e.g. cg26831081 and  

cg05877118 near CLYBL with 75 and 73 SNPs, respectively; or cg03955321 near NDUFAF1 with 63 SNPs) 



were identified. Among eQTM’s we identified 280 unique methylation sites and 239 unique mRNA’s 

where we found many prolific methylation sites (e.g. cg04968013 near CACNB2 associated with 216 

mRNA’s, cg08437802 near KANK2 associated with 205 mRNA’s) and mRNA’s (e.g. PRSS33 associates with 

764 methylation sites, SIGLEC8 associates with 673 methylation sites or CLC associated with 665 

methylation sites).  The 17 identified eQTL’s included 12 unique SNP’s and 7 unique mRNA’s. We have 

identified two prolific mRNA’s including C4B and C4A associated with 6 and 5 SNP’s, respectively. We also 

identified association trios between the SNP-methylation, methylation-mRNA and SNP-mRNA 

(Supplementary Figure 9). 

Supplementary Note 9 

Among the protein and metabolite TWAS associations many reflect on the translation processes e.g. 

association between ENSG00000254415_SIGLEC14  SIGLEC14 (SOMA), and ENSG00000115523_GNLY  

GNLY (SOMA). Here the expressed gene serves as a guide for protein synthesis. Other associations, like 

the one found between the corticosteroid prednisolone and the FKBP5 gene transcript, were previously 

described as elevated under oral corticosteroid 15. Thus, such interaction may indicate medication-

triggered treatment responses.  

Across the multiomics TWAS, we have identified prolific associations between (e.g. protein, metabolite) 

and multiple gene transcripts. For instance, Mullerian-inhibiting factor (AMH) was associated with 195 

different transcripts, P-selectin (SELP) with 18 transcripts, C-X-C Motif Chemokine Ligand 10 (CXCL10), and 

C-X-C Motif Chemokine Ligand 11 (CXCL11) with 16 and 6 transcripts, respectively. The CXCL10 and CXCL11 

are inflammatory chemokines induced by the interferon (IFN)-γ, regulating the differentiation of naive T 

cells to T helper 1 (Th1) cells and migration of immune cells to their focal site 16.  All the gene transcripts 

associated with CXCL11 overlap with the one identified as significantly associated with CXC10 and were 

previously reported as molecules involved in responses to viral infection (Supplementary Data 15).  

Supplementary Note 10 

Overview of the MOD molecular network 

In the MOD network, 26 molecules monitored across 10 platforms were identified (Supplementary Data 

18 and Supplementary Figure 3). We observed that 9 of those molecules were associated with leptin, 

forming the main molecular subcluster. The molecules showing association with leptin (insulin, glycerol, 

and sphingolipids, as well as clinical parameters such as body temperature) reflect on the previously 

known and biologically relevant leptin function. For instance, the role of leptin in insulin secretion 17, 

lipolysis 18, sphingomyelin and ceramide metabolism 19 as well as body temperature regulation 20 was 



previously described. The leptin association with glycerol indicates its contribution to triglyceride turnover 

and lipolysis, as previously suggested 21. Moreover, leptin is sexually dimorphic (lower in males), explaining 

its association with SEX phenotype.  We have also identified the link between leptin and CXCL5, which was 

not previously defined. CXCL5 is a cytokine implicated in the chemotaxis of inflammatory cells. It was also 

identified as highly expressed in white adipose tissue (WAT), and high circulating levels were associated 

with human obesity and insulin resistance 22. Additionally, CXCL5 was recently implicated in the browning 

of WAT 23. Interestingly, leptin was indicated as a molecule enabling browning of WAT while injected 

subcutaneously 24, intracerebroventricular and intra-ARC 25. Identifying the association between leptin 

and CXCL5, which we achieved by this integrated omics analysis, might suggest their interplay in the 

processes relevant for WAT remodeling. This could have significant relevance for MOD cluster 

characterized by high BMI and low insulin resistance. 

 

Overview of the SIRD molecular network 

The molecular network of SIRD consists of 45 molecules measured on 9 platforms (Supplementary Data 

19 and Supplementary Figure 4). Those molecules form subclusters centered around insulin, insulin-like 

growth factor binding protein 1 (IGFBP1), phenylalanine, phosphate, 2-hydroxyarachidate, and linked 

pyrraline – DiHOME. Insulin was directly associated with leptin and pancreatic polypeptide (PPY), which is 

rapidly released in the postprandial state 26 and inhibits the glucagon secretion 27. Interestingly, in this 

subcluster we also found 1-carboxyethylphenylanine and                                         1-carboxyethylvaline. The 

carboxyethylation of cysteine residues was recently attributed to gut microbiome and linked with 

generation of neoantigens in immune diseases 28.  Identified molecular network might potentially reflect 

on the secretory interplay between insulin, PPY and glucagon, which could be impacted by 

carboxyethylated branch chain and aromatic amino acids. Given that the SIRD subgroup is characterized 

by severe insulin resistance, the role of carboxyethylated branch chains and aromatic amino acids in PPY-

glucagon interaction could provide further insight into the mechanisms related to insulin resistance. It 

would be necessary to further investigate these indications in a follow-up of this integrated omics analysis.  

 

 

Overview of the SIDD molecular network 

The molecular network generated for SIDD consists of 113 molecules measured across 14 platforms 

(Supplementary Data 20 and Supplementary Figure 5). Those molecules are highly interconnected and 

display subclusters around alpha-ketobutyrate, gamma-glutamylphenylalanine, sphingomyeline 

(18:2/24:2), mannose-complement C2, coagulation Factor XI (F11), cortisol and glucose. We have 



identified an association between F11 and kallikrein (KLKB1). Both proteins are components of the contact 

system recognized as potent procoagulant and proinflammatory plasma protease cascade 29. Both 

proteins showed association with SNPs, where F11 associate with rs5030062 and KLKB1 with rs710446, 

located on chromosome 3 near to Kininogen-1 (KNG1). Interestingly, KNG1 is part of the kinin-kallikrein 

system, which is also playing a role in inflammation, coagulation, and blood pressure control. Genetic 

variation in KNG1 was shown to influence contact system protein levels 30. Identified here, molecular 

interplay could indicate potential events promoting inflammation and endothelial dysfunction triggered 

by hyperglycemia-activated coagulation and prothrombotic state, relevant for SIDD cluster, which is 

characterized by poor glycemic control. We also found an association between KLKB1 and methylation 

site g01028142 near Cytidine monophosphate (UMP-CMP) kinase 2 (CMPK2). CMPK2 is a metabolic 

enzyme implicated in mitochondrial DNA synthesis, shown to be critical for NLRP3 inflammasome 

activation 31, which in turn is implicated in T2D and cardiovascular complications 32. The interaction 

between genetic variants, protein, and methylation provides further insight into pathologies potentially 

related to SIDD subtypes. It suggests a susceptibility to cardiovascular events that could not be related 

without multiomics dataset.      

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figures. 

 

Supplementary Figure 1. Overview on the previous study using QmDiab datasets. The color code 
indicates each platform used in the given study. The letter codes above the colors reflect on each platform: 
DNA - Genotype; MET - DNA methylation; RNA - gene expression; miRNA - microRNA expression; OLINK - 
proteomics; SOMA - proteomics; PGP – glycomics (total plasma N-glycosylation); IgG - glycomics (IgG 
glycosylation); IgA – glycomics (IgA & IgG glycosylation); BRAIN - lipoproteomics; LD - lipidomics; BM - 
lipidomics; HDF – metabolomics from plasma with LC/MS method; PM – metabolomics from plasma with 
LC/MS & GC/MS method; SM – metabolomics in saliva with LC/MS & GC/MS method; UM – metabolomics 
from urine with LC/MS & GC/MS method; CM – metabolomics from urine with NMR method. The exact 
protein description is provided in Table 1 (main text). 

 



 



Supplementary Figure 2. A) MBH identifies clinically relevant association between HbA1C and molecules 
involved in pathology of T2D. B) MBH reflects on physiological processes such as thyroxine transport and 
C) lipid metabolism.   

 

 

Supplementary Figure 3. Molecular network generated for mild obesity related (MOD) T2D subgroup 

characterized by high BMI with low insulin resistance. 

 



 

Supplementary Figure 4. Molecular network generated for severe insulin resistant (SIRD) T2D subgroup 

characterized by highest level of insulin resistance (HOMA2-IR) and high BMI. 

 



 



Supplementary Figure 5. Molecular network generated for severe insulin deficient (SID) characterized by 

young age at onset, low BMI, low insulin secretion (HOMA2-B) and poor glycemic control (high HbA1c). 

 

 

 

 

Supplementary Figure 6. Evaluation of platform performance through the strength of GWAS hits. A)-F) 

Multiomics GWAS hits.  



 

Supplementary Figure 7. Omics platforms overlap and complementarity. A) & B) The structure of 

complex lipids was revealed with by complementary platforms connected with MBH. 

 

 

 



 

Supplementary Figure 8. Example of EWAS associations with proteins measured on OLINK. A) EWAS 

associations of Fc Gamma Receptor IIIb (FCGR3B) protein. B) EWAS associations of Ectonucleotide 

Pyrophosphatase/Phosphodiesterase 7 (ENPP7) protein.  

 



 

 

Supplementary Figure 9. Example of association trios between the SNP-methylation, methylation-mRNA 

and SNP-mRNA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary references 

1. Filicori, M., et al. Luteinizing hormone activity supplementation enhances follicle-stimulating 
hormone efficacy and improves ovulation induction outcome. J Clin Endocrinol Metab 84, 2659-
2663 (1999). 

2. Quell, J.D., et al. Characterization of Bulk Phosphatidylcholine Compositions in Human Plasma 
Using Side-Chain Resolving Lipidomics. Metabolites 9, 109-109 (2019). 

3. Kamat, M.A., et al. PhenoScanner V2: An expanded tool for searching human genotype-
phenotype associations. Bioinformatics 35, 4851-4853 (2019). 

4. Bonder, M.J., et al. Disease variants alter transcription factor levels and methylation of their 
binding sites. Nature genetics 49, 131-138 (2017). 

5. Zaghlool, S.B., et al. Epigenetics meets proteomics in an epigenome-wide association study with 
circulating blood plasma protein traits. Nature Communications 11(2020). 

6. Lotta, L.A., et al. A cross-platform approach identifies genetic regulators of human metabolism 
and health. Nature Genetics 53, 54-64 (2021). 

7. Schlosser, P., et al. Genetic studies of urinary metabolites illuminate mechanisms of detoxification 
and excretion in humans. Nature Genetics 52, 167-176 (2020). 

8. Shin, S.-Y., et al. An atlas of genetic influences on human blood metabolites. Nature Genetics 46, 
543-550 (2014). 

9. Imperatore, G., Knowler, W.C., Nelson, R.G. & Hanson, R.L. Genetics of diabetic nephropathy in 
the Pima Indians. Vol. 1 275-281 (Curr Diab Rep, 2001). 

10. Bylander, J.E., Ahmed, F., Conley, S.M., Mwiza, J.M. & Ongeri, E.M. Meprin Metalloprotease 
Deficiency Associated with Higher Mortality Rates and More Severe Diabetic Kidney Injury in Mice 
with STZ-Induced Type 1 Diabetes. Journal of Diabetes Research 2017(2017). 

11. Gooding, J., et al. Meprin β metalloproteases associated with differential metabolite profiles in 
the plasma and urine of mice with type 1 diabetes and diabetic nephropathy. BMC Nephrology 
20(2019). 

12. Long, T., et al. Whole-genome sequencing identifies common-to-rare variants associated with 
human blood metabolites. Nature Genetics 49, 568-578 (2017). 

13. Moore, A.F., et al. The association of ENPP1 K121Q with diabetes incidence is abolished by 
lifestyle modification in the diabetes prevention program. J Clin Endocrinol Metab 94, 449-455 
(2009). 

14. Gadd, D.A., et al. Epigenetic scores for the circulating proteome as tools for disease prediction. 
Elife 11(2022). 

15. Bigler, J., et al. A Severe Asthma Disease Signature from Gene Expression Profiling of Peripheral 
Blood from U-BIOPRED Cohorts. American journal of respiratory and critical care medicine 195, 
1311-1320 (2017). 

16. Tannenbaum, C.S., et al. The CXC chemokines IP-10 and Mig are necessary for IL-12-mediated 
regression of the mouse RENCA tumor. Journal of immunology (Baltimore, Md. : 1950) 161, 927-
932 (1998). 

17. Zhao, A.Z., Bornfeldt, K.E. & Beavo, J.A. Leptin inhibits insulin secretion by activation of 
phosphodiesterase 3B. J Clin Invest 102, 869-873 (1998). 

18. Zeng, W., et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 163, 
84-94 (2015). 

19. Bonzon-Kulichenko, E., et al. Central leptin regulates total ceramide content and sterol regulatory 
element binding protein-1C proteolytic maturation in rat white adipose tissue. Endocrinology 150, 
169-178 (2009). 

20. Luheshi, G.N., Gardner, J.D., Rushforth, D.A., Loudon, A.S. & Rothwell, N.J. Leptin actions on food 
intake and body temperature are mediated by IL-1. Proc Natl Acad Sci U S A 96, 7047-7052 (1999). 



21. Siegrist-Kaiser, C.A., et al. Direct effects of leptin on brown and white adipose tissue. J Clin Invest 
100, 2858-2864 (1997). 

22. Chavey, C., et al. CXC ligand 5 is an adipose-tissue derived factor that links obesity to insulin 
resistance. Cell Metab 9, 339-349 (2009). 

23. Lee, D., et al. CXCL5 secreted from macrophages during cold exposure mediates white adipose 
tissue browning. J Lipid Res 62, 100117 (2021). 

24. Sarmiento, U., et al. Morphologic and molecular changes induced by recombinant human leptin 
in the white and brown adipose tissues of C57BL/6 mice. Lab Invest 77, 243-256 (1997). 

25. Dodd, G.T., et al. Leptin and insulin act on POMC neurons to promote the browning of white fat. 
Cell 160, 88-104 (2015). 

26. Adrian, T.E., et al. Distribution and release of human pancreatic polypeptide. Gut 17, 940-944 
(1976). 

27. Aragon, F., et al. Pancreatic polypeptide regulates glucagon release through PPYR1 receptors 
expressed in mouse and human alpha-cells. Biochim Biophys Acta 1850, 343-351 (2015). 

28. Zhai, Y., et al. Cysteine carboxyethylation generates neoantigens to induce HLA-restricted 
autoimmunity. Science 379, eabg2482 (2023). 

29. Weidmann, H., et al. The plasma contact system, a protease cascade at the nexus of inflammation, 
coagulation and immunity. Biochim Biophys Acta Mol Cell Res 1864, 2118-2127 (2017). 

30. Rohmann, J.L., et al. Genetic determinants of activity and antigen levels of contact system factors. 
J Thromb Haemost 17, 157-168 (2019). 

31. Zhong, Z., et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. 
Nature 560, 198-203 (2018). 

32. Schroder, K., Zhou, R. & Tschopp, J. The NLRP3 inflammasome: a sensor for metabolic danger? 
Science 327, 296-300 (2010). 

 


