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Data augmentation 
 
The human brain EEG signals are typically identified by different frequencies based on various 

sleep stages. In our paper, we consider the following four augmentation methods:  

Bandpass Filtering. To reduce noise, we use the order-1 Butterworth filter (implemented by 

𝑠𝑐𝑖𝑝𝑦. 𝑠𝑖𝑔𝑛𝑎𝑙. 𝑏𝑢𝑡𝑡𝑒𝑟), only the within-band frequency is preserved after augmentation. For 

Sleep EDF, we use frequency band interval (1, 5) and (30, 49); For SHHS, we use interval (1, 3) 

and (30, 60); For MGH Sleep, we only use interval (0, 30).  

Noising. We add independent and identically distributed high-frequency or low-frequency noise 

onto each channel. For three datasets, the high-frequency signal is sampled from uniform 

distribution modulated by a noise degree, following the equation: 

𝑛𝑜𝑖𝑠𝑒_𝑠𝑒𝑞 = 𝐷 ∗ 𝐴 ∗  𝑢𝑛𝑖𝑓𝑜𝑟𝑚_𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑒𝑞, 

Where 𝐷 is the noise degree (we use 𝐷=0.05 for all datasets), 𝐴 is the amplitude range of the 

original signal, 𝑢𝑛𝑖𝑓𝑜𝑟𝑚_𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑒𝑞  is an independent and identically distributed (i.i.d.) 

sequence that has the same length as the signal and is generated from a uniform distribution in 

(-1,1) by 𝑛𝑝. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑. To generate the low-frequency noise, we first sample a random 

noise sequence with 
1

100
 of the signal length in the same way, and we later use 

𝑠𝑐𝑖𝑝𝑦. 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒. 𝑖𝑛𝑡𝑒𝑟𝑝1𝑑 to interpolate the noise sequence into the same length, whose 

frequency will turn low. After generating the noise sequence, we will add the noise to the original 

signal, where the probability of adding “high” or “low” or “both” will be equal.  

Channel Flipping. The sensor on the left side and the right of the brain are placed symmetrically. 

Thus, we flip the corresponding channels as another augmentation method. For Sleep EDF, we 
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can flip the Fpz-Cz and Pz-Oz channels; For MGH Sleep, we can flip the F3-M2 and F4-M1, or C3-

M2 and C4-M1 or O1-M2 and O2-M1; For SHHS, we can flip C3/A2 and C4/A1.  

Shifting. Within one instance, we will rotate/delay the signal for a certain time span. For three 

datasets, we uniformly split a signal epoch into two pieces and then resemble it as the 

augmentation. An illustration is provided in Figure 1. After doing augmentations, we will clip the 

signal amplitudes within a valid sensing range (which is the max measured signal amplitude, 2.5e-

4 for Sleep EDF, 50 for MGH, 1.25e-4 for SHHS). To get an augmented version of a signal, we 

randomly apply one of the augmentation methods with equal probability. 

Model Implementation 

All models are implemented using PyTorch 1.4.0 and optimized with Adam optimizer, 2e-4 as 

learning rate, 1e-4 as weight decay. For all datasets, we use 256 as batch size and use 𝜎 = 2, 𝛿 =

0.2, 𝑇 = 2 as the hyperparameters. In terms of the dimension of learned representations, 128 is 

for Sleep EDF, 256 for SHHS, and 192 for MGH. We implement the logistic regression model by 

scikit-learn with default setting and 500 as the maximum iteration for logistic regression 

evaluation of contrastive methods (the logistic regression is implemented by 

𝑘𝑙𝑒𝑎𝑟𝑛. 𝑙𝑖𝑛𝑒𝑎𝑟_𝑚𝑜𝑑𝑒𝑙. 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛  with 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 500 argument.). The 

experiments are conducted on two NVIDIA GTX 3090 GPUs with 24GB memory each, a 32-core 

CPU Linux machine with 256GB RAM. Note that the training process is IO-intensive, which 

involves loading sample files from the disk batch-by-batch. Therefore, a 4TB SSD persistent disk 

is used to store the raw signal epochs.  
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