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Abstract

In this appendix, we show that our loss function can be decomposed into two parts
"Alignment" and "Uniformity", which has been confirmed to be essential in self-
supervised learning (SSL). We also provide theoretical and empirical supports for these
two properties. We opened our codes and pretrained models are provided in Github
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1 ContraWR: Contrast with the World Representation

In contrastive learning, the positive pairs are generally valid (from data augmentations) for
computing the loss, however, "negative" samples are conceived (people usually call random
samples as "negative" samples). Few works have been done to improve the existing negative
sampling strategy or find effective alternatives. Among the pioneers, Chuang et al. (2020) seeks to
approximate an unbiased negative sample distribution from the world distribution and the class
distribution, however, the real class distributions are usually unknown given an unlabeled dataset.
Recently, BYOL (Grill et al., 2020) and SimSiam (Chen and He, 2020) are proposed, which ignores
negative sampling (or contrastive information) and exploits only the positive samples. However,
contrastive information could be beneficial if used properly.

We utilize the global statistics of the world/dataset and propose a new contrastive method,
ContraWR. In our method, a large number of negative samples are replaced by a simple average
representation of the negative samples, which is called the world representation. The world repre-
sentation makes the pretrain step much more robust. In fact, the similarity between positive
pair (z/,z"") should be stronger than most of the random pairs (z/,z,,) but not all, which is an
improper assumption in recent works (He et al., 2020a,b; Chen et al., 2020). Our pretrain step
therefore follows a weaker guidance for the contrastive problem: the similarity between positive pairs
is stronger than the similarity between the corresponding instance and the average of the world/dataset.

The ContraWR model is shown in Figure 1. The encoder network f(-) maps two different views
of the same instance to latent representations. Then, the project head g(-) further projects the
latent representations onto a unit hypersphere, where the loss is defined. Though we only show
one encoder f(-) and one projector g(-), our ContraWR can also fit into two-network pipelines,
where an online network fy(-), g¢(-) and a momentum target network fy(-), ¢ (+) are presented.
We try both in the experiment.

1 https:/ /github.com/ycq091044 /ContraWR
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Figure 1: ContraWR Pipeline

The world representation. Assume z’ is the anchor, z” is the positive sample, and zj is a generic
random sample. For the anchor z/, we create a world representation (average of the negative
samples), z,, as the only contrastive information. To formalize, we assume p(-) is the sample
distribution over the dataset, independent to z’. The world representation z, is defined by,

Zy = Ekwp(-)[zk] = Ezk~p(~)[zk]' 1)

Here, we denote D = {x: ||x|| <1, x € R™}. Obviously, z, € D. We assume the joint distribution
of positive pairs as p* (-, -), where its marginal distrbution is naturally p(-).

Gaussian kernel measure. Instead of using cosine similarity, this paper adopts Gaussian kernel
defined on D, Ker(x,y) : D x D+ (0,1] as a similarity measure. Formally, given two projections
z/,7"" € S"~! C D, the similarity is defined as,

sim(z,z") = Ker(2,2") = exp _llz -2 2)
7 4 20_2

We use o = 2 throughout the paper and also in experiments. For the selection of ¢, we will later
specify two criterions: (i) o > 2; (ii) o should be empirically small.

Loss function. For an random draw from the joint distribution (z/,z") ~ p™, where (z/,2") is a
positive pair. We devise a triplet loss for the pair,

L = [sim(z/,z) + 6 —sim(z’,2")]+ (3)

where we regard z’ as the anchor, z” as the positive sample and § > 0 is the empirical margin.
The loss is minimized over batches when similarity of positive pairs, sim(z’,z"), is larger than
similarity to the world representation, sim(z’,z, ), by a margin of J. In fact, in the appendix, we
show that the results are not sensitive to the non-negativity function and margin 6. However,
some may find the margin-based form useful, so we keep it as a triplet loss.

Analysis of the loss. Without loss of generality, let us first skip the non-negativity function and
¢ in Equation (3), and room in to the expectation over the joint distribution (suppose a batch with
infinity size),

E(z’,z”)~p+(~,~) [sim(z’, Zw) — sim(z/, Z//)] = E(Z,,Z,,>NP+(',') [sim(z', Ekwp(') [ZkD — sim(z/, Z//)] (4)



Since sim(-, -) is bounded, we could take the expectations separately and re-arrange the formula,

— E(z’,z/’)~p+(-,-) [sim(z’, Z//)] + E(z’,z”)~p+(-,-) [sim(z/, EkNp(') [Zk])] (5)

Alignment Uniformity

In light of recent works (Wang and Isola, 2020; Chen and Li, 2020), who identify two key
properties of contrastive loss: Alignment and Uniformity. We reveal that our design coincides
with these two properties.

Alignment requires the encoder to assign similar features to similar instances. In Equation (5),
the first term is straightforwardly defined with the expected similarity between positive pairs.
Minimizing the above equation would enforce the encoder to map similar input samples onto near
region.

Uniformity prefers a feature distribution with high entropy on the unit hypersphere, which
preserves maximal information. Let us name the second term (of Equation (5)) £,, and do the
following derivation,

Ly = E(g gnympt () [51m (2", Egp [24])] (6)
= Eyp(ylsim(z', Exp([2i])] ?)
1 , 2
=Eyp() [exp (_2(72 HZ - Ekmp(-)[zk]H > (8)
1 , 2
> exp <_202 By [~ Bl D o
1 /
= exp <_M . (1 — <EZ’~p(-) [Z ]'Ezk~p(-)[zk]>)> (10)
nn2 _
= exp (”EZ Np(;([fzz I 1> . (11)

From Equation (8) to (9), we use Jensen’s inequality since exp(-) is a convex function. In Equa-
2
tion (9), we could observe that £, is the upper bound of the term, E,/_ () [HZ/ — Exep() [z ] H },

which is negatively correlated to the variance-like objection over all the projections (since z is re-
stricted onto the hypersphere, the expectation term is not exactly the sum of independent variance
over all projected dimensions). In Equation (11), the term [|E,/._p(.y[2'] || is the L2 norm of the
world representation. Conceptually, by minimizing the upper bound £,, the world representation
will be restricted (see Equation (11)), and the joint variance of all feature dimensions is enlarged
(see Equation (9)).

Wang and Isola (2020) proves that the unique minimizer of the following average Gaussian
potential is the normalized surface area measure (i.e., p(-) is the uniform distribution) on §"~1,

['gaussiun = Ez/Np(-), zp~p(-) [exp(—tHz’ - ZkHZ)] , t>0. (12)

1

In fact, £; is also an upper bound of Lgyssian given t = 3,7

Proposition 1. For D = {x: ||x|| <1, x € R™}, given a fixed y € D, given o > 2, for any x € D, the
following kernel-induced function is concave,

1
1) = exp (~rally —xI2). 13

Based on Proposition 1 (see proof in Appendix A), we apply Jensen’s inequality on Equation (8)



and reach the following result,
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Figure 2: Statistical Curves During Training on Sleep EDF Dataset

Empirically, we shown (i) the actually loss function; (ii) average similarity of positive pairs;
(iii) L2 norm of the world representation; (iv) average Gaussian potential Egaussim in Figure 2.
Clearly, durign training, the loss is decreasing, and the average similarity between positive pairs
are gradually approaching 1. With only a few iterations, the world representation is restricted
to the original, which means all projected vectors lie on the unit hypersphere symmetrically,
indicating a high entropy and non-collapse. Interestingly, the average Gaussian potential is
gradually decreasing below 0.8, while exp(—1) ~ 0.78 is the exact average Gaussian potential
for uniform distribution over the hypersphere, since at that case, any two random unit vectors
would be orthogonal almost surely. In sum, by minimizing the contrastive loss in Equation (4), or
equivalently Equation (5), the alignment and uniformity properties are obtained.

2 ContraWR™: Contrast with Instance-aware World Representation

Harder criterion. To learn a better representation, we find that a harder criterion would be more
beneficial: the similarity between positive pairs is stronger than the similarity between the corresponding
instance and the weighted average of the world/dataset, where the weight is higher for closer samples.
Robinson et al. (2020) also showed that harder samples are more helpful.

Instance-aware world representation. In this section, the world representation is enhanced by
modifying the sampling distribution to be instance-specific. We assume p(- | z) as the instance-
aware sampling distribution, opposed to the instance-independent sample distribution p(-),

p(-|2) cexp <<"TZ>> (15

where T > 0 is a temperature hyperparameter. The similar samples are selected with higher
probability parametrized by p(- | z). Accordingly, for an anchor z;, the instance-aware world
representation changes into,

b o (252) 2]

B {eXP (W)}

where T controls the contrastive hardness of the world representation. In fact, when T — oo,
p(- | z) is identical to p(-) and Equation (16) reduces to the the simple version in Equation (1);

zw = Exp((z) [26] = (16)



while T — 07, the form becomes trivial, z,, = argmax,, (sim(z;, zx)). We have tested different T
in Section ??, and find the model is not sensitive to T within a wide range.

Let us re-write the similarity measure given the anchor z; and the instance-aware world
representation z,

. ) 1 2
sim(z;, zy) = sim (zi, Ekwp(_‘zi)[zk]) = exp (—M ’ z; — Ek~p(-\2i)[zk]“ ) (17)

Analysis of harder contrastive loss. In this scenario, the analysis starts from the same point as
Equation (5). The first (alignment) term remains the same, and for the second (uniformity) term, it
changes into,

,Cz = E(Z’,Z,I)Np+(‘,') [sim(zi, EkNP('|Zz‘) [Zk] )] (18)

1 2
=Epp() lexp <—%2 ) z — Ezk~p(»|z,-)[zk]H )] (19)

1 2

= Eap(), 2p (1) [exp (M |12; — 2| )] (20)
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> Ez’~p(~), zi~p(-) |€XP “252 lz; — z|| (22)

From Equation (19) to (20), we also use Jensen’s inequality based on the concave property in
Proposition 1. We observe that the new (harder) £, upper bounds a more strict (instance-aware)
Gaussian potential in Equation (21), which itself is the upper bound of the average Gaussian potential
in Equation (22) (Wang and Isola, 2020). The new loss function empirically leads to better
performance in the experiment.

3 Code Snippets

The exact PyTorch snippets are attached as reference,

# emb_ahr, emb_pos :Nx128, anchor and positive projections
# delta, T, sigma :margin, temperature, Gaussian shape

# gaussian kernel

5| def gaussian(z_i, z_j): # z_i: Nx128, z_j: Nx128 or 1x128

mse = torch.sum(torch.pow(z_i - z_j, 2), dim=1) # Nxi1
return torch.exp(-mse / (2 * sigma**2)) # Nxi

# - Contrast with the World Representation ---------
# compute z_w
z_w=torch.mean(emb_pos, dim=0) # 1x128

3| # compute sim(z_i,z_j) and sim(z_i,z_w)

sim_pos = gaussian(emb_ahr, emb_pos) # Nxl1
sim_wld = gaussian(emb_ahr, z_w) # Nx1

7| # loss function

zero_vec = torch.zeros(sim_pos.shape).to(device)
loss = torch.max(zero_vec, sim_wld + delta - sim_pos) .mean()
# ---- Contrast with Instance-aware World Representation ----

# compute z_w

;| dot_sim = torch.mm(emb_ahr, emb_pos.t()) # NxN
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weight = torch.nn.Softmax(dim=1) (dot_sim/T) # NxN
z_w = torch.mm(weight, emb_pos) # Nx128

# compute sim(z_i,z_j) and sim(z_i,z_w)
sim_pos = gaussian(emb_ahr, emb_pos) # Nxl1
sim_wld = gaussian(emb_ahr, z_w) # Nx1

# loss function
zero_vec = torch.zeros(sim_pos.shape).to(device)

loss = torch.max(zero_vec, sim_wld + delta - sim_pos).mean()
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A Proof of Concavity

Proposition 1. Assume D = {x: ||x|| <1, x € R™}. Given a fixed y € D, given o > 2, for any x € D,
the following kernel-induced function is concave,

1
) = exp (-~ slly ~xI2). )

Proof. Since f(x) is a real-valued function, and the domain D is a convex set, the above proposition
is equivalent to: for any x;,x; € D, for any A € [0,1],

BT — A)xq +Axa) > (1= A)Vh(x1) + Ah(xa). (24)

We introduce new vectors (reducing offset y) and new functions,

yi=Yy—X1 (25)
y2=Yy— X2 (26)
2
= —— <
g(t) =exp 202 )7 [t <2 (27)

Thus, Equation (24) could be re-written into,

g (1A =A)y1 +Ay2ll) = (1 = A)g(lly1ll) +Ag(l[y2ll)- (28)



Two step proof. We prove this inequality by two steps. First, we prove that

g (11 = A)y1 +Ayzll) = ¢ (1= Mllyall + Ally2ll) (29)

It is obvious, since for any 0 < a < b < 2, we have g(a) > g(b). Also, by Triangle inequality, we
have,
11 =A)yr +Ay2 | < [[(1=Myall + [[Ay2ll = (1= A)[lys [ + Ally2| (30)

By the way,
(1= M)yl + Ally2ll < maxyyeplly — x| = 2. (31)

Second, we prove that

g (1 =Mllyrll +Ally2ll) = 1 =A)g(lly1l) + Ag(lly2ll)- (32)

Since 0 < |ly1]|, [ly2]] < 2, Equation (32) is equivalent to prove that function g(t) is concave in
[—2,2]. The second derivative of g(t) is calculated as,

t2 o 0.2 t2
" = . —
g'(t) = = eXp< 202> (33)

We could tell that if ¢ > 2, then ¢”(t) < 0, which makes g(t) concave. O
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