iScience, Volume 27

Supplemental information

Multiplex spatial omics reveals changes

in immune-epithelial crosstalk during inflammation

and dysplasia development in chronic IBD patients

Matthijs J.D. Baars, Evelien Floor, Neeraj Sinha, José J.M. ter Linde, Stephanie van Dam, Mojtaba Amini, Isaäc J. Nijman, Joren R. ten Hove, Julia Drylewicz, G.Johan A. Offerhaus, Miangela M. Laclé, Bas Oldenburg, and Yvonne Vercoulen

Supplementary Figures

Supplementary Figure 1. Spatial transcriptomics reveals differential gene expression in dysplasia, related to Figure 1 and Tables S1A-B.

A) Numbers of cells included in GeoMx DSP analysis per segment (ROI), expressed in nuclei counts for CD45+ immune cells (top) and panCK+ epithelium (bottom).

B) UMAP clustering of samples: separate clusters of epithelial and immune cell segments, dysplasia/ uninflamed control, and per patient.

C) The coefficient of variation (CV) for each gene (g) was calculated using formula Cvg/SDg/meang to identify genes with high CVs that should have large differences across various profiled segments (x-axis) in the study. Displayed as a heatmap is the unsupervised clustering.

Supplementary Figure 2. The epithelial compartment displays reduced inflammatory signaling in dysplasia, related to Figure 2 and Tables S2-3.

Representative images of: (A) H&E tissue with disease state annotations: uninflamed, inflamed, and dysplastic. B) DAPI with segmentation outlines for both compartment (left), and single-cell segmentation (right). C) IMC tissue staining displayed per marker, D) KI67: the epithelial compartment border is indicated with a purple outline.

E) PCA plot showing the relative contribution of expression of each marker to variance observed in marker expression across biopsies.

F) Representative spatial display of the NFkB ratio for individual nuclei indicated by color gradient.

G) Boxplots showing median expression of P-AKT, P-ERK, and P-S6 in uninflamed, inflamed, and dysplastic epithelium.

Supplementary Figure 3. Lamina propria cells display elevated expression of immune checkpoints, cytokines and active signaling in inflammation and early dysplasia, related to Figure 3.

A) PCA plot showing the relative contribution of expression of each marker to variance observed in marker expression across biopsies.

B) Representative images showing CTLA-4 (magenta) and E-cadherin (green).

C) Representative images showing HLA-DR-DP-DQ (magenta) and E-cadherin (green).

D) Boxplots showing median expression of P-ERK and P-AKT in lamina propria in different disease states (uninflamed, inflamed, colitis-associated dysplasia).

E) Median expression is displayed for Cleaved Caspase 3, and KI67 in lamina propria in different disease states (uninflamed, inflamed, colitis-associated dysplasia).

F-G) Percentage of cells in lamina propria and epithelium with 0, 1-5 or >5 IL-17A counts per cell. Healthy colon value was obtained from a TMA of healthy colon tissue. Two-way ANOVA with main effects only was performed, with Tukey HSD post-test. Colored points represent the percentage of cells per tissue biopsy.

Supplementary Figure 4. Changed cellular composition of the tissue during dysplasia development, related to Figure 4.

A) Hierarchical clustering of phenoclusters, displaying immune cell lineage markers expression. Heatmap displaying median expression values of lineage markers per phenocluster. Top row gradient in green indicates the frequency of cells per cluster.

B) Hierarchical clustering heatmap showing clustering per patient and disease state based on relative abundance of cell types.

Supplementary Figure 5. T cell subsets, related to Figure 5.

A) Gating strategy for T cell subsets. Total T cells (CD45+CD3+) were separated into subsets: negative, single-positive CD4 (CD4+ T cell), single-positive CD8 (CD8+ T cell), and double positive (CD4+CD8+ DP). B-D) Boxplot graphs showing median expression in T cell subsets of B) FOXP3, C) CD45RO, KI67, PD-1, and D) P-ERK and P-S6. Kruskal-Wallis with Dunn's post-test and Bonferroni multiple testing correction was performed.

E-F) Representative images of E) CD4, CTLA-4 F) CD4, CD8a, and IL17A expression.

G-H) Analysis of localization of CD4+ and CD4+CD8+ T cells in the tissue, quantified as distance from the epithelium. Bins indicate "intra-epithelial" ($\leq 0 \mu m$), "proximal" (1–25 μm), and "distal" (>25 μm). Distance was clipped to 75 μm . ANOVA statistical test was performed, with Tukey HSD post-test. P-values are indicated in the graphs.

Supplementary Figure 6. Decreased HLA-DR-DP-DQ expression in dysplastic epithelium, related to Figure 6 and Tables S4-5.

A) Representative images of HLA-DR-DP-DQ expression in uninflamed and inflamed tissues.

B) Single cell analysis of HLA-DR-DP-DQ expression, depicted as proportion of HLA-DR-DP-DQ+ cells in uninflamed and inflamed epithelium. Paired T-test was performed. P-values are indicated in the graph. C) Single cell analysis of HLA-DR-DP-DQ expression, depicted as proportion of HLA-DR-DP-DQ+ cells in uninflamed, inflamed, and dysplastic epithelium. Kruskal-Wallis with Dunn's post-test was performed. P-values are indicated in the graph. Representative image of HLA-DR-DP-DQ expression in dysplastic tissue is shown. D) Single cell analysis of P-STAT3 expression, depicted as proportion of P-STAT3+ cells in uninflamed, inflamed, and dysplastic tissues. Krukal-Wallis with Dunn's post test was performed. P-values are indicated in the graph. E) Single cell analysis of CD8a expression, depicted as proportion of CD8a+ cells in uninflamed, inflamed, and dysplastic lamina propria. Kruskal-Wallis with Dunn's post-test was performed. P-values are indicated in the graph. F) Area analysis of IL-17A expression, depicted as IL-17A+ area in uninflamed and inflamed lamina propria. Paired T-test was performed. P-values are indicated in the graph.

G) Area analysis of IL-17A expression, depicted as IL-17A+ area in uninflamed, inflamed, and dysplastic lamina propria. Kruskal-Wallis with Dunn's post-test was performed. P-values are indicated in the graph.

H) Representative images of IL-17A expression in uninflamed and inflamed tissues.

Supplementary Tables

Patient	Status.simple	Status	nBiopsy	nEvents IMC
1	Uninflamed	Uninflamed	3	37471
1	Inflamed	Actively inflamed	1	14016
1	Dysplastic	Actively inflamed & dysplastic	1	9400
1	Dysplastic	Dysplastic	1	13921
2	Uninflamed	Past inflammation	1	1820
2	Uninflamed	Uninflamed	1	2944
2	Inflamed	Chronically inflamed	1	13958
3	Uninflamed	Past inflammation	4	23470
3	Uninflamed	Uninflamed	1	3305
3	Inflamed	Actively & chronically inflamed	1	5772
3	Dysplastic	Chronically inflamed & dysplastic	1	11392
3	Dysplastic	Dysplastic	1	6070
4	Uninflamed	Past inflammation	1	5801
4	Uninflamed	Uninflamed	1	5417
4	Inflamed	Actively & chronically inflamed	1	29966
4	Inflamed	Chronically inflamed	2	20709
4	Dysplastic	Dysplastic	2	19134
5	Uninflamed	Uninflamed	6	40640
5	Inflamed	Chronically inflamed	3	22261
5	Dysplastic	Dysplastic	1	3630
6	Uninflamed	Past inflammation	6	29826
6	Inflamed	Actively & chronically inflamed	1	8723
6	Dysplastic	Dysplastic	1	5951
7	Uninflamed	Past inflammation	3	13004
7	Uninflamed	Uninflamed	3	16726
7	Dysplastic	Dysplastic	2	28805

Supplementary Table 2, related to Figure 2.

Sample characteristics Imaging Mass Cytometry

Target Name	Isotope	Clone	Supplier	Cat #	Dilution
CTLA4 (primary)	-	CAL49	Abcam	ab237712	1:100
Goat anti-Rabbit IgG (H+L) Highly Cross-	1405m		Invitragen	A16112	1.100
Adsorbed Secondary Antibody	1495111		Invitrogen	A10112	1.100
E-Cadherin	142Nd	24E10	Cell Signaling Technology	CST3195BF	1:150
CD20	143Nd	H1	BD	555677	1:300
non-phospho (active) beta catenin	147Sm	D13A1	Cell Signaling Technology	CST8814BF	1:200
PanKeratin	148Nd	C11	Cell Signaling Technology	CST4545BF	1:200
IFN-γ	151Eu	D3H2	Cell Signaling Technology	CST8455BF	1:100
CD45RO	152Sm	UCHL1	Cell Signaling Technology	CST55618BF	1:100
Akt (pan)	153Eu	40D4	Cell Signaling Technology	CST2920BF	1:100
HLA-DR+DP+DQ	154Sm	CR3/43	Abcam	ab7856	1:100
FOXP3	155Gd	236A/E7	Abcam	ab96048	1:50
CD4	156Gd	EPR6855	Abcam	ab181724	1:100
pSTAT3 (Tyr705)	158Gd	D3A7	Cell Signaling Technology	CST9145BF	1:100
IL-10	160Gd	polyclonal	R&D Systems	AF-217-NA	1:150
CD45	161Dy	D9M8I	Cell Signaling Technology	CST13917	1:100
CD8a	162Dy	C8/144B	Thermo Fisher Scientific	14-0085-82	1:200
ICOS	163Dy	D1K2T	Cell Signaling Technology	CST89601BF	1:150
pS6 (Ser235/236)	164Dy	D57.2.2E	Cell Signaling Technology	CST4858BF	1:100
PD1	165Ho	EPR4877(2)	Abcam	ab186928	1:100
NFkB	166Er	L8F6	Cell Signaling Technology	CST6956BF	1:100
IL-17a	167Er	polyclonal	Bio-Techne	AF-317-NA	1:100
Ki-67	168Er	B56	BD	550609	1:200
GranzymeB	169Tm	D6E9W	Cell Signaling Technology	CST46890BF	1:100
CD3	170Er	Polyclonal	DAKO	A045229-2	1:100
pERK (Thr202/Tyr204)	171Yb	D13.14.4E	Cell Signaling Technology	CST4370BF	1:400
Cl_Casp3	172Yb	5A1E	Cell Signaling Technology	CST9664BF	1:100
ERK (Pan)	173Yb	137F5	Cell Signaling Technology	CST4695BF	1:100
pAKT (Ser473)	175Lu	D9E	Cell Signaling Technology	CST4060BF	1:100
H3	176Yb	D1H2	Cell Signaling Technology	CST4499BF	1:600
aSMA	113ln; 115ln	1A4	Invitrogen	14-9760-82	1:100
CD16	146Nd	EPR16784	Abcam	ab215977	1:100
CD68	159Tb	KP1	Thermo Fisher Scientific	14-0688-82	1:100
Intercalator	191lr; 193lr		Fluidigm	201192B	1:300

Supplementary Table 3, related to STAR Methods.

Antibody panel Imaging Mass Cytometry

Patients used for IHC staining:

Dysplasia

Patient ID	Diagnosis Sex		x Age ¹	Disease duration	Montreal class	Maximal extent of inflammation		IBD medication ¹
				(years) '		endoscopic	histological	-
2	CD	F	51-53	20-22	A2L2B1	left-sided colitis	pancolitis	5-ASA, AZA
79	UC	F	48-56	9-16	E3	pancolitis	pancolitis	AZA
69	UC+PSC	Μ	61-62	43-44	E2	pancolitis	pancolitis	5-ASA
14	CD	Μ	53-58	27-32	A2L3B1	left-sided colitis	extensive colitis	5-ASA
50	UC	Μ	29-34	11-16	E3	pancolitis	pancolitis	5-ASA, AZA
18	CD	M	49-55	28-34	A2L3B1	extensive colitis	pancolitis	5-ASA, AZA
72	CD	М	67-72	48-53	A2L3B1	extensive colitis	pancolitis	5-ASA

¹ at the time of sample collection

CD=Crohn's Disease; UC=ulcerative colitis; AZA=azathioprine; 5-ASA=5-aminosalicylates

No dysplasia

Patient ID	Diagnosis Sex		Age ¹	Disease duration	Montreal class	Maximal extent of inflammation		IBD medication ¹
				(years) '		endoscopic	histological	
229	UC	М	68-72	17-22	E2	left-sided colitis	pancolitis	5-ASA
205	CD	F	57-59	32-35	A2L2/4B2	left-sided colitis	pancolitis	5-ASA
164	UC	Μ	33-36	11-14	E3	pancolitis	pancolitis	5-ASA, AZA
214	CD	F	64-65	13-15	A3L2B1	pancolitis	pancolitis	5-ASA, AZA
151	UC	F	56-58	20-21	E3	pancolitis	pancolitis	AZA
63	CD	Μ	64-66	45-46	A2L2B1	pancolitis	pancolitis	5-ASA
111	UC	F	57-63	25-30	E3	extensive colitis	pancolitis	5-ASA, AZA

¹ at the time of sample collection

CD=Crohn's Disease; UC=ulcerative colitis; AZA=azathioprine; 5-ASA=5-aminosalicylates

Supplementary Table 4, related to Figure 6.

Target name	Clone	Supplier	Cat #	Dilution
CD8a	C8/144B	Cell Signaling Technology	70306	1:200
IL-17/IL-17A	NA	Bio-Techne	AF-317-NA	1:200
HLA DR + DP + DQ	CR3/43	Abcam	ab7856	1:200
Phospho-Stat3 (Tyr705)	D3A7	Cell Signaling Technology	9145	1:100

Supplementary Table 5, related to STAR Methods.

Antibodies IHC