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Abstract

In this supplementary note, we provide additional numerical simulations to support our
investigations in the main text. This note is organized as follows. Firstly, we will study
the scenario where immunity will never wane. Secondly, we will carry out further
investigations to agent spatial pattern formations under different mobility speed of
agent and spread rate of the popularity variable. Thirdly, we make a sensitivity analysis
of the temporal scaling parameter between environment variables to show robustness of
our epidemiological model. Finally, we investigate a new type of scenario by integrating
public awareness upon infectious contacts. Under this scenario, the increase of
public-awareness increasing rate directly suppresses the contact rate of agents and thus
the epidemic curve is flatten.
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A Agent-based symmetric random walks without 1

immunity waning 2

Throughout the article, we have taken waning of immunity into account to make the 3

model more physical (Section 2.3.2 in the main text). But at the same time, because of 4

this assumption, the agents who get infected in the first wave will possibly transit back 5

to the state of S. As a result, in the 2D portraits of spatial distributions of susceptibles 6

displayed in the main text (Fig 2 in the main text), the lower-density cavities that are 7

created by the first wave may gradually be refilled due to spontaneous transitioning of 8

recovered agents back to the S state. Thus it is meaningful to verify whether the area of 9

cavities that are observed in our 2D agent-spatial-distribution portraits does indeed 10

reflect cumulative scale of first waves. To this end, we carry out a sensitivity analysis in 11

absence of immunity waning. 12

Based on the assumptions for the preliminary modeling of agent-based symmetric 13

random walks (Section 2.3.2 in the main text), we instead assume that δR = 0, so that 14

the R agents will forever stay in this state and never transit to the S state. Nevertheless, 15

as exhibited in numerical simulations (see Fig A below), only negligible differences arise 16

on transition patterns under different human mobility rate D. This coincides with our 17

expectation as the speed of immunity waning is on the scale of months or even years, 18

which is much slower than the occurence of infection, hospitalization, and recovery. 19

In summary, immunity waning and re-infection play an negligible role in the first 60 20

days of the pandemic (see Fig 2(a.1)-2(d.1) of in the main text. Thus it is legitimate to 21

use the outflow from compartment S as an indicator of the size of the first wave in our 22

main text. 23

A.1 Numerical simulations 24

Here we carry out the numerical experiments in order to validate that the absence of 25

immunity waning does not change area of ‘cavity’ (lower density regions of susceptible 26

agents) as observed in e.g. Fig 2(a.5)-2(a.7), 2(b.5)-2(b.7), 2(c.5)-2(c.7), and 27

2(d.5)-2(d.7) in Section 3.1.3 of the main text. 28

Below in Fig A(a.1)-A(d.1) we display time evolutions of 29

Ēℓ(t) + P̄ ℓ(t) + Āℓ(t) + Ī(−),ℓ(t) + Ī(+),ℓ(t) and Ē(t) + P̄ (t) + Ā(t) + Ī(−)(t) + Ī(+)(t) 30

for agent-based simulations of the symmetric random walk model and continuum 31

simulations for the ODEs as in Eq. 3 in the main text, respectively. The solid lines in 32

(a.1), (b.1), (c.1), and (d.1) represent the average of the outcomes of eighty randomly 33

generated paths of agent-based simulations. The parameter values and initial data are 34

set as the same as those used to create plots in Fig 2(a.1)-2(d.1) in the main text, with 35

the only exception that δR = 0. Particularly, Fig A(a.1)-A(d.1) are parallel with Fig 36

2(a.1)-2(d.1) in the main text, respectively. In Fig A(a.1)-A(d.1), D is increased from 37

0.25 to 0.5 to 1 to 2. 38

We also display two-dimensional portraits of spatial distribution Sℓ
s(t) (see Fig 39

A(a.5)-A(a.7), A(b.5)-A(b.7), A(c.5)-A(c.7), and A(d.5)-A(d.7)), and 40

Eℓ
s(t) + P ℓ

s (t) +Aℓ
s(t) + I

(−),ℓ
s (t) + I

(+),ℓ
s (t) (the remaining panels of Fig A). Panels 41

(a.2)-(a.7) show time slices (at day 20, 40, and 60) associated with one random path of 42

the agent-based simulations displayed in Fig A(a.1), and the same also applies to 43

(b.2)-(b.7), and (b.1); and (c.2)-(c.7), and (c.1); and (d.2)-(d.7), and (d.1); and 44

Particularly, Fig A(a.2)-A(a.7), A(b.2)-A(b.7), A(c.2)-A(c.7), and A(d.2)-A(d.7) are 45

parallel with Fig 2(a.2)-2(a.7), 2(b.2)-2(b.7), 2(c.2)-2(c.7), and 2(d.2)-2(d.7) in the main 46

text, respectively. 47

Comparing Fig A and Fig 2 in the main text, they demonstrates very similar 48

patterns with the disease curve. The size of cavity, i.e. lower density regions of 49
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(a.1) Active-virus carriers

(a.2) Day 20 (a.5) Day 20

(a.3) Day 40 (a.6) Day 40

(a.4) Day 60 (a.7) Day 60

(b.1) Active-virus carriers 

(b.2) Day 20 (b.5) Day 20

(b.3) Day 40 (b.6) Day 40

(b.4) Day 60 (b.7) Day 60

(c.1) Active-virus carriers

(c.2) Day 20 (c.5) Day 20

(c.3) Day 40 (c.6) Day 40

(c.4) Day 60 (c.7) Day 60

(d.1) Active-virus carriers

(d.2) Day 20 (d.5) Day 20

(d.3) Day 40 (d.6) Day 40

(d.4) Day 60 (d.7) Day 60

The solid dashed lines in (a.1), (b.1), 
(c.1), and (d.1) represent the average 
of  the outcomes of  eighty randomly 

generated paths of  agent-based 
simulations.

Panels (a.2)-(a.4), (b.2)-(b.4), (c.2)-
(c.4), and (d.2)-(d.4) display 2-D 
portraits of  spatial distributions 

of  infected agents.

Panels (a.5)-(a.7), (b.5)-(b.7), (c.5)-
(c.7), and (d.5)-(d.7) display 2-D 
portraits of  spatial distributions 

of  susceptible agents.

Features

Fig A. Simulations of symmetric random walk model. Panels (a.1)-(d.1) compare
Ēℓ(t) + P̄ ℓ(t) + Āℓ(t) + Ī(−),ℓ(t) + Ī(+),ℓ(t). Increasing the rate D of agent movement from 0.25
to 0.5 to 1 to 2 leads to a heightened disease outbreak, and thus escalate severeness of the first
episode of the epidemic. The parameter values and initial data are set as the same as those
used to create plots in Fig 2 in the main text, with the only exception that δR = 0. Particularly,
(a.1)-(d.1), (a.2)-(a.7), (b.2)-(b.7), (c.2)-(c.7), and (d.2)-(d.7) are parallel with Fig 2(a.1)-2(d.1),
2(a.2)-2(a.7), 2(b.2)-2(b.7), 2(c.2)-2(c.7), and 2(d.2)-2(d.7) in the main text, respectively.

susceptible agents, is almost the same as displayed in the panels of Fig A and Fig 2 in 50

the main text. 51

B Further exploration of impacts of human natural 52

behavior 53

We further explore how the interplay between human mobility and information spread 54

speed may affect the course of outbreaks in our biased random walk foraging-behavior 55

model constructed in Section 2.4 in the main text. Figs B and C below serve as a 56

supplement of the numerical experiments in Fig 4 in the main text. 57

It is demonstrated that spatial clustering emerges under either higher agent mobility 58

or lower spread speed of location popularity information, and epidemic curve tends to 59

be much more flatted, as the first wave is not only slower in speed but also smaller in its 60

final size. This again confirms our conclusion that the spatial clustering of agents 61

impedes the contacting and consequently mitigates the epidemic outbreak. 62

B.1 Numerical simulations 63

We adopt the same initial data and parameters (except for D and ΛP) as those used to 64

create plots in Fig 4(a.1)-4(d.1) in the main text, and simulate two additional groups 65

with the parameter combiations of D = 0.25,ΛP = 2 and D = 0.25,ΛP = 16. For each 66

group, we perform eighty independent random realizations. We note that Fig B(a) and 67

B(b) are the same as Fig 4(d.1) and 4(a.1) in the main text, respectively. 68

Particularly, in Fig B, evolutions of Ēℓ(t) + P̄ ℓ(t) + Āℓ(t) + Ī(−),ℓ(t) + Ī(+),ℓ(t) of 69

the agent-based biased-random-walk foraging model described as in Section 2.4 in the 70
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Phase diagram and statistics of  active-virus carriers 

day 20

day 40

day 60

(a)

day 20

day 40

day 60

(b)

day 20

day 40

day 60

(c)

day 20

day 40

day 60

(d)

Fig B. Simulations of biased random walk model. Panels (a)-(d) compare
Ēℓ(t) + P̄ ℓ(t) + Āℓ(t) + Ī(−),ℓ(t) + Ī(+),ℓ(t). The spatial clustering emerges under either higher
agent mobility or lower spread of location popularity information, and epidemic curve tends to
be much more flatted. Here (a) and (d) are the same as Fig 4(d.1) and 4(a.1) in the main text,
respectively. In all the panels, ℓ is fixed as 1/100.

main text, as well as Ē(t) + P̄ (t) + Ā(t) + Ī(−)(t) + Ī(+)(t) of continuum simulations for 71

the ODEs as in Eq. 3 in the main text, are exhibited (Fig B(a)-B(d)). The remaining 72

panels show the corresponding 2-D portraits of spatial distributions of infected agents 73(
Eℓ

s(t) + P ℓ
s (t) +Aℓ

s(t) + I
(−),ℓ
s (t) + I

(+),ℓ
s (t)

)
in one realization. Moreover, 2-D 74

portraits of spatial distributions of mobile agents 75

Sℓ
s(t) + Eℓ

s(t) + P ℓ
s (t) +Aℓ

s(t) + I
(−),ℓ
s (t) + I

(+),ℓ
s (t) +Rℓ

s(t) in the same realization are 76

exhibited in Fig C. Here ℓ = 1/100 is fixed. 77

Fig B clearly shows that the first disease wave can be heightened and propelled 78

earlier in time when either ΛP increases or D increases, or when both of them increase 79

simultaneously. Also, in these cases, an early-die-out outbreak may have a high risk of 80

developing into a pandemic. This type of transitions are demonstrated in each column 81

of Figs B and C. 82

C Sensitivity analysis of the temporal scaling factor 83

In all the numerical experiments performed in the main text, we always choose the 84

temporal scaling factor sc to be 3.5 (see Section 2.3.2 in the main text). We will 85

demonstrate the robustness of our simulations against the choice of sc, that is, the 86

temporal scaling dose not cause significant differences in the spatial characteristics of 87

our biased random walk model. 88
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Phase diagram of  mobile population distributions

(a.1) day 20

(a.2) day 40

(a.3) day 60

(b.1) day 20

(b.2) day 40

(b.3) day 60

(c.1) day 20

(c.2) day 40

(c.3) day 60

(d.1) day 20

(d.2) day 40

(d.3) day 60

Fig C. Phase diagram of mobile population
Sℓ
s(t) + Eℓ

s(t) + P ℓ
s (t) +Aℓ

s(t) + I
(−),ℓ
s (t) + I

(+),ℓ
s (t) +Rℓ

s(t) at day 20, 40, and 60 for
agent-based simulations under different scaling factor. In all the panels, ℓ is fixed as
1/100.

When the value of sc is changed, so is the relative time scale between impacts of 89

incorporation of P and A, and physical attributes of the epidemic. Thus it is 90

meaningful to conduct a sensitivity analysis on different values of sc. 91

C.1 Numerical simulations 92

In this section, we carry out sensitivity analysis mentioned in Section 2.3.2 in the main 93

text on changing the value of our temporal scaling factor sc. In Figs D and E, we 94

demonstrate evolutions of Ēℓ(t) + P̄ ℓ(t) + Āℓ(t) + Ī(−),ℓ(t) + Ī(+),ℓ(t), and the phase 95

diagram of infected agents Eℓ
s(t) + P ℓ

s (t) +Aℓ
s(t) + I

(−),ℓ
s (t) + I

(+),ℓ
s (t) at day 60 and 96

respectively, under different temporal scaling factor sc. 97

All of the simulations are based on simulations of the biased-random-walk foraging 98

model described as in Section B (also see Section 2.4 in the main text), where four 99

groups with the parameter combinations D = 2, 0.25, ΛP = 2, 16 are considered, each of 100

which is paired with different temporal scaling factors sc = 2, 3, 3.5, and 5 (16 groups in 101

total). 102

Fig D compares the time evolutions of Ēℓ(t) + P̄ ℓ(t) + Āℓ(t) + Ī(−),ℓ(t) + Ī(+),ℓ(t) 103

for varying sc, under different choices of D and ΛP . In all the panels, the cyan solid line 104

represents the average of the outcomes of eighty randomly generated paths of 105

simulations with sc = 3.5. Despite distinct values of sc, the same transition patterns are 106

displayed in Fig D as in Fig B, as well as in Fig 4 in the main text, which indicates that 107

the proposed model is robust against the varying values of the scaling factor. 108

For the purpose of comparisons, we also display two-dimensional portraits of spatial 109
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Sensitivity analysis: Active-virus carriers under different scaling factor

Fig D. Output of time evolutions of Ēℓ(t) + P̄ ℓ(t) + Āℓ(t) + Ī(−),ℓ(t) + Ī(+),ℓ(t) for
agent-based simulations under different scaling factor. In all the panels, the cyan solid
line represents the average of the outcomes of eighty randomly generated paths of simulations
under sc = 3.5. The first disease wave can be heightened and propelled earlier in time when
either ΛP increases or D increases, or when both increase simultaneously. This shows the same
transition patterns are displayed as in Fig B, as well as Fig 4 in the main text.

distribution of infected agents Eℓ
s(t) + P ℓ

s (t) +Aℓ
s(t) + I

(−),ℓ
s (t) + I

(+),ℓ
s (t) in one 110

realization at day 60 in Fig E. It is shown that the patterns of spatial clustering are 111

almost the same under different temporal scaling. 112

D A new scenario of integrating public awareness 113

upon infectious contacts 114

Rather than assuming that agent movement patterns depend upon the awareness 115

variable A as in Section 2.5 in the main text, we consider a different scenario, called 116

Scenario III subsequently, where it is the rate of epidemic transmissions that changes 117

according to A. This scenario corresponds to the public response strategy to reduce 118

infectious contacts, such as mask mandates, social distancing, etc. As for the dynamics 119

of A, we assume that it is the same as in Scenario I (Section 2.5.2 in the main text). 120

What we observe below through simulations of Scenario III (see Fig F below) is a 121

substantial suppression of the initial disease wave when compared to the corresponding 122

biased random walk foraging model with an absence of the A factor (Section 2.4 in the 123

main text). 124
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Phase diagram of  active-virus carriers  under different scaling factor at day 60

Fig E. Phase diagram of Eℓ
s(t) + P ℓ

s (t) +Aℓ
s(t) + I

(−),ℓ
s (t) + I

(+),ℓ
s (t) at day 60 for

agent-based simulations under different values of scaling factor. The patterns of
spatial clustering are almost the same under different temporal scaling. This shows that the
same patterns are displayed as in Fig B, as well as Fig 4 in the main text.

D.1 Impact of the awareness factor in Scenario III 125

During outbreaks of diseases, public awareness may be aroused, causing healthy 126

individuals to reduce contacts consciously in order to avoid transmissions. This is 127

especially the case when there are public health and social measures such as a mask 128

mandates on public transportation, and the practice of social distancing. Note that in 129

comparison with travel restrictions which reduce spatial movement, the aforementioned 130

measures can be effective even for individuals residing at the same site. Motivated by 131

this real-world scenario, we assume that infectious contacts occur with probability 132(
1−Aℓ

s(t)
)
upon an advancement of Type (II) Poisson clocks described in Section 2.3.2 133

in the main text, where this probability is set as one in the absence of the awareness 134

factor. 135

D.2 Numerical simulations 136

Below in Fig F(a.1)-F(d.1), we display time evolutions of 137

Ēℓ(t) + P̄ ℓ(t) + Āℓ(t) + Ī(−),ℓ(t) + Ī(+),ℓ(t) of simulations of Scenario III. The black 138

solid lines represent the average of the outcomes of eighty randomly generated paths of 139

agent-based simulations. The parameter values and initial data are set as the same as 140

those used to create plots in Fig 5(a.1)-5(d.1) in the main text. Particularly, Fig 141

F(a.1)-F(d.1) are parallel with Fig 5(a.1)-5(d.1) in the main text, respectively. In Fig 142

F(a.1)-F(d.1), θ+a increases from 1 to 3 to 10 to 20. The biased random walk foraging 143
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model without awareness in Section 2.4 in the main text is chosen as the reference. 144

Comparisons are made bewteen Ēℓ(t) + P̄ ℓ(t) + Āℓ(t) + Ī(−),ℓ(t) + Ī(+),ℓ(t) by eighty 145

random paths of simulations of Scenario III and the average of eighty random outcomes 146

of the reference model (the same black solid as in Fig 4(d.1) in the main text) 147

represented by the cyan solid lines. We also display two-dimensional portraits of spatial 148

distribution Sℓ
s(t) (Fig F(a.5)-F(a.7), F(b.5)-F(b.7), F(c.5)-F(c.7), and F(d.5)-F(d.7)), 149

and Eℓ
s(t) + P ℓ

s (t) +Aℓ
s(t) + I

(−),ℓ
s (t) + I

(+),ℓ
s (t) (the remaining panels of Fig F). 150

D.2.1 Daily cases, 2D portraits of agent distributions, and statistical 151

histograms of peak height 152

Through simulations of Scenario III, we find that as individuals in our model become 153

increasingly vigilant to signs of an ongoing outbreak, i.e., when θ+a increases, the first 154

disease outbreaks are flattened and delayed (Fig F(a.1)-F(d.1)), compared with average 155

of multiple outcomes of the corresponding biased random walk foraging model described 156

as in Section 2.4 in the main text. When it comes to spatial distribution of active-virus 157

carriers (Fig F(a.3)-F(a.5), F(b.3)-F(b.5), F(c.3)-F(c.5) and F(d.3)-F(d.5)), it appears 158

that sizes of clusters are similar to those in the corresponding biased random walk 159

foraging model simulations (Fig 4 in the main text), while the number of infected agents 160

within each cluster decreases in Fig F. 161

(a.1) Active-virus carriers

(a.2)  First disease peak

(a.3) Day 20 (a.6) Day 20

(a.4) Day 40 (a.7) Day 40

(a.5) Day 60 (a.8) Day 60

(b.1) Active-virus carriers

(b.2) First disease peak

(b.3) Day 20 (b.6) Day 20

(b.4) Day 40 (b.7) Day 40

(b.5) Day 60 (b.8) Day 60

(c.1) Active-virus carriers

(c.2)  First disease peak

(c.3) Day 20 (c.6) Day 20

(c.4) Day 40 (c.7) Day 40

(c.5) Day 60 (c.8) Day 60

(d.1) Active-virus carriers

(d.2)  First disease peak

(d.3) Day 20 (d.6) Day 20

(d.4) Day 40 (d.7) Day 40

(d.5) Day 60 (d.8) Day 60

The cyan solid lines in (a.1)-(d.1) 
represent the average of  the outcomes 

of  eighty randomly generated paths 
of  the reference model (the same 

black solid line as in Fig 4(d.1) in the 
main text).

Panels (a.2)-(d.2) make histogram 
statistics of  the height of  the first 
disease wave, with eighty random 

outcomes for Scenario III and eighty 
ones for the reference model.

Panels (a.3)-(a.5), (b.3)-(b.5), (c.3)-
(c.5), and (d.3)-(d.5) display 2-D 
portraits of  spatial distributions 

of  infected agents.

Panels (a.6)-(a.8), (b.6)-(b.8), (c.6)-
(c.8), and (d.6)-(d.8) display 2-D 
portraits of  spatial distributions 

of  susceptible agents.

Features

Fig F. Simulations of Scenario III: Reducing infectious contacts. Panels
(a.1)-(d.1) compare Ēℓ(t) + P̄ ℓ(t) + Āℓ(t) + Ī(−),ℓ(t) + Ī(+),ℓ(t), where the reference is
the biased random walk foraging model without awareness in Section 2.4 in the main
text. When the increment of public awareness θ+a increases from 1 to 3 to 10 to 20,
individuals become increasingly vigilant to signs of an ongoing epidemic outbreak. As a
consequence, the first disease outbreaks are delayed and flattened.

In Fig F(a.1)-F(d.1), agent-based simulations exhibit delayed and suppressed disease 162

peaks as θ+a increases. The same type of transition is also displayed in Fig F(a.2)-F(d.2). 163

Indeed, spread of epidemic decelerates as θ+a increases, at each fixed time (day 20, 40, 164

and 60), as displayed in Fig F(a.6)-F(a.8), F(b.6)-F(b.8), F(c.6)-F(c.8), and 165
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F(d.6)-F(d.8). In particular, at day 20, viewing Fig F(a.6)-F(d.6), area of cavity, i.e. 166

lower density regions of susceptible agents, decreases as θ+a increases; the same type of 167

transitions is displayed in panel sets (a.7)-(d.7) at day 40; and (a.8)-(d.8) at day 60. 168
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