Supplementary Information

Directed-evolution mutations enhance DNA-binding affinity and protein stability of the adenine base editor ABE8e

Haixia Zhu¹, Lei Wang¹, Ying Wang¹, Xinyi Jiang¹, Qin Qin¹, Menghua Song¹, Qiang Huang^{1, 2*}

¹State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China ²Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 201203, China

*Corresponding author at: School of Life Sciences, Fudan University, Shanghai 200438, China. Email: huangqiang@fudan.edu.cn

Contents:

Supplementary Figures 1-7

Supplementary Tables 1-3

Supplementary Figures

Figure S1. The full-length ABE8e model. (A) The sgRNA–DNA backbone superimposition of ABE8e structure (PDB ID: 6VPC, orange) onto the SpCas9 structure (PDB ID: 5F9R, dark blue). (B) Superposition of the SWISS-MODEL model (purple) and the AlphaFold2 model (red) of TadA8e:TadA8e–Cas9n onto PDB ID: 6VPC (cyan). (C) Domain architecture of ABE8e: SpCas9 (grey), RNA (cyan), NTS (yellow), linker (pink), and TadA8e dimer (light and dark blue).

Figure S2. Time-dependent RMSDs of the ABE structures in the MD simulations. Four systems have been equilibrated after about 150-ns simulations.

Figure S3. The conformational stability of TadA7.10 and TadA8e. Free energy landscapes of the TadAs projected onto the RMSD of the protein backbone atoms and the radius of gyration (Rg), where k_B is the Boltzmann constant and *T* is the simulation temperature (310 K).

Figure S4. The binding energies of TadA to DNA substrate. The binding energies of TadA to the DNA substrate in four simulated systems at four different dielectric constants. Data are presented as the mean \pm SD.

Figure S5. Energy terms and surface electrostatic potentials of TadA–DNA complexes. (A) Binding energy terms of TadA with the DNA substrate at a dielectric constant of 6. Data are presented as the mean \pm SD. (B) The surface electrostatic potentials of TadA in simulated TadA–Cas9n systems, calculated by APBS on a scale from -3 to 3 k_BT/e_c . Red represents negative potential, blue represents positive potential, and white is neutral.

Figure S6. Energy contributions of mutations and their positions. (A) $\Delta\Delta G$ per residue between TadA8e and TadA7.10 in the TadA–Cas9n system. (B) The positions of N119 and R111 in ABE8e (PDB ID: 6VPC), R111 and N119 are shown as spheres.

Figure S7. Sample and screening conditions for MST measurements. (A) The secondary structure of the NTS in ABE8e (PDB ID: 6VPC) predicted by the RNAStructure website at http://rna.urmc.rochester.edu/RNAstructureWeb/. (B) The errors between the fluorescence intensities of all capillaries are within 10%, i.e., 1200-1320.

Supplementary Tables

Site	Protospacer	РАМ
1	GACAAACCAGAAGCCGCTCC	TGG
2	G <u>AACACAAAAGCATAGA</u> CTGC	GGG
3	GTC <u>A</u> TCTT <u>A</u> GTC <u>A</u> TT <u>A</u> CCTG	AGG

 Table S1. Protospacer sequences for mammalian genomic sites.

Table S2. Primers used for amplification of genomic DNA of mammalian cells.

Site	Forward primer	Reverse primer
1	AGCCCTCTTTTTATTGGAACTGTG	CCGACTGGTCCACTTACCTA
2	TGAATGGATTCCTTGGAAACAATGA	CCAGCCCCATCTGTCAAACT
3	AACGGAACTCAACCATTAAGCA	CCAACATACAGAAGTCAGGAATGC

Table S3. Amplicons for Sanger sequencing analysis.

Site	Amplicon
1	CCGACTGGTCCACTTACCTATCACAATCACAACTGCAATATTACATAAATAGTCTGTTAGAGAAG
	GACAACTGAATCTGCAAATCAGTATCTTCTCAATGAGAGTACAAGGAGGCAATGGCTACATACGA
	TGGACAAACCAGAAGCCGCTCCTGGGCTATGTTTACTATTTACTTTTATGGTATAAAAATGTTCT
	CAGTCAAGCAGTTTCAACAATAGATACCACAGTTCCAATAAAAAGAGGGGCT
2	TGAATGGATTCCTTGGAAACAATGATAACAAGACCTGGCTGAGCTAACTGTGACAGCATGTGGTA
	ATTTTCCAGCCCGCTGGCCCTGTAAAGGAAACTGGAACACAAAGCATAGACTGCGGGGCGGGC
	GCCTGAATAGCTGCAAACAAGTGCAGAATATCTGATGATGTCATACGCAC
	AGTTTGACAGATGGGGCTGG
3	CCAACATACAGAAGTCAGGAATGCTTGAATATAAATTTATTATTACTCTATGTTCTATTTAAGTT
	TTCATGTTCTAAAAATGTATCCCAGTTTACACGTCTCATATGCCCCTTGGCAGTCATCTTAGTCA
	TTACCTGAGGTGTTCGTTGTAACTCATATAAACTGAGTTCCCATGTTTTGCTTAATGGTTGAGTT
	CCGTT