
1. Supplementary Methods 

1.1. Brain Imaging 

All images were collected on a Siemens 3T Skyra MRI Scanner with a 32-channel head coil. Scan 

sessions lasted about one hour. Anatomical images were collected using a T1-weighted 3D volumetric 

MPRAGE (TR = 2000 msec; TE = 2.98 msec; number of slices = 192; slice thickness = 1.0 mm; voxel 

dimensions = 1.0 x 1.0 x 1.0 mm; FOV = 256 mm; scan duration = 312 sec). Blood oxygenation level-

dependent imaging (BOLD) (1) were used to collect functional MRI (fMRI) data at rest and during 

motor imagery tasks (TR = 2000 msec; TE = 25 ms; number of slides = 35; slice thickness = 5.0 mm; 

voxel dimensions= 4.0 x 4.0 x 5.0 mm; FOV = 256mm). Additional imaging collected but not used for 

these analyses included Fluid-attenuated inversion recovery (FLAIR), diffusion tensor imaging (DTI), 

Perfusion imaging and T2-Relaxation-Under-Spin-Tagging (TRUST) were collected but not used. 

 

1.2. fMRI Protocol 

Participants completed a resting state scan and two motor imagery task scans using video animations. 

Resting scans were performed first. Resting scans included 230 images (scan duration = 460 s). The 

order of motor imagery tasks was randomized. Motor imagery tasks had 130 images (scan duration = 

260 s). BOLD Scans were collected parallel to the anterior commissure-posterior commissure (AC-PC) 

using multi-spire gradient-echo plana imaging (EPI). Participants laid supine in the MRI scanner with 

visibility of a large monitor at the head-end of the scanner, viewed through a mirror. During the resting 

state scan, a fixation cross was displayed on the monitor. During motor imagery task scans, continuous 

feed videos were played on the monitor. Videos were adapted from the Mobility Assessment Tool 

short form, MAT-sf  (2, 3) and were played using a standard media player. Videos showed an avatar 

performing “easy” and “hard” mobility tasks. Tasks were given these designations based on prior work 

in older adults (3). Comparisons between conditions have been reported in a subsampled of the BNET 

study (4) and based on those results, the current study only used the “easy” task. Participants were 



given instructions and completed a visual imagery practice session prior to entering the scanner. 

During the practice visual imagery session, participants viewed shortened videos and were instructed 

to imagine themselves as the avatar and told that their active involvement and engagement in the task 

is crucial to the validity of the experiment.  More details about the task instructions, training, and 

videos have been reported (4).  

 

1.3. Image Analysis 

1.3.1. High-resolution anatomical image 

Structural image segmentation was completed using Statistical Parametric Mapping version 12 

http://www.fil.ion.ucl.ac.uk/spm. Segmented gray and white matter images were summed. Any voxel 

with ≥0.5 probably value was retained as a mask of brain parenchyma with non-brain tissue and 

cerebral spinal fluid (CSF) excluded. Structural images were masked, visually inspected, and manually 

cleaned to remove remaining extra-parenchymal tissues using MRIcron software  (5). To ensure full-

brain coverage, manual checking was performed by two observers. Masked and cleaned T1-weighted 

images were spatially normalized to the Montreal Neurological Institute (MNI) template using 

Advanced Normalization Tools (ANTs) (6). 

 

1.3.2. Functional image analyses 

FMRIB’s “Topup” Software Library (FMRIB Software Library v6.0) (7) was used for distortion 

correction. For signal normalization purposes, the first 10 volumes of BOLD images were dropped. 

SPM12 was used to correct slice time and realign functional images. BOLD images were coregistered 

to native-space anatomical imaged and warped to MNI space using the ANT-derived transformation. 

Power’s motion scrubbing was used for motion correction to remove volumes containing excessive 

movement (> 0.5 mm FD) and excessive signal change (> 0.5 DVGM) (8). An average of 7.913.9 



volumes in the rest condition and 8.812.9 volumes in the task condition were dropped across 

participants. Data were band-pass filtered (0.009-0.08 Hz) in order to account for low-frequency drift 

and physiological noise in images. Confounding signals (white matter, gray matter, CSF, and 6 rigid-

body motion parameters generated from realignment) were regressed out from filtered data. 

 

1.3.3. Community structure analyses 

A network community is a group of nodes that are more connected with one another than other nodes 

(9). The binary network for each participant was partitioned into individual communities 

(neighborhoods) with each voxel (node) assigned to a single community. Network partitioning 

optimization was created using modularity (Q) (10). A dynamic Markov process (11) was used to 

identify network partition that maximized Q. Because of the stochastic component in the modularity 

algorithm, it was run 100 times and the partition associated with the highest Q value was used. 

Partitioning resulted in the sectioning of each participant’s brain network into categorical communities. 

Each node is assigned to its correct community and data can be mapped into brain space to visualize 

the spatial distribution of network communities.  

 

For group analyses, spatial alignment of communities is compared across participants to create a scaled 

Inclusivity (SI), which is computed to quantify spatial similarity across participants (12). To determine 

spatial similarity for specific networks, a priori templates are used as comparators when calculated SI. 

SMN and DAN templates were generated using resting-state brain network data in 22 normal adults 

from a prior study (13). SI values range from 0 to 1; with 1 representing a perfect spatial alignment of 

template community with communities across all participants for that community. This is a 

hypothetical value. In practice, nodes are assigned values less than 1, with specific value depending on 

spatial variability across subjects (14). High SI values indicate a stable network community across 



subjects that occupies the same or similar brain regions across people. Low SI values indicate lower 

spatial consistency of a community across people. SI values can be used to identify differences in 

community organization between populations. Relative magnitudes of SI values between groups or 

conditions are more useful than absolute scores for interpretations. Because analyses were performed 

on distances, not raw variables, it isn’t possible to visualize brain maps of SI residuals from the 

regression. Community structure maps are therefore generated using average voxel-wise SI values for 

each condition (e.g. DAN at rest) for upper and lower tertiles of the independent variable of interest. 

All brain images are displayed using MRIcro software (https://people.cas.sc.edu/rorden/mricro/). 

 

1.4. Statistical Analyses 

Analyses used a distance regression approach to examine associations between predictor variables and 

brain network community structure. This method was developed to assess relationships between brain 

networks and continuous and/or categorical variables while controlling for confounding and or 

nuisance variables. The original publication contains statistical details of this method (15). The input 

for each study participant was a continuous variable SI map of community structure and a list of 

continuous and or categorical variables. Distance metrics are used to compare brain network data 

between subject pairs, and the generated values are regressed against absolute differences in other 

model variables for the same subject pairs. Distances are computed for every subject to generate a 

distance matrix for each variable included in the model. SI maps were compared using the Jaccardized 

Czekanowski similarity index [15]. Because it is a similarity index, rather than a distance index, the 

Jaccard distance (1-Jaccard index) was used for all analyses. Estimation and inference for the 

regression models were performed using an F test with individual level effects (ILE).  

 

 

 



 

 

Figure S1: A Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) 

diagram for participant recruitment/retention through the baseline MRI visit of BNET.  Longitudinal 

tracking is not presented as those data were not used in the current study.   



2. Supplementary Results  

 

Table S1: Associations between eSPPB subcomponents 

 

  BAL GS LES CGS 

BAL 1 0.41 0.24 0.51

GS   1 0.44 0.62

LES   
 

1 0.45

CGS       1

 The statistical association between the esppb subcomponents was assessed with a Person’s correlation. 

The correlation matrix (r-values) below shows that GS and CGS exhibited the highest correlation while 

BAL and LES had the lowest. 

 

 

 

Table S2: SMN-CS main effects 

 

Network Condition Variable Estimate SE T Score pValue

SMN Rest BAL 0.0017 0.0012 1.4453 0.1484

    BMI 0.0004 0.0001 5.7731 0.0000

    Sex 0.0015 0.0004 3.4432 0.0006

    Head Motion 0.0001 0.0000 1.9775 0.0480

    GS 0.0138 0.0037 3.6964 0.0002

    BMI 0.0004 0.0001 5.3929 0.0000



    Sex 0.0015 0.0004 3.4030 0.0007

    Head Motion 0.0001 0.0000 1.9707 0.0488

  Task BAL 0.0004 0.0010 0.4314 0.6662

    BMI 0.0001 0.0001 1.3142 0.1888

    Sex 0.0007 0.0004 2.0737 0.0381

    Head Motion 0.0001 0.0000 4.6853 0.0000

    GS -0.0013 0.0031 -0.4225 0.6727

    BMI 0.0001 0.0001 1.3826 0.1668

    Sex 0.0007 0.0004 2.0749 0.0380

    Head Motion 0.0001 0.0000 4.7189 0.0000

    CGS 0.0005 0.0014 0.3783 0.7052

    BMI 0.0001 0.0001 1.0119 0.3116

    Sex 0.0007 0.0004 1.8303 0.0672

    Head Motion 0.0001 0.0000 4.8128 0.0000

    LES 0.0012 0.0027 0.4410 0.6592

    BMI 0.0001 0.0001 1.3052 0.1918

    Sex 0.0007 0.0004 2.0708 0.0384

    Head Motion 0.0001 0.0000 4.6950 0.0000

Note. SMN-CS – sensorimotor network community structure, SE – standard error, BMI – body mass 

index, BAL – balance, GS – gait speed, CGS – complex gait speed, and LES – lower extremity 

strength 

 

 

 



 

 

 

Table S3: DAN-CS main effects 

 

Network Condition Variable Estimate SE T Score pValue

DAN Rest BAL 0.0021 0.0013 1.5676 0.1170

    BMI 0.0007 0.0001 8.9288 0.0000

    Sex 0.0038 0.0005 7.9236 0.0000

    Head Motion 0.0001 0.0000 2.8750 0.0040

    LES -0.0031 0.0036 -0.8544 0.3929

    BMI 0.0007 0.0001 9.0736 0.0000

    Sex 0.0038 0.0005 7.9143 0.0000

    Head Motion 0.0001 0.0000 2.9431 0.0033

  Task GS 0.0013 0.0036 0.3755 0.7073

    BMI 0.0006 0.0001 8.8643 0.0000

    Sex 0.0008 0.0004 2.0028 0.0452

    Head Motion 0.0003 0.0000 10.8693 0.0000

Note. DAN-CS – dorsal attention network community structure, SE – standard error, BMI – body mass 

index, BAL – balance, GS – gait speed, and LES – lower extremity strength 

 

 

 

 



 

 

Figure S2: Community structure maps for SMN during the rest condition for the upper and lower 

tertiles for complex gait speed (CGS), lower extremity strength (LES), and body mass index (BMI). 

For CGS and LES, the upper tertiles had greater community spatial overlap across participants 

compared to the lower tertiles. The opposite relationship was true for BMI, having higher community 

structure in the lower vs. upper tertile. Warmer colors indicate higher community structure, or an area 

that is more frequently a part of the brain community across participants. BMI – body mass index, 

CGS – complex gait speed, and LES – lower extremity strength. 



 

Figure S3: Plot of the interaction between eSPPB components gait speed (GS) and complex gait speed 

(CGS) with BMI for DAN at rest. The color lines represent the relationships between component 

distances (δGS, and δCGS) on the x-axis and community structure distances (δDAN) on the y-axis for 

ten discrete BMI distances (δBMI) that are evenly spaced. The yellow lines represent the effects of 

δGS, and δCGS when δBMI=0. The y-intercepts represent the effect of δBMI when the δGS and δCGS 

each equal 0.  

  



 

 

 

Figure S4: Community structure maps for DAN during the rest condition for the upper and lower 

tertiles of complex gait speed (CGS), gait speed (GS), and body mass index (BMI).CGS, GS, and BMI. 

For CGS and GS, the upper tertiles had greater community spatial overlap across participants 

compared to the lower tertiles. The opposite relationship was true for BMI, having higher community 

structure in the lower vs. upper tertile. The color bar indicates the same measures as in eFigure 2. BMI 

– body mass index, GS – gait speed, and CGS – complex gait speed 

 

 

 

 

 

 

 



 

 

Figure S5: Plot of the interaction between eSPPB components complex gait speed (CGS), lower 

extremity strength (LES), and balance (BAL) with BMI for DAN during the motor imagery task. The 

y-axis, x-axis and relationship as described by the colored lines is the same as in eFigure 3. 

  



 

 

Figure S6: Community structure maps for DAN during the motor imagery task for the upper and lower 

tertiles of complex gait speed (CGS), lower extremity strength (LES), balance (BAL) and body mass 

index (BMI). BMI, CGS, LES and BAL. For BMI, the lower tertile had greater community spatial 

overlap across participants. The opposite relationship was true for the subscale measures CGS, LES, 

and BA, each having higher community structure in the upper tertile. The color bar indicates the same 

measures as in eFigure 2. BMI – body mass index, BAL – balance, CGS – complex gait speed, and 

LES – lower extremity strength 

 

 

 
 
 
 
 
 
  

  



Categorical BMI analyses 

Exploratory analyses were performed using BMI as a categorical variable. Individuals were assigned 

the following categories: normal weight (BMI = 18.5-24.9), overweight (BMI = 25.0 – 29.9) or obesity 

(BMI > 30). Two participants were categorized as underweight (BMI < 18.5) and were exclude form 

the analyses. There were 52, 77, and 61 participants in the normal weight, overweight, and obesity 

categories.  Given the ordinal nature of the BMI categories and the hypothesis that there will be linear 

association between BMI and the brain networks, the categories were coded as 0, 1, and 2. In the 

distance regression model this resulted in there being a distance of 1 between normal weight and 

overweight and between overweight and obesity. There was a distance of 2 between normal weight and 

obesity.  

The findings presented below in Tables S4 and S5 revealed very similar results to the analyses using 

BMI as a continuous variable. The estimates for all of the significant interactions were in the same 

direction across both analyses. Note that the absolute magnitude of the estimates for the interaction 

between BMI and the eSPPB categories cannot be directly compared between the continuous and 

categorical analyses. The overall take way from the two analyses were quite similar (Table S6). A 

notable difference was that the two significant leg strength interactions observed in the continuous 

model were no longer significant in the categorical model. This suggests that variability within the 

BMI categories may be important for that interaction. Another difference was that the BMI*gait speed 

interaction was significant for DAN-Task in the categorical model but not in the continuous model. 

Further exploration of the differences between the two the continuous and categorical BMI 

associations is warranted. Figure S7 shows the SMN and DAN community structure for the 3 groups. 

It is clear that the community structure declines in a step-wise fashion from normal weight to 

overweight to obesity. 



Table S4: SMN-CS Categorical BMI Results 

Network Condition Variable Coefficient
Estimate

Standard 
Error

T Score p Value 

SMN 
 

Rest 
 

BAL 0.0013 0.0016 0.8299 0.4066 

BMI 0.0019 0.0005 3.6087 0.0003 

BAL*BMI 0.0002 0.0013 0.1183 0.9058 

Sex 0.0017 0.0004 4.0429 0.0001 

Head Motion 0.0001 0.0000 2.0323 0.0421 

GS 0.0080 0.0049 1.6385 0.1013 

BMI 0.0013 0.0005 2.6265 0.0086 

GS*BMI 0.0042 0.0035 1.2048 0.2283 

Sex 0.0017 0.0004 3.9984 0.0001 

Head Motion 0.0001 0.0000 2.0350 0.0419 

CGS ‐0.0015 0.0022 ‐0.6652 0.5059 

BMI 0.0007 0.0005 1.4401 0.1499 

CGS*BMI 0.0055 0.0018 3.1409 0.0017 

Sex 0.0017 0.0004 3.9781 0.0001 

Head Motion 0.0001 0.0000 2.0180 0.0436 

LES 0.0087 0.0039 2.2194 0.0265 

BMI 0.0017 0.0005 3.4646 0.0005 

LES*BMI 0.0009 0.0029 0.3147 0.7530 

Sex 0.0017 0.0004 4.0313 0.0001 

Head Motion 0.0001 0.0000 2.0274 0.0426 

Task BAL ‐0.0009 0.0014 ‐0.6343 0.5259 



BMI ‐0.0001 0.0004 ‐0.2186 0.8270 

BAL*BMI 0.0015 0.0011 1.2884 0.1976 

Sex 0.0008 0.0004 2.1569 0.0310 

Head Motion 0.0001 0.0000 4.5774 <0.0001 

GS ‐0.0037 0.0042 ‐0.8949 0.3709 

BMI 0.0001 0.0004 0.1296 0.8969 

GS*BMI 0.0027 0.0030 0.8976 0.3694 

Sex 0.0008 0.0004 2.1554 0.0311 

Head Motion 0.0001 0.0000 4.6061 <0.0001 

CGS ‐0.0019 0.0019 ‐0.9776 0.3283 

BMI ‐0.0003 0.0004 ‐0.6872 0.4920 

CGS*BMI 0.0028 0.0015 1.8991 0.0576 

Sex 0.0007 0.0004 1.9130 0.0558 

Head Motion 0.0001 0.0000 4.6952 <0.0001 

LES 0.0007 0.0034 0.2029 0.8392 

BMI 0.0003 0.0004 0.5980 0.5498 

LES*BMI 0.0006 0.0024 0.2443 0.8070 

Sex 0.0008 0.0004 2.1500 0.0316 

Head Motion 0.0001 0.0000 4.5895 <0.0001 

Note. BMI = body mass index as a categorical variable (normal weight, overweight, and obesity), BAL 
= balance, GS = gait speed, CGS = complex gait speed, LES = lower extremity strength and 
*=interaction. Gray shaded text indicates significant component by BMI interaction.  



Table S5: DAN-CS Categorical BMI Results 

 

Network Condition Variable Coefficient
Estimate

Standard 
Error

T score p Value 

DAN 
Rest 

BAL 0.0000 0.0018 0.0225 0.9821 

BMI 0.0022 0.0006 3.7084 0.0002 

BAL*BMI 0.0021 0.0015 1.3988 0.1619 

Sex 0.0037 0.0005 7.6800 <0.0001 

Head Motion 0.0001 0.0000 2.8880 0.0039 

GS ‐0.0126 0.0055 ‐2.2664 0.0234 

BMI 0.0003 0.0006 0.4563 0.6482 

GS*BMI 0.0225 0.0040 5.6101 <0.0001 

Sex 0.0037 0.0005 7.6517 <0.0001 

Head Motion 0.0001 0.0000 2.9450 0.0032 

CGS speed ‐0.0052 0.0025 ‐2.0562 0.0398 

BMI 0.0013 0.0006 2.2895 0.0221 

CGS*BMI 0.0072 0.0020 3.6278 0.0003 

Sex 0.0037 0.0005 7.4698 <0.0001 

Head Motion 0.0001 0.0000 2.8793 0.0040 

LES ‐0.0035 0.0045 ‐0.7756 0.4380 

BMI 0.0030 0.0006 5.2187 <0.0001 

LES*BMI ‐0.0009 0.0033 ‐0.2844 0.7761 

Sex 0.0037 0.0005 7.6697 <0.0001 

Head Motion 0.0001 0.0000 2.9329 0.0034 

Task BAL ‐0.0007 0.0016 ‐0.4376 0.6617 



BMI 0.0010 0.0005 2.0887 0.0367 

BAL*BMI 0.0044 0.0013 3.3526 0.0008 

Sex 0.0008 0.0004 1.8359 0.0664 

Head Motion 0.0003 0.0000 10.4041 <0.0001 

GS ‐0.0062 0.0048 ‐1.3141 0.1888 

BMI 0.0014 0.0005 2.8949 0.0038 

GS*BMI 0.0083 0.0034 2.4298 0.0151 

Sex 0.0008 0.0004 1.8057 0.0710 

Head Motion 0.0003 0.0000 10.4364 <0.0001 

CGS ‐0.0016 0.0022 ‐0.7225 0.4700 

BMI 0.0014 0.0005 2.9247 0.0035 

CGS*BMI 0.0046 0.0017 2.6671 0.0077 

Sex 0.0008 0.0004 1.9664 0.0493 

Head Motion 0.0003 0.0000 10.3692 <0.0001 

LES strength ‐0.0034 0.0038 ‐0.8874 0.3749 

BMI 0.0019 0.0005 3.9554 0.0001 

LES*BMI 0.0034 0.0028 1.2238 0.2211 

Sex 0.0008 0.0004 1.8115 0.0701 

Head Motion 0.0003 0.0000 10.5039 <0.0001 

Note. BMI = body mass index as a categorical variable (normal weight, overweight, and obesity), BAL 
= balance, GS = gait speed, CGS = complex gait speed, LES = lower extremity strength and 
*=interaction. Gray shaded text indicates significant component by BMI interaction.  
 
 

 
  



Table S6: Summarized Significant Associations 
 

 
 
 
 

Network Condition balance
gait 

speed 

complex 

gait 

speed 

lower 

extremity 

strength 

SMN 
Rest 

  

Task 
  

DAN 
Rest 

  

Task 

  
  Significant eSPPB component by BMI interaction 

  
  Significant eSPPB component and BMI main effects (no interaction) 

  
  Significant BMI main effect (no interaction) 



 
Figure S7: Community structure maps categorical groupings of BMI. Data were categorized as normal 

weight (18.5-24.9 kg/m2), overweight (256-29.9 kg/m2), and obesity (> 30 kg/m2). Images show the 

average community structure maps for each group. Note that an underweight category was not used as 

there were only two participants with a BMI < 18.5 kg/m2. As found with the continuous regression 

models, the integrity of the community structure for both the SMN and DAN is highest for normal 

weight, followed by overweight, and lowest for obesity.  
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