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Editing efficiency of C+G converted to T+A in HEK293T cells

Figure S1. Engineered nCas9 variants improve the editing efficiency of
AncBE4max in HEK293T cells. Heatmap of observed C-to-T conversion (%) induced
by AncBE4max and 20 engineered AncBE4max variants containing different single
mutations in nCas9 at six endogenous genomic loci in HEK293T cells. The results show
the editing efficiency of all-edited C-to-T within the editing window, data are presented

as means (n = 3 biological replicates).
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Figure S2. Combination of X-to-R mutations in nCas9 for further improvement of

AncBE4max activities at more tested sites in HK293T cells. a) Heatmap of observed

C-to-T conversion (%) induced by AncBE4max and 11 AncBE4max variants

containing combinate X-to-R mutations at eight endogenous genomic loci in HEK293T

cells. The results show the editing efficiency of the all-edited C-to-T within the editing

window, data are presented as means (n = 3 biological replicates). The results from all

sites were also summarized into a “median” panel placed at the most right-handed

position. b) On the left, relative indel ratio (%) associated with (a) was shown (means

+ s.d., n = 3 biological replicates). On the right, results were further analyzed by

considering indel ratio (%) at all sites (n = 8 sites) as a whole. The indel ratio (%)

induced by AncBE4max were set as 1.
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Figure S3. AncBE4max activities are enhanced through the combination of X-to-
R mutations in nCas9 at previously examined genomic loci in HEK293T cells. a)
Heatmap of observed C-to-T conversion (%) induced by AncBE4max and 11 combinate
mutations mediated-AncBE4max variants at four previously examined endogenous
genomic loci (detected in Figure 1) in HEK293T cells. The results show the editing
efficiency of the all-edited C-to-T within the editing window, data are presented as
means (n = 3 biological replicates). b) On the left, relative indel ratio (%) associated
with (a) was shown (means + s.d., n = 3 biological replicates). On the right, results were
further analyzed by considering indel ratio (%) at all sites (n = 4 sites) as a whole. The

indel ratio (%) induced by AncBE4max were set as 1.
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Figure S4. The protein expression levels of AncBE4max variants are comparable
in HEK293T cells. a) The protein expression levels of AncBE4max variants were
compared, following their transfection in HEK293T cells. The cells were transfected
with the same amount of the BE plasmids as that in the earlier editing experiments. In
addition, an equal amount of WT Cas9 plasmid was co-transfected with the
AncBE4max variants, to serve as an internal control. A representative result from three
independent experiments is shown here. The Western blot analysis indicated that the
average level of the 2XR group was close to the control nCas9/AncBE4max, and most
3XR variants and the 4XR variant showed comparatively lower expression (4XR at the
lowest). b) The Western blots were scanned for further quantitation. The levels of the

control AncBE4max was set as 1.
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Figure S5. Combination of X-to-R mutations in nCas9 for further improvement of
AncBE4max activities at more tested sites in HeLa cells. Heatmap of observed C-
to-T conversion (%) induced by AncBE4max and 11 combinate mutations mediated-
AncBE4max variants at five endogenous genomic loci in HeLa cells. The results show

the editing efficiency of the all-edited C-to-T within the editing window, data are

presented as means (n = 3 biological replicates).

Editing efficiency of C+G converted to T+A in HeLa cells
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Figure S6. Compare the editing efficiency of AncBE4max and
eAncBE4max1.1~1.3 in HEK293T cells. a) The editing efficiency of AncBE4max and
eAncBE4max1.1~1.3 at eleven genomic loci in HEK293T cells was analyzed by NGS,
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by considering indel ratio (%) at all sites (n = 11 sites) as a whole. The indel ratio (%)

induced by AncBE4max were set as 1.
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Figure S10. Optimize nCas9 for increasing the editing efficiency of CGBE in
HEK?293T cells. a) HEK293T cells were transfected with CGBE (UdgX-Anc689-
UdgX-nCas9-RBMX), and eCGBE1.1~1.3 (we defined SS5R-N1317R, S55R-A1322R
and N1317R-A1322R double mutants mediated-CGBE as eCGBE1.1, eCGBE1.2 and
eCGBE1.3, respectively), as described in Experimental Section. On the left, the percent
of total sequencing reads with target C convened to each base at HEK?2 site were shown.
On the right, the distribution of C convened to each base among edited DNA sequencing
reads (reads in which the target C were mutated) were shown. The boxed region
corresponds to the most susceptible base. b) Same experiment as (a), the editing
situation of CGBEs at ALDOB site 1 were shown. ¢) Same experiment as (a), the editing
situation of CGBEs at HNRNPK site 1 were shown. d) Relative indel ratio (%)
associated with Figure 4d and Figure 10a-c, Supporting Information were shown

(means + s.d., n = 3 biological replicates).
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Figure S11. Split eAncBE4max-s increase editing efficiency without compromising
fidelity, and their protein expression levels are comparable to split AncBE4max in
HEK?293T cells. a) C-to-T conversion (%) induced by AncBE4max, split-AncBE4max
(split-WT) and the S55R-N1317R-, S55R-A1322R- and N1317R-A1322R-introduced
split-BEs at four target contexts in HEK293T cells are analyzed by considering editing
efficiency at all sites (n = 4 sites) as a whole. The editing frequencies induced by
AncBE4max were set as 1 (gray dashed line). b) HEK293T cells were transfected with
AncBE4max and split-BEs (including split AncBE4max and split eAncBE4max-s).
The indel rates (%) induced by AncBE4max and split-BEs at four genomic sites were
considered as a whole (n = 4 sites). ¢) Results in (b) were normalized. The indel rate
(%) induced by AncBE4max were set as 1 (gray dashed line). d) The split BEs were
tagged at the N- and C-terminus with HA and Flag, respectively. The protein expression
levels of split AncBE4max and eAncBE4max-s were determined, following their
transfections in HEK293T cells under the same condition as the earlier editing

experiments. Three different sgRNA plasmids were also co-transfected. The Western



blot analysis indicated that the average levels of the split and full-length parts of the
2XR groups were comparable to those of the control split AncBE4max group. e) Results

in (d) were quantitated. The expression level of the split AncBE4max was set as 1.
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Figure S12. Similarly engineered (with the favorable 2XR modifications)
eABEmax1.1~1.3 variants could generally enhance the activities of ABEmax7.10
in HEK293T cells. The editing efficiency of ABEmax7.10 and eABEmax1.1~1.3 at

eight genomic loci in HEK293T cells are shown. Data are presented as means + s.d. (n

= 3 biological replicates).
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Figure S13. The eABE8e-1.1~1.3 variants showed conditional enhancement effects
mainly at sites less susceptible to ABE8e in HEK293T cells. The editing efficiency
of ABE8e and eABES8e-1.1~1.3 at nine genomic loci in HEK293T cells are shown, data

are presented as means + s.d. (n = 3 biological replicates).
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Figure S14. Assessments of the DNA or RNA off-target editing activity of
eAncBE4max-s in HEK293T cells. a) HEK293T cells were transfected with
AncBE4max and eAncBE4max (1.1~1.3) plasmids together with a sgRNA. The levels
of editing at the on- and off-target sites for the indicated sgRNA (against FANCF) are
shown (mean + s.d., n = 3 biological replicates). b) Comparison of off-target RNA

editing activity by AncBE4max and eAncBE4max1.2.
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Figure S15. The indel rates (%) induced by high-fidelity CBEs and WT CBE are
comparable in HEK293T cells. We constructed high-fidelity versions of the 2XR-
engineered BEs by merging the 2XR substitutions and SuperFi, HF1 and Hypa nCas9.
Indel rates (%) induced by high-fidelity versions of BE and engineered BE variants at
three target sites in HEK293T cells were considered as a whole. The indel ratio (%)
induced by the original high-fidelity AncBE4max forms (with the original SuperFi,
HF1 and Hypa nCas9) were set as 1. Data are presented as means + s.d. (n = 3 biological

replicates).
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Figure S16. 2XR modifications in Cas9 and HF-Cas9 caused differential levels of
increases in their cleaving efficiencies. a) HEK293T cells were transfected with WT
SpCas9 or the Xs-to-Rs-modified Cas9 variants (containing the double mutants SS5R-
N1317R, S55R-A1322R and N1317R-A1322R) together with sgRNAs. The indel rates
(%) of WT SpCas9 or the Cas9 variants at six genomic sites were shown (mean + s.d.,
n = 3 biological replicates). b) Results in (a) were further analyzed by considering indel
rates (%) at all sites (n = 6 sites) as a whole. The indel rates (%) induced by WT SpCas9
were set as 1. ¢) HEK293T cells were transfected with WT HF-Cas9 or HF-Cas9
variants (SuperFi, HF1 and Hypa versions, containing the double mutants S55R-
N1317R, S55R-A1322R and N1317R-A1322R) together with sgRNA. The indel (%)
of WT HF-Cas9 or HF-Cas9 variants at three genomic sites were shown (mean + s.d.,
n = 3 biological replicates). d) Results in (c) were further analyzed by considering indel
rates (%) at all sites (n = 3 sites) as a whole. The indel rates (%) induced by WT HF-

Cas9 were set as 1.
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Figure S17. The correlation between editing efficiencies of nCas9- and dCas9-
based AncBE4max variants. The correlations between the editing efficiencies of dead
Cas9-based AncBE4max (data in Figure 6¢), and nCas9-based AncBE4max (data in

Figure S2a and Figure S3a, Supporting Information) at four target sites are presented.
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Figure S18. Overall efficiencies by engineered AncBE4max and ABES8e in primary
human T cells. The control and engineered BEs (in the forms of AncBE4max or
ABES8e) were adopted to edit relevant targets in human T cells (see detailed data in
Figure 7). LNP vector was used for delivering the BEs to primary human T cells. The
overall efficiencies of AncBE4max-s (control and engineered form 1.2) at 4 target
cytosines, and of ABE8e-s (control and engineered form 1.2) at the substrate adenines
from 5 targeted splicing sites in human T cells are summarized. The center line shows
medians of all data points and the box limits correspond to the upper the lower quartiles,

while the whiskers extend to the largest and smallest values.



Table S1. Primers used for engineered nCas9 variants construction.

NO. Forward primer Reverse primer
R780A GCGAGGCAATGAAGCGGATCGAAGAGGGC GCTTCATTGCCTCGCGGCTGTTCTTCTGTC
R783A TGAAGGCAATCGAAGAGGGCATCAAAGAGC CTTCGATTGCCTTCATTCTCTCGCGGCTGTTC
K810A ACGAGGCACTGTACCTGTACTACCTGCAG GGTACAGTGCCTCGTTCTGCAGCTGGGTGTTTTCCA
R832A CATCAACGCACTGTCCGACTACGATGTGGA GTTGATGTCCAGTTCCTGGT
RB848A TTTCTGGCAGACGACTCCATCGACAACAAG GTCGTCTGCCAGAAAGCTCTGAGGCACGATATG
K855A ACAACGCAGTGCTGACCAGAAGCGACAAGAAC TCAGCACTGCGTTGTCGATGGAGTCGTCCTTC
R859A CTGACCGCAAGCGACAAGAACCGGGGCAAG GTCGCTTGCGGTCAGCACCTTGTTGTCGATG
S964A CTGGTGGCAGATTTCCGGAAGGATTTCCA GAAATCTGCCACCAGCTTGGACTTCAGGGTG
K968A TTCCGGGCAGATTTCCAGTTTTACAAAGTGCG GAAATCTGCCCGGAAATCGGACACCAGCTTG
R976A AAAGTGGCAGAGATCAACAACTACCACCAC GATCTCTGCCACTTTGTAAAACTGGAAATCCTTC
HI82A AACTACGCACACGCCCACGACGCCTACCTAAACG GGCGTGTGCGTAGTTGTTGATCTCGCGCACTTTG
K1003A TACCCTGCACTGGAAAGCGAGTTCGTGTACG TTCCAGTGCAGGGTACTTTTTGATCAGGGC
K1047A TTTTTCGCAACCGAGATTACCCTGGCCAACGGC CTCGGTTGCGAAAAAGTTCATGATGTTGCTG
RI060A | GGCGAGATCCGGAAGGCACCTCTGATCGAGACAAACGGCGAAACCGGGGAGATCGTGTG | CTTCCGGATCTCGCCGTTGGCCAGGGTAATCTCGGTCTTGAAAAAGTTCATGATGTTGC
D54R TTCCGTAGCGGCGAAACAGCCGAGGCCACCCGGCTGAAG TTCGCCGCTACGGAACAGCAGGGCTCCGATCAGGTTCTTCTTGATGC
SS5R TTCGACCGCGGCGAAACAGCCGAGGCCACCCGGCTGAAGA TTCGCCGCGGTCGAACAGCAGGGCTCCGATCAGGTTCTTCTTGATGC
N9SOR ATCAACCGCTACCACCACGCCCACGACGCCTACCTAAACG GTGGTAGCGGTTGATCTCGCGCACTTTGTAAAACTGGAAATCCTTCCGGAAATCGGACA
TI314R TTCGCCTGACCAATCTGGGAGCCCCTGCCGCCTTCAAG GATTGGTCAGGCGAAACAGGTGGATGATATTCTCGGCCTGCTCTCTGA
NI3ITR TGACCCGCCTGGGAGCCCCTGCCGCCTTCAAGTACTTTGACA CTCCCAGGCGGGTCAGGGTAAACAGGTGGATGATATTCTC

Al1322R

TCGCGCCTTCAAGTACTTTGACACCACCATCGACCGGA

TACTTGAAGGCGCGAGGGGCTCCCAGATTGGTCAGGGTAAACAGGTGGA




Table S2. Spacer sequences used for constructing sgRNA plasmids.

NO.

Forward primer

Reverse primer

ALDOB site 1

ACCGCATACTGTCCTTTGGCCGCC

AAACGGCGGCCAAAGGACAGTATG

HSPY0ABI site 1

ACCGTTGACTTTAAACTTGTTGGC

AAACGCCAACAAGTTTAAAGTCAA

CTNNBI site 1

ACCGACACAGCAGCAATTTGTGGT

AAACACCACAAATTGCTGCTGTGT

HPRTI site 1

ACCGTCTTGCTCGAGATGTGATGA

AAACTCATCACATCTCGAGCAAGA

HSD17B4 site 1

ACCGGTGTACCAAGGCCCTGCAAA

AAACTTTGCAGGGCCTTGGTACAC

DKC1 site 1

ACCGGTGGTCAGATGCAGGAGCTT

AAACAAGCTCCTGCATCTGACCAC

USP] site 1

ACCGAAACAAATTTACCAAGGGAA

AAACTTCCCTTGGTAAATTTGTTT

ALDOB site 2

ACCGCTACTAGAAGCACTGGAGCT

AAACAGCTCCAGTGCTTCTAGTAGG

PRNP site 1

ACCGGAACCTTGGCTGCTGGATGC

AAACGCATCCAGCAGCCAAGGTTC

FANCF site 1

ACCGCCAGCAGGCGCAGAGAGAGC

AAACGCTCTCTCTGCGCCTGCTGG

CTNNBI site 2

ACCGGCAGCATCAAACTGTGTAGA

AAACTCTACACAGTTTGATGCTGC

CTNNBI site 3

ACCGGAAACAGCTCGTTGTACCGC

AAACGCGGTACAACGAGCTGTTTC

HNRNPK site 1

ACCGTAAACAAATCCGTCATGAGT

AAACACTCATGACGGATTTGTTTA

RNF2 site 1

ACCGTCAACCATTAAGCAAAACAT

AAACATGTTTTGCTTAATGGTTGA

RUNXI site 1

ACCGGATGAAGCACTGTGGGTACGA

AAACTCGTACCCACAGTGCTTCATC

HAVCR? site 1

ACCGGCCTCGGCCTCCCAAAGCGC

AAACGCGCTTTGGGAGGCCGAGGC

HAVCR?2 site 2

ACCGTTCTACACCCCAGCCGCCCC

AAACGGGGCGGCTGGGGTGTAGAA

PDCDI site 1

ACCGGCGTGACTTCCACATGAGCG

AAACCGCTCATGTGGAAGTCACGC

DKC1 site 2

ACCGACCGCAGACTCCCGCCGCCT

AAACAGGCGGCGGGAGTCTGCGGT

site B

ACCGAGAGCCCCCCCTCAAAGAGA

AAACTCTCTTTGAGGGGGGGCTCT

site A

ACCGTGCCCCTCCCTCCCTGGCCC

AAACGGGCCAGGGAGGGAGGGGCA

BCL114 site 1

ACCGTTTATCACAGGCTCCAGGAA

AAACTTCCTGGAGCCTGTGATAAA

FANCF

ACCGGGAATCCCTTCTGCAGCACC

AAACGGTGCTGCAGAAGGGATTCC

HEK2

ACCGGAACACAAAGCATAGACTGC

AAACGCAGTCTATGCTTTGTGTTC

KCNAS

ACCGCCGGGAAACAGATTTGTGAA

AAACTTCACAAATCTGTTTCCCGG

TRAC

ACCGTTTCAAAACCTGTCAGTGAT

AAACATCACTGACAGGTTTTGAAA




targeted deep sequencing.

Table S3. Primers used for HEK293T and HeLa cells genomic DNA amplification and

NO. Forward primer Reverse primer
ALDORB site 1 CTCCTACTAGAAGCACTGGAG CTGAGTGAAGGTTTGACTGG
HSP90ABI site 1 GGTATTGCAGTTCTGTAGGC ACAGTGAAGGAACCTCCAGC
CTNNBI site 1 TCATGCACCTTTGCGTGAGC TCTCTGCAGCCATAGAAATG
HPRTI site 1 CACTATATTGCCCAGGTTGGTGTGG GATAAAATCTACAGTCATAGGAATG
HSDI17B4 site 1 ATGTGTAGAATAAGTGCCAC TGAGGGTCAAGCTTGCCCAG
DKC site 1 GAGGCTGGCACCTACATTCG AACTCAACACTTTGGAAAGC
USP1 site 1 TTCAAATCCCAAGGAGTGTC TTAAGAACAGTGTGGTATGC
ALDOB site 2 GTCACATTTACTCTAACCAG ACATGTGTTGTATTTCCAGC
PRNP site 1 TGAGCAGCTGATACCATTGC GCGGTTGCCTCCAGGGCTGC
FANCEF site 1 CCTGCGCCACATCCATCGGC TGCACCAGGTGGTAACGAGC
CTNNBI site 2 GTGGCAAGTTCTGCATCATC GCTGAACTGTGGATAGTGAG
CTNNBI site 3 TGCAGTTATGGTCCATCAGC TTAGCTTCAAGCATTCTGAC
HNRNPK site 1 CATGCTCCTTGAAAATACAG CTTAAACTGACCTGTTCTGC
RNF2 site 1 AGCCAACATACAGAAGTCAG TTTCCAGCAATGTCTCAGGC
RUNXI site 1 AAGAAAGAGAGATGTAGGGC CATTACAGGCAAAGCTGAGC
HAVCR?2 site 1 GTAGCTGGGATTACAGACGC TTGAGAAGCTCAGAGGTTCG
HAVCR?2 site 2 TGGAGTAACCTCACTCACCG TTAGCCAGTATCTGGATGTC
PDCDI site 1 AACCAGACGGACAAGCTGGC ACCTGTCACCCTGAGCTCTG
DKC1 site 2 AATCGCATTGCGCAGACGAC GAGTTAGCACGGCCCGGAAG
site B CTTCACTGAGTCTCCACACA GAAATCTTAGGAACTGAGAG
site 4 CTAACCCTATGTAGCCTCAG AATGCGCCACCGGTTGATGT
BCL114 site 1 CAGGTAATAACATAGGCCAG CAAGAGAGCCTTCCGAAAGA
FANCF AAAGACGCTGGGAGATTGAC CCAGGTGCTGACGTAGGTAG
HEK2 TCAAGTTACTGCAGCCCAAG CCCCATCTGTCAAACTGTGC
KCNAS GAGAAGTGTAACGTCAAGGC GAGGGGTAGACTGAGGTTAC
TRAC AAACCGTGGGTGTGTCCTGC GCTCTCAGAGCTTAGGATGC




Table S4. Spacer sequences of sgRNAs used for primary T cell editing.

NO. Sequences (5'-3")
B2M iSTOP TTACCCCACTTAACTATCTT
CD247 iSTOP CAGGCACAGTTGCCGATTAC
CD3D iSTOP TCTATCAGGTGAGCGTTGAG
CTLA4 site 1 CACTCACCTTTGCAGAAGAC
CTLA4 site 2 GCTCACCAATTACATAAATC
PDCDI sgRNAI1 CACCTACCTAAGAACCATCC
PDCDI sgRNA2 ATCTCTCAGACTCCCCAGAC
B2M sgRNAI1 CTTACCCCACTTAACTATCT




Table S5. Primers used for primary T cells genomic DNA amplification and targeted

deep sequencing.

NO. Forward primer Reverse primer

B2M iSTOP AGATGGGATGGGACTCATTC CTATCTCTTGTACTACACTG
CD247 iSTOP GACTCCTTTTCTCCTAACCG GAGGGCAGGATTTGAAGGAG
CD3D iSTOP CTCACAGTCCCATCTGCTAG ACCTCTCCAGTCACACCCAG
CTLA4 site 1 CTGCCTTTGACTGCTGAAAC TACTTCCTGAAGACCTGAAC
CTLA4 site 2 TGAGTTGACCTTCCTAGATG ACCTCCTGAAATTAAGGAAC
PDCDI sgRNALI CTGGCTCTGGGACACCTGAC CCGCCTGAGCAGTGGAGAAG
PDCDI sgRNA2 CTTCTCAATGACATTCCAGC CTCCGATGTGTTGGAGAAGC
B2M sgRNA1 AGATGGGATGGGACTCATTC CTATCTCTTGTACTACACTG




