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Experimental Section

Materials

Chloroplatinic acid hexahydrate (H2PtClg), nitro blue tetrazolium chloride (NBT), L-
methionine, riboflavin, paraformaldehyde (PFA), and 1,1’-di-n-octadecyl-3,3,3°,3’-
tetramethylindocarbocyanine perchlorate (Dil) were purchased from Macklin (Shanghai,
China). Dimethylamine borane (DMAB), dichloromethane (DCM), polyvinyl alcohol (PVA),
nail blue, and carbon tetrachloride (CCls) were purchased from Aladdin (Shanghai, China).
Bovine serum albumin (BSA) was bought from neoFroxx GmbH (Einhausen, Germany). Cell-
culture-grade phosphate buffer solution (PBS) powder was obtained from Biosharp (Beijing,
China). Defatted soybean meal was purchased from Yuwang (Yucheng, China). Sodium
hyaluronate (SH), neutral protease (NPr), and flaxseed oil were bought from Yuanye (Shanghai,
China). Span 80 was purchased from Gersion (Beijing, Chian). Poly (lactic-co-glycolic acid)
(PLGA, lactic acid/glycolic acid = 50/50, intrinsic viscosity = 0.70-1.00) was supplied by
Polymtek (Shenzhen, China). Horseradish peroxidase (HRP) and Amplex red were obtained
from Meilunbio (Dalian, China). Phorbol 12-myristate 13-acetate (PMA) was purchased from
Solarbio (Beijing, China). Lipopolysaccharide (LPS) was purchased from Merck (Darmstadt,
Germany). Transforming growth factor beta 1 (TGFB1) was bought from PeproTech (Suzhou,
China). H202 (3%) was purchased from G-Clone (Guangzhou, China). Cell counting kit 8
(CCK8) was purchased from ApexBio (Houston, USA). 4’,6-diamidino-2-phenylindole
dihydrochloride  (DAPI), diethylpyrocarbonate (DEPC)-treated H»O, and 2°,7’-
dichlorodihydrofluorescein-diacetate (DCFH-DA) were purchased from Beyotime (Shanghai,
China). Tris (4,7-diphenyl-1,10-phenanthroline) ruthenium (Il) dichloride complex
([Ru(dpp)z]Cl,) was bought from Bidepharm (Shanghai, China). Malonaldehyde (MDA) assay
kit, GSH assay kit, and H.O> assay Kit were purchased from Boxbio (Beijing, China).

The other reagents in this study were of analytical purity and used without further
purification. All the water employed in our investigation was ultrapure, with an electrical
resistivity not exceeding 18.2 MQ cm™, prepared using a laboratory water purification system
(Milli-Q Integral 3, Merck Millipore, Germany).

Methods

Cell Culture

The murine hepatocyte cell line AML12, human monocyte cell line THP1, and human hepatic
stellate cell line LX2 were obtained from National Collection of Authenticated Cell Cultures

(Shanghai, China). The human hepatocyte cell line LO2 was generously provided as a gift by
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the Guangdong Key Laboratory of Liver Disease Research (Guangzhou, China). The murine
macrophage cell line Raw264.7 and rat hepatic stellate cell line HSC-T6 were obtained from
the American Type Culture Collection. LO2, Raw264.7, LX-2, and HSC-T6 cells were cultured
in Dulbecco’s modifier Eagle’s medium (DMEM) containing 4.5 g L glucose (Gibco, USA)
supplemented with 10% (volume/volume, v/v) fetal bovine serum (FBS, Biological Industries,
Israel) and 1% (w/v) penicillin G sodium/streptomycin sulfate (P/S, Gibco, USA). AML12 cells
were cultured in DMEM/F12 (Corning, USA) supplemented with 10% (v/v) FBS, 1% (w/v)
P/S, and 10 pg mL™? insulin, 5.5 pg mL™ transferrin, 5 ng mL™ selenium, 40 ng mL™
dexamethasone (Liver Biotechnology, China). THP1 cells were cultured in Roswell Park
Memorial Institute-1640 (RPMI-1640) medium (Corning, USA) supplemented with 10% (v/v)
FBS, 1% (w/v) PS and 0.05 nM 2-mercaptoethanol (Thermo, USA). All cells were cultured in
an incubator (Forma™ Steri-Cycle™ i160, Thermo) at 37 <C under a humidified atmosphere

containing 5% COs,.

Uptake of SecNPs by Cells

Stem cell secretome-encapsulated core-shell nanoparticles (SecNPs) were labeled with Dil by
incorporating this dye into the oil phase during the preparation of SecNPs. Subsequently, the
pre-cultured cells were co-incubated with Dil-labeled SecNPs for 0, 2, 4, or 6 h. After washing
with PBS, the cell nuclei were stained with DAPI, followed by the fixation with 4% (w/v)
paraformaldehyde (PFA, pH 7.4) at room temperature for 15 min. After another round of
washing, the stained cells were observed and imaged with an inverted fluorescence microscope
(Ti2-U, Nikon, Japan), and the Dil" fluorescence intensity was determined using a flow
cytometer (CytoFLEX S, Beckman, USA).

Effect of SecNPs on Hepatocytes

AML12 or LO2 cells were pre-cultured in a 96-well (5 < 10° cells well™) or 6-well (1 x10°
cells well™) plate for 24 h, followed by serum-starvation for 12 h. Subsequently, the starved
cells were treated with CCls (20 mM) for 24 h. After washing with PBS, the treated cells were
co-incubated with SecNPs (100, 200, or 300 ug mL™?) for 24 h. Finally, the cell viability was
evaluated with a CCK-8 assay. The intracellular mRNA level of Casp3 and Pcna (AML12),
and CASP3 and PCNA (LO2) were determined using real-time quantitative polymerase chain

reaction (RT-gqPCR) techniques.
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Effect of SecNPs on Macrophages

RAW?264.7 cells were pre-cultured in a 6-well plate (1 x<10° cells well™) for 24 h, followed by
the stimulation with LPS (100 ng mL™?) for an additional 24 h. THP1 monocytes were firstly
differentiated into macrophages through the activation with PMA (100 ng mL™) for 24 h. The
matured macrophages were further polarized into pro-inflammatory M1 phenotype with LPS
stimulation (100 ng mL™1). After washing with PBS, all M1-polarized macrophages were co-
incubated with SecNPs (100, 200, or 300 pg mL 1) for 24 h. The intracellular mMRNA levels of
Nos2, Tnf, 111b, 1110, Mrcl, Argl, and Tgfbl (RAW264.7), and NOS2, 1L10, TGFB1, and
MMP9 (THP1) were evaluated with RT-qPCR assays.

Effect of SecNPs on HSCs

LX2 or HSC-T6 cells were pre-cultured in a 6-well plate (1 <108 cells well™) for 24 h, followed
by the activation with TGFB1 (10 ng mL1) for another 24 h. After washing with PBS, the
activated hepatic stellate cells (HSCs) were co-incubated with SecNPs (100, 200 or 300 ug mL~
1 for 24 h. The intracellular mRNA levels of ACTA1, COL1Al, FGF2, PDGFB, END1, TIMP1,
and TIMP2 (LX2), and Pdgfa, Pdgfb, Fgf2, Tgfbl, Timpl, Timp2, and Mmp13 (HSC-T6) were
determined employing RT-qPCR techniques.

Investigation of CAT-Like Activity of PtNZs

The catalase (CAT)-like activity of platinum-based nanozymes (PtNZs) was assessed through
sequential H20. depletion and O2 generation assays, following the methods outlined in our
previous study.) Amplex red assay was used to confirm the H202 consumption by PtNZs.
Typically, PtNZs (0, 2, 4, 8 pg mL™*) and H202 (100 mM) were combined in PBS at 37 °C for
30 min to investigate concentration dependency. PtNZs (4 pg mL 1) and H20, (100 mM) were
mixed in PBS at 37 °C for 0, 15, 30, 45, and 60 min to investigate the time-dependent effects.
The reaction was continued for an additional 5 min after the addition and thorough mixing of
Amplex red (25 pM) and HRP (7 U mL™?). Then, an ultraviolet-visible (UV-vis) spectral
scanning from 450 nm to 650 nm was expeditiously conducted.

The monitoring of Oz generation resulting from the decomposition of H,O> was further used
to assess the CAT-like activity of PtNZs. Specifically, different concentrations of PtNZs (0, 2,
4, or 8 ug mL™1) were mixed with H202 (50 mM) in 100 mM PBS (15 mL, pH 7.4). The real-
time measurement of Oz generation was conducted using a pen-type dissolved oxygen meter
(P6345-01, I-Quip, China).
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Investigation of SOD-Like Activity of PtNZs
The superoxide dismutase (SOD)-like activity of PtNZs was assessed using the NBT method,
as described in our earlier study.™ In detail, the riboflavin solution (20 uM), NBT solution (75
uM), methionine solution (13 mM), and PtNZ solution (0, 20, 40, 60, or 80 pug mL™) were
homogeneously mixed in Eppendorf (EP) tubes. PBS was supplemented to ensure equal total
volume of solution in each EP tube. After exposure to UV light (254 nm) for 5 min, a rapid
UV-Vis spectral scanning from 300 nm to 800 nm was performed, with peak absorption
observed at 560 nm. The SOD-like activity of PtNZs is inversely proportional to the intensity

of blue color of the reaction solution.

Intracellular Antioxidant Efficiency of PtNZs

The cell-permeable DCFH-DA was applied to indicate the ROS levels in hepatocytes. AML12
or LO2 cells were first cultured in a 24-well plate (2 < 10* cells well ™) for 24 h, followed by
the co-incubation with PtNZs (0, 2, 4, or 8 ug mL™Y) for 12 h. Subsequently, all cells were
exposed to H20. (500 uM) for an additional 12 h. After washing with PBS, the treated AML12
or LO2 cells were stained with DCFH-DA at 37 <C for 30 min. Following an additional round
of washing, the fluorescence images were captured, and the flow cytometry analysis was

performed to quantify the results.

Intracellular O2 Generation of PtNZs

[Ru(dpp)3]Cl2, an Oz-indicated fluorescence probe, was used to determine the O, generation
level in HSCs. LX2 or HSC-T6 cells were initially seeded in a 12-well plate (5 <10* cells well-
1y and cultured for 12 h. Then, all cells were transferred into a hypoxic environment (1% O,)
created in a small tris-gas incubator (Galaxy 48 R, Eppendorf, Germany), followed by another
12 h of culture. After that, the cells were co-incubated with PtNZs (0, 2, 4, or 8 ug mL 1) under
hypoxic conditions for 12 h. The uninternalized PtNZs were removed by washing. Subsequently,
the washed cells were concurrently co-incubarted with H202 (500 uM) and [Ru(dpp)z]Cl> in
hypoxic environment for 4 h. Lastly, the fluorescence images were captured, and the flow

cytometry analysis was performed.

Extraction and Isolation of SPI

Soy protein isolate (SPI) was extracted and isolated according to the methods described in our
previous report.”?! Briefly, the defatted soy meal underwent further grinding, defatting, and
drying processes before being completely dispersed in ultrapure water. The initial pH of the
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dispersion was adjusted to 8.0 using a NaOH solution, followed by continuous agitation for 2
h, during which the pH was readjusted to 8.0 every 30 min using a 1 M NaOH solution. The
pH of supernatant obtained by centrifugation at 8 000 g was adjusted to 4.5 by adding a HCI
solution. Then, the precipitate was gathered via centrifugation at 5 000 g, followed by
redispersion in ultrapure water. A clear crude protein solution was obtained after gradually
adjusting the pH to 7.0, and subsequently transferred into dialysis tubes with a molecular weight
cut-off range of 8-14 kDa. Following thorough dialysis in vigorously stirred ultrapure water,

the resulting dialysate was collected and subjected to lyophilization to obtain SP1 powder.

Effect of SPI on Hepatocytes and Injured Hepatocytes

LO2 cells were initially cultured in a 96-well plate (5 % 10° cells well™!) for 24 h. To simulate
hepatocyte injury, the cells were treated with 500 uM H20> for 12 h. After washing with PBS,
the normal or injured LO2 cells were co-incubated with 0.75% (w/v) SPI or NPr-hydrolyzed
SPI for 24 h. Finally, the cell viability was assessed using a CCK-8 assay.

Responsive Degradation and Drug Release of MN Arrays

To evaluate the in vitro release property and predict the in vivo drug release behavior of
microneedle (MN) arrays, Nile blue (NB) was encapsulated into MNs as a drug surrogate. The
NB-loaded MNs were immersed into PBS (pH 7.4) at 37 T under dark conditions. At
predetermined time intervals, 100 pL of release medium (PBS) was collected, and an equal
volume of fresh PBS was supplemented. After 1 h of release monitoring, a subset of the samples
were subjected to heating at 45 <C for 5 min in a water bath to simulate the in vivo photothermal
effect induced by NIR irradiation. The degradation of MN arrays and the release of drugs were
continuously monitored during the experiment by quantifying the fluorescence intensity
(excited at 630 nm) of the release medium using a fluorescence spectrophotometer (RF6000,
Shimadzu, Japan). After obtaining a standard curve correlating the concentration of NB in PBS

with fluorescence intensity, the calculation of cumulative release rate was performed.

Transcriptome Analysis of Liver Tissues

Transcriptome analysis was performed on liver tissues from the control and PSMN+NIR
(treatment through PtNZ+SecNP-loaded MN patch implantation and NIR irradiation) groups.
The RNA extraction, purification, fragmentation, reverse transcription, PCR amplification,

library construction, and sequencing procedures were conducted by LC-Bio Technology
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(Hangzhou, China). Subsequently, the acquired data underwent meticulous analysis and

visualization following the methodologies outlined in our and others’ previous studies.[*# 2

Histologic Evaluation

The sampled liver tissues were fixed in 4% (w/v, pH 7.4) PFA solutions at room temperature
for at least 1 day. Subsequently, the fixed samples were dehydrated using gradient ethanol
solutions and finally embedded in paraffin. The embedded tissues were sectioned into slices
with a constant thickness of 6 um employing a paraffin microtome (RM 2235, Leica, Germany).
Following thermal melting at 60 <C, deparaffination with xylene, and subsequent rehydration
using counter-gradient ethanol solutions, the liver sections underwent staining procedures
employing hematoxylin and eosin (H&E), Sirius red, Masson’s trichrome, and terminal
deoxynucleoitidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL)

assays.

For immunofluorescence staining, the rehydrated liver tissue sections were subjected to
antigen retrieval, and subsequently treated with a blocking solution containing 5% (v/v in PBS)
normal goat serum prior to immunofluorescence staining. After washing with PBS, the tissue
sections were separately co-incubated overnight at 4 <C with rabbit-derived primary antibodies
against aSMA (GB111364, Servicebio, China), Collal (GB114197, Servicebio), iNOS
(GB11119, Servicebio), Argl (GB11285, Servicebio), and Ki67 (GB111499, Servicebio).
Subsequently, the liver tissue sections were thoroughly washed and co-incubated with goat-
derived anti-rabbit secondary antibodies conjugated with Alexa Fluor 488 (GB25303,
Servicebio) or Cyanine 3 (GB21303, Servicebio) in the dark. Following another round of
washing, the tissue sections were mounted using an antifade medium containing DAPI. Finally,
bright-field and fluorescence images of stained tissue sections were visualized and captured
utilizing an inverted fluorescence microscope (Ti2-U, Nikon) and analyzed quantitatively using
Fiji software (version 1.53c, USA).

Biosafety Evaluation

To evaluate the safety of our implemented treatments, we utilized an automated biochemical
analyzer (3100, Hitachi, Japan) to conduct serological testing on serum samples obtained by
centrifuging blood at 4 <C for 20 min at a speed of 1 000 g. Additionally, histological analyses

of harvested organs were performed using H&E staining and microscopic examination.
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Figure S1. Fabrication of SecNPs. The conditioned medium of hUCMSCs, devoid of serum,
was collected and subjected to centrifugation, filtration, and lyophilization to obtain the
secretome powder. Subsequently, the secretome was redissolved and encapsulated within the

PLGA core of SecNPs employing double emulsification and solvent evaporation techniques.
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Figure S2. Heatmap illustrating all proteins and their intensities in hUCMSC secretome,

analyzed using label-free quantitative methods.
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hUCMSC secretome, providing insights into their biological processes, cellular components,
and molecular functions.
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Figure S5. SecNP uptake by HSCs and its phenotype-regulating effect. a) Representative flow
cytometry histograms illustrating the internalization of Dil-labeled SecNPs by HSC-T6 cells
during various co-incubation time periods. b) Relative intracellular levels of mRNA associated
with ECM deposition (4ata2), HSC activation (Pdgfa, Pdgfb, Fgf2, and Tgfbl), and ECM
degradation (Timp1, Timp2, and Mmp13) evaluated using HSC-T6 cells. Data are presented as
mean + SD (n = 3). Statistical significances were assessed using one-way ANOVA followed by
Tukey’s multiple comparisons post hoc test. *, P <0.05; **, P <0.01; *** P <0.001; and ****,
P <0.0001.

12



WILEY-VCH

a c
p5 NOS2 .o W10 o TGFB1 ., MMP9
I [ n.s. ns n.s. Hww
[ I =) T
0h )\ 0.0% oh/ | 0.0% 850! wa | | 16 xaxf ey
= i =) D ==Y " g O 15
3|2h 63.1% | 32|2h 4 0\734% T & 1.5 ﬁ 1.4
o &) \ o 1.5 . )
4h /) - 84.0% 4h Jp0832% < ) 1 2] 1.04 2
o Q
on_Loms] lon L eed Eiolg [l @] o 8@ Mg
Dil Dil 0.0T== m=T) 0TE= =70 0T =T 0T E -
B Control P LPS+SecNPs

Figure S6. SecNP uptake by macrophages and its phenotype-regulating effect. a, b)
Representative flow cytometry histograms depicting the internalization of Dil-labeled SecNPs
by RAW264.7 (a) and THP1 (b) cells over various various co-incubation periods. ¢) Relative
intracellular levels of mRNA involved in proinflammation (NOS?2), anti-inflammation (/L10),
HSC activation (TGFBI), or ECM degradation (MMPY9) pathways in THP1 cells subjected to
the indicated treatments. Data are shown as mean = SD (n = 3). Statistical significances were
evaluated with one-way ANOVA followed by Tukey’s multiple comparisons post hoc test. **,
P <0.01; *** P<0.001; **** P <0.0001; and n.s., not significant.
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Figure S7. Uptake of SecNPs by hepatocytes. a—d) Internalization of Dil-labeled SecNPs by
AML12 (a, b) and LO2 (c, d) cells illustrated by representative flow cytometry histograms (a,

c) and representative fluorescence images with corresponding quantified 3D surface plots (b,
d) over various co-incubation time periods.
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Figure S8. Influence of pre-heating on the protective effect of SecNPs against the CCls-induced
hepatocyte damage in vitro. a, b) Cell viabilities of AML12 (a) and LO2 (b) cells, which were
exposed to CCls and subsequently treated with SecNPs after being pre-heated at 45 <C for 30
min. Data are presented as mean £ SD (n = 3). Statistical significances were estimated
employing one-way ANOVA followed by Tukey’s multiple comparisons post hoc test. **, P <
0.01; *** P <0.001; **** P <0.0001; and n.s., not significant.
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Figure S9. CAT-like activity of PtNZs evidenced by the of H,O, consumption over various
catalysis time periods.
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corresponding quantifications in LO2 cells following various treatments. Data are presented as
mean + SD (n = 3). Statistical significances were assessed using one-way ANOVA with Tukey’s
multiple comparisons post hoc test. *, P <0.05; **, P <0.01; **** P <(0.0001; and n.s., not

significant.
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Figure S11. Intracellular catalytic activity of PtNZs in converting H.O> to O.. a) Representative
fluorescence images and quantified 3D surface plots using [Ru(dpp)s]Cl.* as a hypoxia
indicator, demonstrating the ability of PtNZs to alter intracellular hypoxia levels in HSC-T6

cells under various treatments. b) Representative [Ru(dpp)s]Cl." flow cytometry pseudo-color

Ru(dpp) ICI/DAPI
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plots and corresponding quantifications in HSC-T6 cells subjected to the indicated treatments.
Data are shown as mean + SD (n = 3). Statistical significances were estimated using one-way

ANOVA followed by Tukey’s multiple comparisons post hoc test. *, P <0.05; **, P <0.01; and
**kx P <0.001.
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Figure S12. In vitro protective effect of SPI in the thermal-responsive MNs. a) Cell viabilities
of LO2 cells following the co-incubation with or without native SPI. b) Cell viabilities of LO2
cells sequentially undergoing the treatment with H20», and native SP1 or NPr-hydrolyzed SPI.
Data are shown as mean = SD (n = 5). Statistical significances were evaluated by one-way
ANOVA with Tukey’s multiple comparisons post hoc test. *, P < 0.05; **** P <0.0001; and

n.s., not significant.
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Figure S13. a) Schematic illustration of fabricating MN arrays. b) Representative visual

appearance of a microneedle patch undergoing the mechanical compression test.
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Figure S14. Photothermal effect of PMNSs. a) Photothermal temperature curves of PMN arrays

under NIR irradiation at varying power levels. b) Representative infrared thermal images of
PMN arrays containing different concentrations of PtNZs.
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Figure S15. Surgical implantation and treatment with MN arrays. a) Representative digital
image capturing the process of laparotomy and implantation of an MN patch in a mouse. b)
Representative infrared thermal image of the mouse post-implantation of the MN arrays

containing PtNZs during exposure to NIR irradiation, indicating the in situ photothermal effects.
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Figure S16. In vivo analysis of proliferation and apoptosis in liver tissues. Representative Ki67*
(indicating cellular proliferation) immunofluorescence and TNUEL" (reflecting apoptosis)
fluorescence images of liver tissues from the normal, liver fibrosis (LF), and PSMN+NIR

groups.
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Figure S17. Assessment of liver function recovery and biosafety based on blood biochemical
indices. a—e) Biochemical index levels of TBIL (liver function) (a), BUN (kidney function) (b),
CREA (kidney function) (c), CK (heart function) (d), and LDH (heart function) () in the serum
from the mice receiving indicated treatments. Dash lines in panels ¢ and e indicate the
recommended maximum levels of serum biochemical indices.[?! Data are shown as mean + SD
(n = 5). Statistical significances were assessed using one-way ANOVA followed by Tukey’s
multiple comparisons post hoc test. *, P < 0.05; **, P < 0.01; *** P < 0.001; and n.s., not
significant. G1, normal group; G2, liver fibrosis (LF) model group without treatment; G3,
treatment through blank MN patch implantation and NIR irradiation (MN+NIR); G4, treatment
through PtNZ-loaded MN (PMN) patch implantation and NIR irradiation (PMN+NIR); G5,
treatment through SecNP-loaded MN (SMN) patch implantation and NIR irradiation
(SMN+NIR); G6, treatment through PtNZ+SecNP-loaded MN (PSMN) patch implantation
(PSMN); G7: treatment through PSMN patch implantation and NIR irradiation (PSMN+NIR).
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Figure S18. Biosafety determined through the histological evaluation. Representative H&E-
stained images of hearts from mice in the indicated groups.
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Figure S19. Biosafety determined through the histological evaluation. Representative H&E-
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/

stained images of spleens from mice in the indicated groups.
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Figure S20. Biosafety determined through the histological evaluation. Representative H&E-
stained images of lungs from mice undergoing the designated treatments.
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Figure S21. Biosafety determined through the histological evaluation. Representative H&E-
stained images of kidneys from mice in the designated groups.
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Figure S22. Interactive heatmap and clustering analysis of differentially expressed genes
(DEGS) (P <0.05 and FC > 2 or FC < 0.5). a) Normal group (N) versus LF group (F). b) LF
group (F) versus PSMN+NIR group (treatment, T).
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Figure S23. Enrichment analysis performed on GO terms of DEGs in the liver tissues from LF

group and normal group. a) GO terms associated with biological process. b) GO terms
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Figure S24. Enrichment analysis performed on KEGG main classes and pathways of DEGs in

the liver tissues from LF group and normal group. a) Percent of DEGs enriched in various
pathways assigned to different KEGG main classes. b) Rich factor of DEGs in different KEGG

pathways.
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Figure S25. Enrichment analysis conducted on GO terms of DEGs in the liver tissues from
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PSMN+NIR group and LF group.
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Figure S26. Enrichment analysis performed on KEGG main classes and pathways of DEGs in

the liver tissues from PSMN+NIR group and LF group. a) Percent of DEGs enriched in various

pathways assigned to different KEGG main classes. b) Rich factor of DEGs in different KEGG
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Figure S27. GSEA based on Reactome enrichments of DEGs in liver samples from LF group

and normal group, including upregulated (P < 0.05 and NES > 1) and downregulated (P < 0.05

and NES < -1) pathways involved in ECM deposition and degradation, and HSC activation and

quiescence.
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Table S1 Primer sequences used in RT-qPCR assays.

Species Name Sequence (5°—3”)
Mouse Casp3 F ATGGAGAACAACAAAACCTCAGT
Mouse Casp3 R TTGCTCCCATGTATGGTCTTTAC
Mouse Pcna F TTTGAGGCACGCCTGATCC
Mouse Pcna R GGAGACGTGAGACGAGTCCAT
Mouse Nos2 F GTTCTCAGCCCAACAATACAAGA
Mouse Nos2 R GTGGACGGGTCGATGTCAC
Mouse InfF CCCTCACACTCAGATCATCTTCT
Mouse TnfR GCTACGACGTGGGCTACAG
Mouse 1lIb F GCAACTGTTCCTGAACTCAACT
Mouse 111b R ATCTTTTGGGGTCCGTCAACT
Mouse 1110 F GCTCTTACTGACTGGCATGAG
Mouse I110R CGCAGCTCTAGGAGCATGTG
Mouse Mrcl F CTCTGTTCAGCTATTGGACGC
Mouse Mcrl R CGGAATTTCTGGGATTCAGCTTC
Mouse Argl F CTCCAAGCCAAAGTCCTTAGAG
Mouse Argl R AGGAGCTGTCATTAGGGACATC
Mouse Tgfbl F CTCCCGTGGCTTCTAGTGC
Mouse Tgfbl R GCCTTAGTTTGGACAGGATCTG
Mouse Acta2 F GTCCCAGACATCAGGGAGTAA
Mouse Acta2 R TCGGATACTTCAGCGTCAGGA
Mouse Collal F GCTCCTCTTAGGGGCCACT
Mouse Collal R CCACGTCTCACCATTGGGG
Mouse Timp2 F TCAGAGCCAAAGCAGTGAGC
Mouse Timp2 R GCCGTGTAGATAAACTCGATGTC
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Species Name Sequence (5°—3”)
Mouse Gapdh F AGGTCGGTGTGAACGGATTTG
Mouse Gapdh R TGTAGACCATGTAGTTGAGGTCA
Human CASP3 F CTTTTCATTATTCAGGCCTGCCG
Human CASP3 R GGCACAAAGCGACTGGATGA
Human PCNAF ACTAAAATGCGCCGGCAATG
Human PCNA R AACTTTCTCCTGGTTTGGTGC
Human NOS2 F GTGCAAACCTTCAAGGCAGC
Human NOS2 R TGAGCCTCATGGTGAACACG
Human IL10 F TCAAGGCGCATGTGAACTCC
Human ILIOR GATGTCAAACTCACTCATGGCT
Human TGFB1F GGCCAGATCCTGTCCAAGC
Human TGFB1 R GTGGGTTTCCACCATTAGCAC
Human MMP9 F TGTACCGCTATGGTTACACTCG
Human MMP9 R GGCAGGGACAGTTGCTTCT
Human ACTAI F AGCCCTCCTTCATCGGTATG
Human ACTAI R TCAGCGATCCCAGGGTACAT
Human COLIA2F CTGGTCTCGGTGGGAACTTT
Human COLIA2R AGCAGGTCCTTGGAAACCTT
Human FGF2F AGTGTGTGCTAACCGTTACCT
Human FGF2R ACTGCCCAGTTCGTTTCAGTG
Human PDGFBF CCTGTCTCTCTGCTGCTACC
Human PDGFBR CAATGGTCAGGGAACCCAGG
Human EDNI F GCCAAGGAGCTCCAGAAACA
Human EDNI R GAACAACGTGCTCGGGAGT
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Species Name Sequence (5°—3”)
Human TIMPI1 F GCCTTCTGCAATTCCGACCT
Human TIMPI R TGGAACCCTTTATACATCTTGGTC
Human TIMP2 F GCAACAGGCGTTTTGCAATG
Human TIMP2 R TCTCAGGCCCTTTGAACATCTTT
Human GAPDH F GGAGCGAGATCCCTCCAAAAT
Human GAPDH R GGCTGTTGTCATACTTCTCATGG

Rat Acta? F CATCCGACCTTGCTAACGGA

Rat Acta? R AGTCCAGCACAATACCAGTTGT

Rat Pdgfa F ATAGACTCCGTAGGGGCTGA

Rat Pdgfa R GTCCTGGTCTTGCAAACTGC

Rat Pdgfb F CTACCTGCGTCTGGTCAGC

Rat Pdgfb R GCTCAGCCCCATCTTCGTCTAC

Rat Fgf2 F CTTCTTCCTGCGCATCCATCC

Rat Fgf2R TCTTCTGTAACACACTTAGAAGCCA

Rat Mmpl3 F AGCAGCTCCAAAGGCTACA

Rat Mmpl3 R GTTGGGGTCTTCATCTCCTGG

Rat Timpl F GTAAAGCCTGTAGCTGTGCC

Rat Timpl R GCGTCGAATCCTTTGAGCATCTTA

Rat Timp2 F ATGCAGACGTAGTGATCAGG

Rat Timp2 R GAGGGGGCCGTGTAGATAAAT

Rat Tefbl F CTGCTGACCCCCACTGATAC

Rat Tefbl R CGTTTGGGACTGATCCCATTG

Rat Gapdh F GTCGGTGTGAACGGATTTGG

Rat Gapdh R TCCCGTTGATGACCAGCTTC
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