Supplementary material for

Synthesis and synergistic antibacterial efficiency of chitosan-copper oxide nanocomposites

Jüri Laanoja^{1,2}, Mariliis Sihtmäe¹, Svetlana Vihodceva³, Mairis Iesalnieks³, Maarja Otsus¹, Imbi Kurvet¹, Anne Kahru^{1,3}, Kaja Kasemets^{1,*}

¹ Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia

² Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia

³ Institute of Materials and Surface Engineering, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena 3/7, LV-1048 Riga, Latvia

⁴ Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia

* Corresponding author. E-mail address: kaja.kasemets@kbfi.ee

Figure S1. Schematic representation of the synthesis of chitosan-copper oxide nanocomposites (nCuO-CSs). Chitosan (CS) and copper(II) acetate are mixed in three Cu:CS ratios (1:0.3, 1:1, 1:3) on a magnetic stirrer with temperature control. Based on Cu:CS mass ratio, approximately 0.55, 0.8 or 1.1 mL of 1M NaOH is added drop-wisely. Dialysis (cut-off 12 000 kDa) is performed against 2 L of deionized water (changed after 24 h).

S1. Measurement of abiotic and biotic reactive oxygen species (ROS)

The tests in abiotic (i.e., without bacteria) conditions were performed as described by Aruoja *et al.* [1]. In short, a 1.3 mM solution of DCFH2-DA was prepared in ethanol, deacetylated with 0.01 M NaOH at a ratio of 1:4 (DCFH2-DA:NaOH) and incubated for 30 min in the dark at room temperature. The reaction was stopped by diluting the solution 6-fold with 25 mM sodium phosphate buffer (pH 7.4). The mixture was stored on ice and protected from light until further use. 100 μ L of that solution was added to the wells of a black 96-well microplate (Greiner Bio-One, Frickenhausen, Germany) containing 100 μ L of the studied NCs in DI water. The plates were incubated for 30 min in the dark at room temperature. Fluorescence was recorded as described below. DI water was used as a negative control. Manganese(II, III) oxide (Mn₃O₄) nanoparticles (synthesized previously [1]) were used as a positive control.

The potential of the NCs to induce intracellular (biotic) ROS generation was determined, as detailed by Käosaar *et al.* [2]. Briefly, the bacteria were cultured and exposed to NCs in accordance to section 2.5. However, black 96-well microplates were used in this analysis. A 5 mM solution of DCFH2-DA was prepared in ethanol, diluted 10x with 25 mM sodium phosphate buffer (pH 7.4), and 50 μ L added to each of the 96-well microplate wells. The plates were covered with a gas-permeable microplate film (nerbe plus GmbH & Co. KG, Winsen (Luhe), Germany) and incubated for 30 min in the dark at room temperature. DI water was used as a negative and H₂O₂ as a positive control. Each test was carried out twice.

Fluorescence (excitation at 485 nm and emission at 527 nm) was recorded with a Fluoroskan Ascent FL (Thermo Labsystems, Helsinki, Finland) microplate reader. The abiotic and biotic ROS levels were presented via the following calculation:

$$F = \frac{F_{t30 \, (sample)}}{F_{t30 \, (control)}}$$

where F_{t30} (sample) and F_{t30} (control) are the recorded fluorescence values of the studied NC suspension and negative control, respectively, after 30 min incubation with the fluorescent dye. Fluorescence is presented in relative units (RFU).

References

- [1] V. Aruoja, S. Pokhrel, M. Sihtmäe, M. Mortimer, L. Mädler, A. Kahru, Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa, Environ. Sci. Nano 2 (2015) 630–644. https://doi.org/10.1039/C5EN00057B.
- [2] S. Käosaar, A. Kahru, P. Mantecca, K. Kasemets, Profiling of the toxicity mechanisms of coated and uncoated silver nanoparticles to yeast Saccharomyces cerevisiae BY4741 using a set of its 9 single-gene deletion mutants defective in oxidative stress response, cell wall or membrane integrity and endocytosis, Toxicol. In Vitro 35 (2016) 149–162. https://doi.org/10.1016/j.tiv.2016.05.018.

S2. Visualization of bacterial cell membrane damage

To visualize the impact of nCuO-CSs on the integrity of bacterial cell membrane, the cells were stained after a 1-h exposure to the nanocomposites at a concentration of 1 mg Cu/L and comparatively to copper(II) acetate at 1 mg Cu/L and low molecular weight chitosan at 1 and 3 mg/L, with propidium iodide (PI, 81845; Sigma-Aldrich, Steinheim, Germany), which penetrates only cells with damaged membranes, and SYTO 9 (S34854; Thermo Fisher Scientific, Waltham, MA, USA), which can enter both damaged and intact cells. A 0.1% (w/vol) sodium dodecyl sulfate (SDS) solution was used as a positive control for membrane-compromised cells (PI-positive cells). The final working concentrations of the PI and SYTO 9 were 30 and 5 μ M, respectively. After a 10-minute incubation in the dark at room temperature, the stained bacterial suspensions were observed on a 1.3% agarose pad using a Zeiss LSM800 widefield fluorescence microscope (Zeiss, Jena, Germany) equipped with Zeiss Filter Set 10. PI and SYTO 9 signals were detected at 575–640 nm and 515–565 nm, respectively. In the case of nCuO-CS_1 and nCuO-CS_3, due to the tendency to form large cell aggregations, a Zeiss LSM800 confocal laser scanning microscope (CLSM) was applied using excitation/emission track settings of 561 nm/550–700 nm for the PI signal and 488 nm/450–550 nm for the SYTO 9 signal.

Table S1. The change of hydrodynamic size, polydispersity index, and ζ -potential with storage at 4 °C in the dark. The dynamic light scattering and electrophoretic light scattering analyses of chitosan-copper oxide nanocomposites (nCuO-CS) were carried out at a concentration of ~40 mg Cu/L in deionized water.

Hydrodynamic size, nm								
Sample	Cu:CS* ratio	8.05.2023	4.09.2023	31.10.2023	31.01.2024	Average	SD	
nCuO-CS_0.3	1:0.3	91.7	90.2	90.6	103	93.8	5.97	
nCuO-CS_1	1:1	122	124	118	154	130	16.7	
nCuO-CS_3	1:3	180	178	168	205	183	15.5	
Polydispersity index								
nCuO-CS_0.3	1:0.3	0.24	0.23	0.23	0.35	0.26	0.06	
nCuO-CS_1	1:1	0.25	0.27	0.26	0.41	0.30	0.08	
nCuO-CS_3	1:3	0.33	0.35	0.27	0.39	0.33	0.05	
ζ-potential, mV								
nCuO-CS_0.3	1:0.3	46.2	45.0	43.1	40.0	43.6	2.72	
nCuO-CS_1	1:1	45.8	46.0	41.5	44.0	44.3	2.08	
nCuO-CS_3	1:3	44.7	43.5	41.8	42.0	43.0	1.36	

* CS – chitosan

Figure S2. SEM images of chitosan-copper oxide nanocomposites (nCuO-CS). (a) nCuO-CS_0.3, (b) nCuO-CS_1, (c) nCuO-CS_3. nCuO-CS_0.3, nCuO_CS_1 and nCuO-CS_3 designate nanocomposites with different Cu:chitosan mass ratios (1:0.3, 1:1 and 1:3, respectively).

EDS	Cu:CS* mass ratio	Cu	Ν	0	С
Chitosan	-	0	12.9	28.0	59.1
nCuO-CS_0.3	1:0.3	17.0	6.0	33.4	43.5
nCuO-CS_1	1:1	10.7	8.3	29.5	51.5
nCuO-CS_3	1:3	15.3	4.1	24.3	56.2
XPS	Cu:CS* mass ratio	Cu	Ν	0	С
Chitosan	-	0	7.4	31.4	61.2
nCuO-CS_0.3	1:0.3	3.2	5.4	33.0	58.4
nCuO-CS_1	1:1	1.7	6.2	30.3	61.8
nCuO-CS_3	1:3	1.0	4.3	27.7	67.0

Table S2. The elemental composition (at%) of chitosan-copper oxide nanocomposites (nCuO-CS) as measured by energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), respectively. The nCuO-CS samples were lyophilized prior to analyses.

* CS – chitosan

Figure S3. X-ray photoelectron spectroscopy narrow scan spectra of chitosan-copper oxide nanocomposites (nCuO-CS). (a) Carbon 1s, (b), oxygen 1s, (c) nitrogen 1s. nCuO-CS_0.3, nCuO_CS_1 and nCuO-CS_3 designate nanocomposites with different Cu:chitosan mass ratios (1:0.3, 1:1 and 1:3, respectively).

Table S3. Minimum biocidal concentration (MBC) of chitosan-copper oxide nanocomposites (nCuO-CSs). nCuO-CS_0.3, nCuO_CS_1 and nCuO-CS_3 designate nanocomposites with different Cu:chitosan mass ratios (1:0.3, 1:1 and 1:3, respectively), nCuO refers to commercially available CuO nanoparticles (Sigma-Aldrich, St. Louis, MO, USA) and Cu²⁺ to copper(II) acetate. Low molecular weight chitosan (50– 190 kDa, 75–85% deacetylated) was used for additional comparison.

Bacteria	MBC, mg Cu/L	1 h	SD	4 h	SD	24 h	SD
E. coli	nCuO-CS_0.3	0.96	0.10	0.29	0.10	0.24	0.03
ATCC 25922	nCuO-CS_1	0.83	0.20	0.31	0.10	0.22	0.05
(G-)	nCuO-CS_3	0.75	0.27	0.25	0.00	0.17	0.05
	Cu ²⁺	1.67	0.52	0.46	0.10	0.32	0.11
	nCuO	160	0.00	10.0	4.71	1.04	0.29
	chitosan	1.42	0.60	1.02	0.26	0.92	0.25
	MBC, mg						
Bacteria	Cu/L	1 h		4 h		24 h	
E.coli	nCuO-CS_0.3	0.50	0.00	0.30	0.11	0.21	0.06
MG1655	nCuO-CS_1	0.50	0.00	0.25	0.09	0.16	0.06
(G-)	nCuO-CS_3	0.24	0.02	0.18	0.05	0.12	0.04
	Cu ²⁺	0.90	0.14	0.35	0.14	0.24	0.09
	nCuO	160	0.00	10.42	5.10	2.86	1.35
	chitosan	1.56	0.66	1.10	0.14	1.10	0.14
	MBC, mg						
Bacteria	Cu/L	1 h		4 h		24 h	
P. aeruginosa	nCuO-CS_0.3	1.50	0.58	0.44	0.13	0.25	0.00
ATCC 27853	nCuO-CS_1	1.00	0.00	0.44	0.13	0.25	0.00
(G-)	nCuO-CS_3	0.63	0.14	0.38	0.14	0.25	0.00
	Cu ²⁺	3.25	0.96	0.63	0.25	0.25	0.00
	nCuO	>250		24.24	3.68	1.39	0.27
	chitosan	3.00	1.41	2.00	0.00	2.00	0.00
	MBC, mg						
Bacteria	Cu/L	1 h		4 h		24 h	
S. aureus	nCuO-CS_0.3	14.0	2.31	0.25	0.00	0.15	0.04
ATCC 6538	nCuO-CS_1	16.0	0.00	0.43	0.28	0.15	0.04
(G+)	nCuO-CS_3	16.0	0.00	0.53	0.16	0.22	0.06
	Cu ²⁺	8.00	3.27	0.47	0.06	0.22	0.04
	nCuO	>250		6.51	0.00	0.98	0.00
	chitosan	>500		>500		250	0.00

Figure S4. Induction (fold) of Cu-sensing bacteria *Escherichia coli* MC1061(pSLcueR/pDNPcopAlux) by CuSO₄ after 1 and 2 h incubation at 30°C in the medium composed of 20 mM MOPS (pH 6.5), 0.05% acid hydrolyzed casein, and 0.05% glucose.

Figure S5. Inhibition of bioluminescence (% of control) of *Escherichia coli* MC1061(pDNlux) (control bacteria) by chitosan-copper oxide nanocomposites with mass ratios of 1:0.3 (nCuO-CS_0.3), 1:1 (nCuO-CS_1), 1:3 (nCuO-CS_3), and CuSO₄ after 2-h incubation at 30°C in the medium composed of 20 mM MOPS (pH 6.5), 0.05% acid hydrolyzed casein, and 0.05% glucose.

Figure S6. Bioavailable (intracellular) copper from chitosan-copper oxide nanocomposites (nCuO-CS) at a concentration of 0.016 mg Cu/L after 1 and 2 h exposure. Bioavailable copper was measured by Cu-inducable bacteria *Escherichia coli* MC1061(pSLcueR/pDNPcopAlux) at 30°C in the induction medium composed of 20 mM MOPS (pH 6.5), 0.05% acid-hydrolyzed casein, and 0.05% glucose. nCuO-CS_0.3, nCuO_CS_1 and nCuO-CS_3 designate nanocomposites with different Cu:chitosan mass ratios (1:0.3, 1:1 and 1:3, respectively). Asterisks designate statistically significant differences, ** p < 0.01 (calculated by t-test in Microsoft Excel 2019).

Figure S7. Generation of reactive oxygen species (ROS) by chitosan-copper oxide nanocomposites (nCuO-CS). The values are based on the increase in fluorescence in the presence of nCuO-CSs compared to the negative control (deionized water), hydrogen peroxide (H_2O_2) was used as a positive control, the mean of two experiments with standard deviation is presented, the dashed line represents ROS level in deionized water. nCuO-CS_0.3, nCuO_CS_1 and nCuO-CS_3 designate nanocomposites with different Cu:chitosan mass ratios (1:0.3, 1:1 and 1:3, respectively).

Figure S8. Confocal laser scanning microscopy images of bacterial cells. (a) *Escherichia coli* ATCC 25922, (b) *E. coli* MG1655, (c) *Pseudomonas aeruginosa* ATCC 27853, and (d) *Staphylococcus aureus* ATCC 6538 were exposed to chitosan-copper oxide nanocomposites (nCuO-CS) in deionized water at a concentration of 1 mg Cu/L for 1 h at 30°C in the dark. nCuO-CS_0.3, nCuO-CS_1, and nCuO-CS_3 designate nanocomposites with different Cu:chitosan mass ratios (1:0.3, 1:1, and 1:3, respectively). All scale bars are 10 μ m.

Figure S9. Confocal laser scanning microscopy images of the Gram-positive *Staphylococcus aureus* ATCC 6538. (a) *S. aureus* was exposed to low molecular weight chitosan at two concentrations – 10 and 30 mg/L – and (b), (c) to chitosan-copper oxide nanocomposites (nCuO-CS) in deionized water at a concentration of 10 mg Cu/L for 1 h at 30°C in the dark. nCuO-CS_0.3, nCuO-CS_1, and nCuO-CS_3 designate nanocomposites with different Cu:chitosan mass ratios (1:0.3, 1:1, and 1:3, respectively). The scale bars are 50 (a, b) or 10 μ m (c).

Figure S10. Flow cytometry studies of bacteria-nanocomposite interactions. *Escherichia coli* ATCC 25922, *E. coli* MG1655, and *Pseudomonas aeruginosa* ATCC 27853 were exposed to chitosan-copper oxide nanocomposites (nCuO-CS) in deionized water at two concentrations – 0.25 and 1 mg Cu/L – for 1 h at 30°C in the dark; *Staphylococcus aureus* ATCC 6538 was similarly exposed but at concentrations of 1 and 15 mg Cu/L. 20 000 cells were analyzed from each sample, and interactions between bacteria and nCuO-CSs attributed to the increase in side scattered light intensity compared to the (unexposed) control cells. nCuO-CS_0.3, nCuO-CS_1, and nCuO-CS_3 designate nanocomposites with different Cu:chitosan mass ratios (1:0.3, 1:1, and 1:3, respectively).

Figure S11. Confocal laser scanning microscopy images of bacterial cells. (a) *Escherichia coli* ATCC 25922, (b) *E. coli* MG1655, (c) *Pseudomonas aeruginosa* ATCC 27853, and (d) *Staphylococcus aureus* ATCC 6538 were exposed to low molecular weight chitosan at two concentrations – 1 and 3 mg/L – for 1 h at 30°C in the dark. All scale bars are 50 μ m.

Figure S12. Microscopy images of bacterial cells. (a) *Escherichia coli* ATCC 25922 and (b) *E. coli* MG1655 were exposed to chitosan-copper oxide nanocomposites (nCuO-CS) in deionized water at a concentration of 1 mg Cu/L for 1 h at 30°C in the dark. nCuO-CS_0.3, nCuO-CS_1, and nCuO-CS_3 designate nanocomposites with different Cu:chitosan mass ratios (1:0.3, 1:1, and 1:3, respectively). A 0.1% (w/vol) sodium dodecyl sulfate solution was used as a positive control for membrane-compromised cells. Copper(II) acetate (1 mg Cu/L) and low molecular weight chitosan (1 and 3 mg/L) were analyzed for comparison. After exposure, the cells were stained with propidium iodide and SYTO 9. All scale bars are 5 μ m.

Figure S13. Microscopy images of bacterial cells. (a) *Pseudomonas aeruginosa* ATCC 27853 and (b) *Staphylococcus aureus* 6538 were exposed to chitosan-copper oxide nanocomposites (nCuO-CS) in deionized water at a concentration of 1 mg Cu/L for 1 h at 30°C in the dark. nCuO-CS_0.3, nCuO-CS_1, and nCuO-CS_3 designate nanocomposites with different Cu:chitosan mass ratios (1:0.3, 1:1, and 1:3, respectively). A 0.1% (w/vol) sodium dodecyl sulfate solution was used as a positive control for membrane-compromised cells. Copper(II) acetate (1 mg Cu/L) and low molecular weight chitosan (1 and 3 mg/L) were analyzed for comparison. After exposure, the cells were stained with propidium iodide and SYTO 9. All scale bars are 5 μ m.