Supplementary Information for manuscript: "Endometriotic lesions exhibit distinct metabolic signature compared to paired eutopic endometrium at the single-cell level"

Authors: Meruert Sarsenova^{a,b,c,d}, Ankita Lawarde^{a,d}, Amruta D. S. Pathare^{a,d}, Merli Saare^{a,d}, Vijayachitra Modhukur^{a,d}, Pille Soplepmann^e, Anton Terasmaa^f, Tuuli Käämbre^f, Kristina Gemzell-Danielsson^{b,c}, Parameswaran Grace Luther Lalitkumar^{b,c}, Andres Salumets^{a,d,g,h*}, Maire Peters^{a,d}

Supplementary Figure 1. UMAP of 16 unmerged clusters. The clusters of eutopic endometrium – on the left side, ectopic endometrium – on the right side.

Supplementary Figure 2. Differentially expressed gene markers in 16 unmerged clusters. Each dot shows the average gene expression and percent expressed. Each cluster exhibited the expression of cell-type representative marker genes.

Supplementary Figure 3. UMAP of 9 major clusters in 8 samples (4 EuE and 4 EcE) showing inter-patient similarity within the two groups (EuE or EcE) and inter-group variability. The clusters of eutopic endometria – on the left side, ectopic endometria – on the right side.

Supplementary Figure 4. Heatmap showing the metabolic pathway (N = 12) activity in perivascular, stromal and endothelial cell populations in each sample. EuE – eutopic endometrium; EcE – ectopic endometrium; the GSVA score ranging from blue to red corresponds to sample-wise pathway activity.

Supplementary Figure 5. Dot-plots of representative metabolic DEGs ($p_{adj} < 0.05$, log_{10} of normalised expression level) from four main metabolic groups (Regulatory pathways, Glycolytic metabolism, Oxidative metabolism and Biosynthetic pathways, from Table 2 in the manuscript), illustrating the level of expression in **perivascular** cells across eutopic (EuE, N = 4, red dots) and ectopic (EcE, N = 4, blue dots) endometrial samples.

Supplementary Figure 6. Dot-plots of representative metabolic DEGs (padj < 0.05, log_{10} of normalised expression level) from four main metabolic groups (Regulatory pathways, Glycolytic metabolism, Oxidative metabolism and Biosynthetic pathways, from Table 2 in the manuscript), illustrating the level of expression in **stromal** cells across eutopic (EuE, N = 4, red dots) and ectopic (EcE, N = 4, blue dots) endometrial samples.

Supplementary Figure 7. Dot-plots of representative metabolic DEGs ($p_{adj} < 0.05$, log_{10} of normalised expression level) from four main metabolic groups (Regulatory pathways, Glycolytic metabolism, Oxidative metabolism and Biosynthetic pathways, from Table 2 in the manuscript), illustrating the level of expression in **endothelial** cells across eutopic (EuE, N = 4, red dots) and ectopic (EcE, N = 4, blue dots) endometrial samples.

Supplementary Figure 8. UMAP of 9 major clusters identified in the eutopic endometrium (EuE, on the left side) and controls (NE, on the right side) from the external dataset (Huang et al. 2023).

Supplementary Figure 9. Differentially expressed gene markers in 9 major clusters identified in the eutopic endometrium from women with endometriosis and controls from the external dataset (Huang et al. 2023). Each dot shows the average gene expression and percent expressed. Each cluster exhibited the expression of cell-type representative marker genes.

Supplementary Figure 10. Top 10 enriched KEGG pathways in perivascular, stromal and endothelial cell populations of ectopic endometrium compared to eutopic endometrium.

Supplementary Figure 11. Venn diagram of top 10 enriched KEGG pathways in perivascular, stromal and endothelial cell populations of ectopic endometrium compared to eutopic endometrium.

Supplementary Figure 12. Representative images of Ki67 staining of eutopic endometrium (A, D) and ectopic endometrium (peritoneal lesion, B, E) from patients with endometriosis, showing higher expression of Ki67 proliferative marker in glands and stroma of eutopic endometrium compared to ectopic endometrium. Positive control (C, tonsil stroma) and a negative control (F, liver) for Ki67 staining. Scale bar 200 µm.

Supplementary Figure 13. Top 20 DEGs (padj < 0.05, log₂ of normalised expression level) of perivascular (A), stromal (B) and endothelial (C) populations. The samples of Eutopic endometrium (EuE) – in red, ectopic endometrium (EcE) – in blue.

Supplementary Figure 14. GO enrichment analysis with the top 10 biological process (BP), molecular function (MF) and cell compartment (CC) for perivascular, stromal and endothelial cell types.

Supplementary Figure 15. Representative images of haematoxylin and eosin staining of eutopic endometrium (left images) and ectopic endometrium (peritoneal lesion, right images) from two patients (upper images and lower images) with endometriosis, showing morphological differences between paired eutopic and ectopic endometrial tissues. Scale bar 100 µm.

Supplementary Table 1. Total cell counts and percentages for all clusters in ectopic endometrium (EcE) and eutopic endometrium (EuE). Fisher's exact test was used to compare cell cluster proportions between EcE and EuE.

Cluster, cell count (%)	Stromal	Endothelial	Immune	Perivascular	Macrophage
EcE	1248 (16.6%)	1630 (21.6%)	1785 (23.7%)	1959 (26.0%)	380 (5.0%)
EuE	4284 (58.9%)	335 (4.6%)	1314 (18.2%)	527 (7.2%)	143 (2.0 %)
Fisher's exact (P value)	<1.13E-103	<1.13E-103	5.56E-33	<1.13E-103	5.93E-50
Cluster, cell count (%)	Unknown	B cell	Epithelial	Cycling stromal	Total count
EcE	230 (3.1%)	281 (3.7%)	22 (0.3%)	3 (0%)	7538
EuE	177 (2.4%)	67 (0.9%)	241 (3.3%)	191 (2.6%)	7279
Fisher's exact (P value)	0.000262437	7.39E-63	1.03E-93	1.13E-103	

Supplementary Table 2. Analysis of differential expression of 12 metabolic pathways between ectopic endometrium (EcE) and eutopic endometrium (EuE). Numbers of differentially expressed genes of metabolic pathways and percentages of the genes calculated to the total N of genes in a pathway.

	Total N of				
Metabolic	genes in a	Perivascular,	Stromal, N	Endothelial,	Immune, N
Pathways	pathway	N (%)	(%)	N (%)	(%)
ALA, AST and GLU metabolism	37	9 (24.3%)	2 (5.4%)	7 (18.9%)	0
AMPK signaling	121	39 (32.2%)	35 (28.9%)	23 (19.0%)	3 (2.5%)
pathway					
Citrate cycle (TCA cycle)	30	10 (33.3%)	5 (16.7%)	3 (10.0%)	0
Fatty acid	18	4 (22.2%)	1 (5.6%)	3 (16.7%)	0
biosynthesis					
Fatty acid	43	18 (41.9%)	10 (23.3%)	2 (4.7%)	0
degradation					
Fatty acid	27	12 (44.4%)	7 (25.9%)	3 (11.1%)	0
elongation					
Glutathione	57	16 (28.1%)	13 (22.8%)	12 (21.1%)	2 (3.5%)
metabolism					
Glycolysis /	67	21 (31.3%)	12 (17.9%)	7 (10.4%)	1 (1.5%)
Gluconeogenesis	100				
HIF-1 signaling	109	39 (35.8%)	22 (20.2%)	21 (19.3%)	6 (5.5%)
Ovidative	13/	37 (73 0%)	10 (7 5%)	5 (3 7%)	0
nhosphorylation	134	52 (25.570)	10 (7.570)	5 (5.770)	0
phosphorylation	30	11 (36.7%)	5 (16.7%)	3 (10.0%)	0
Pentose phosphate		. ,	. ,	. ,	
pathway					
Pyruvate metabolism	47	16 (34.0%)	12 (25.5%)	5 (10.6%)	0

	Total N of					
Metabolic	genes in a	Cycling	Epithelial, N	Unknown, N	Macrophag	
Pathways	pathway	stromal, N (%)	(%)	(%)	es, N (%)	B cells, N (%)
ALA, AST and GLU metabolism	37	0	1 (2.7%)	2 (5.4%)	0	0
AMPK signaling pathway	121	6 (5%)	0	4 (3.3%)	0	0
Citrate cycle (TCA cycle)	30	0	0	1 (3.3%)	0	0
Fatty acid biosynthesis	18	0	0	1 (5.6%)	0	0
Fatty acid degradation	43	0	0	0	0	0
Fatty acid elongation	27	0	0	0	0	0

Glutathione	57	1 (1.8%)	0	4 (7%)	0	0
Glycolysis /	67	0	0	1 (1.5%)	0	0
HIF-1 signaling	109	3 (2.8%)	2 (1.8%)	8 (7.3%)	0	0
Oxidative phosphorylation	134	0	0	2 (1.5%)	0	0
	30	0	0	0	0	0
Pentose phosphate pathway						
Pyruvate metabolism	47	0	0	0	0	0

Supplementary Table 3. SCPA analysis of the activity of 12 metabolic pathways in ectopic endometrium vs eutopic endometrium (by cell clusters). Stromal

	Pathway	adjPval	qval	FC
1	HIF-1 signaling pathway	1.00E-52	7.2	-2.35
2	AMPK signaling pathway	2.37E-50	7.0	-3.29
3	Glutathione metabolism	3.55E-26	5.0	1.25
4	Glycolysis / Gluconeogenesis	3.71E-19	4.3	1.07
5	Pyruvate metabolism	1.82E-14	3.7	1.81
6	Fatty acid degradation	3.00E-13	3.5	1.80
7	Fatty acid elongation	1.90E-08	2.8	-0.30
8	ALA, ASP and GLU metabolism	5.55E-08	2.7	0.22
9	Oxidative phosphorylation	1.15E-06	2.4	-2.50
10	Pentose phosphate pathway	8.78E-01	0.2	0.31
11	Citrate cycle (TCA cycle)	1.00E+00	0.0	0.27
12	Fatty acid biosynthesis	1.00E+00	0.0	0.12
Endothelial				
	Pathway	adjPval	qval	FC
1	HIF-1 signaling pathway	1.10E-57	7.5	3.19
2	AMPK signaling pathway	9.41E-51	7.1	0.26
3	Fatty acid elongation	8.12E-23	4.7	0.89
4	Glutathione metabolism	8.12E-23	4.7	-0.18
5	ALA, ASP and GLU metabolism	2.27E-13	3.6	0.05
6	Oxidative phosphorylation	4.80E-12	3.4	1.27
7	Pyruvate metabolism	8.64E-11	3.2	0.15
8	Citrate cycle (TCA cycle)	1.72E-08	2.8	-0.35
9	Glycolysis / Gluconeogenesis	1.90E-07	2.6	0.52
10	Fatty acid biosynthesis	1.54E-04	2.0	0.26
11	Fatty acid degradation	5.69E-04	1.8	-0.31
12	Pentose phosphate pathway	4.40E-02	1.2	0.20
Immune				
	Pathway	adjPval	qval	FC
1	HIF-1 signaling pathway	1.91E-10	3.1	-0.80
2	AMPK signaling pathway	2.80E-01	0.7	-0.08
3	ALA, ASP and GLU metabolism	1.00E+00	0.0	0.04
4	Citrate cycle (TCA cycle)	1.00E+00	0.0	-0.43
5	Fatty acid biosynthesis	1.00E+00	0.0	-0.09
6	Fatty acid degradation	1.00E+00	0.0	-0.43
7	Fatty acid elongation	1.00E+00	0.0	-0.29
8	Glutathione metabolism	1.00E+00	0.0	-0.53
9	Glycolysis / Gluconeogenesis	1.00E+00	0.0	-0.43
10	Oxidative phosphorylation	1.00E+00	0.0	-3.08
11	Pentose phosphate pathway	1.00E+00	0.0	-0.16
12	Pyruvate metabolism	1.00E+00	0.0	-0.39

Perivascular

Pathway	adjPval	qval	FC
	-		

1	HIF-1 signaling pathway	1.67E-69	8.3	-3.32
2	AMPK signaling pathway	2.17E-56	7.5	-3.52
3	Glutathione metabolism	1.56E-51	7.1	0.06
4	Oxidative phosphorylation	9.18E-29	5.3	7.12
5	Glycolysis / Gluconeogenesis	2.15E-16	4.0	0.21
6	Pentose phosphate pathway	1.59E-11	3.3	-0.29
7	Pyruvate metabolism	5.59E-11	3.2	0.38
8	Fatty acid elongation	1.91E-10	3.1	-0.08
9	Fatty acid degradation	6.32E-10	3.0	0.72
10	Citrate cycle (TCA cycle)	1.15E-06	2.4	0.02
11	ALA, ASP and GLU metabolism	3.76E-03	1.6	-0.21
12	Fatty acid biosynthesis	1.14E-01	1.0	-0.52
Macrophage				
	Pathway	adjPval	qval	FC
1	HIF-1 signaling pathway	5.70E-10	3.0	2.49
2	AMPK signaling pathway	5.12E-05	2.1	1.95
3	Fatty acid biosynthesis	5.87E-02	1.1	1.15
4	Fatty acid degradation	9.11E-02	1.0	0.78
5	Glutathione metabolism	9.11E-02	1.0	-0.58
6	Oxidative phosphorylation	4.26E-01	0.6	-1.80
7	ALA, ASP and GLU metabolism	8.11E-01	0.3	0.31
8	Pyruvate metabolism	8.11E-01	0.3	-0.54
9	Citrate cycle (TCA cycle)	1.00E+00	0.0	-0.48
10	Fatty acid elongation	1.00E+00	0.0	-0.40
11	Glycolysis / Gluconeogenesis	1.00E+00	0.0	-0.23
12	Pentose phosphate pathway	1.00E+00	0.0	0.18
Unknown				
	Pathway	adjPval	qval	FC
1	AMPK signaling pathway	1.82E-05	2.2	-7.62
2	HIF-1 signaling pathway	1.82E-05	2.2	-6.14
3	Glutathione metabolism	8.22E-04	1.8	-2.80
4	Pyruvate metabolism	6.81E-02	1.1	-2.83
5	Glycolysis / Gluconeogenesis	5.61E-01	0.5	-3.24
6	ALA, ASP and GLU metabolism	1.00E+00	0.0	-0.66
7	Citrate cycle (TCA cycle)	1.00E+00	0.0	-1.68
8	Fatty acid biosynthesis	1.00E+00	0.0	-0.49
9	Fatty acid degradation	1.00E+00	0.0	-1.84
10	Fatty acid elongation	1.00E+00	0.0	-1.13
11	Oxidative phosphorylation	1.00E+00	0.0	-15.65
12	Pentose phosphate pathway	1.00E+00	0.0	-0.81
B-cell				
	Pathway	adjPval	qval	FC
1	HIF-1 signaling pathway	3.57E-02	1.2	0.87
2	AMPK signaling pathway	1.42E-01	0.9	-0.77
3	ALA, ASP and GLU metabolism	1.00E+00	0.0	-0.50

4	Citrate cycle (TCA cycle)	1.00E+00	0.0	0.07
5	Fatty acid biosynthesis	1.00E+00	0.0	0.25
6	Fatty acid degradation	1.00E+00	0.0	0.26
7	Fatty acid elongation	1.00E+00	0.0	0.02
8	Glutathione metabolism	1.00E+00	0.0	0.24
9	Glycolysis / Gluconeogenesis	1.00E+00	0.0	0.03
10	Oxidative phosphorylation	1.00E+00	0.0	-2.26
11	Pentose phosphate pathway	1.00E+00	0.0	-0.12
12	Pyruvate metabolism	1.00E+00	0.0	0.50
Epithelial				
	Pathway	adjPval	qval	FC
1	HIF-1 signaling pathway	7.09E-11	3.2	3.41
2	AMPK signaling pathway	4.67E-05	2.1	-4.02
3	ALA, ASP and GLU metabolism	4.67E-05	2.1	0.99
4	Fatty acid elongation	3.72E-02	1.2	1.57
5	Glutathione metabolism	1.85E-01	0.9	1.31
6	Oxidative phosphorylation	1.85E-01	0.9	11.47
7	Citrate cycle (TCA cycle)	1.00E+00	0.0	0.92
8	Fatty acid biosynthesis	1.00E+00	0.0	-0.45
9	Fatty acid degradation	1.00E+00	0.0	0.89
10	Glycolysis / Gluconeogenesis	1.00E+00	0.0	3.14
11	Pentose phosphate pathway	1.00E+00	0.0	0.50
12	Pyruvate metabolism	1.00E+00	0.0	1.88
Cycling Strom	al			
	Pathway	adjPval	qval	FC
1	HIF-1 signaling pathway	1.05E-14	3.7	9.10
2	AMPK signaling pathway	1.00E+00	0.0	0.92
3	ALA, ASP and GLU metabolism	1.00E+00	0.0	0.13
4	Citrate cycle (TCA cycle)	1.00E+00	0.0	0.53
5	Fatty acid biosynthesis	1.00E+00	0.0	0.18
6	Fatty acid degradation	1.00E+00	0.0	3.31
7	Fatty acid elongation	1.00E+00	0.0	2.16
8	Glutathione metabolism	1.00E+00	0.0	0.26
9	Glycolysis / Gluconeogenesis	1.00E+00	0.0	3.48
10	Oxidative phosphorylation	1.00E+00	0.0	0.25
11	Pentose phosphate pathway	1.00E+00	0.0	0.42
12	Pyruvate metabolism	1.00E+00	0.0	0.82

Supplementary Table 4. Statistically significant differentially expressed genes of metabolic pathways between eutopic endometrium of controls (women without endometriosis) compared to eutopic endometrium of women with endometriosis from external dataset (Huang et al. 2023). Perivascular cell type

	log2FoldC					
gene	hange	pvalue	padj	gene name vascular endothelial	KEGG pathway	Pathway
VEGFA	-2.28	1.07E-08	0.000105	growth factor A	hsa04066	HIF-1 signaling pathway - Homo sapiens (human)
Stromal cel	l type log2FoldC					
gene	hange	pvalue	padj	gene name insulin	KEGG pathway	Pathway
IRS2	-1.52	1.94E-05	0.011439	receptor substrate 2	hsa04152	AMPK signaling pathway - Homo sapiens (human)
LDHA	-1.14	3.65E-05	0.018793	lactate dehydrogenas e A 6- phosphofructo-	hsa00010,hsa0 4066,hsa0062 0	Glycolysis / Gluconeogenesis - Homo sapiens (human),HIF-1 signaling pathway - Homo sapiens (human),Pyruvate metabolism - Homo sapiens (human)
PFKFB3	-1.49	8.2E-05	0.034727	2- kinase/fructos e-2,6- biphosphatase 3	hsa04152,hsa0 4066	AMPK signaling pathway - Homo sapiens (human),HIF-1 signaling pathway - Homo sapiens (human)
Endothelial	cell type					
gene	hange	pvalue	padj	gene name nitric oxide	KEGG pathway	Pathway HIF-1 signaling pathway -
NOS3	-1.28	1.21E-05	0.006569	synthase 3 serpin family E	hsa04066	Homo sapiens (human) HIF-1 signaling pathway -
SERPINE1	0.00	6.25E-05	0.024682	member 1	hsa04066	Homo sapiens (human)
IGF1	1.93	7.16E-05	0.027028	insulin like growth factor 1	hsa04152,hsa0 4066	AMPK signaling pathway - Homo sapiens (human),HIF-1 signaling pathway - Homo sapiens (human)

Supplementary Table 5. Total cell counts and percentages for perivascular, stromal and endothelial clusters in ectopic endometrium (EcE) and eutopic endometrium (EuE) by cell cycle phases. Fisher's exact test was used to compare cell cluster proportions between EcE and EuE for each cell cycle phase.

G1 phase	Perivascular, N (%)	Stromal, N (%)	Endothelial, N (%)
EcE	981 (50%)	592 (47%)	593 (36%)
EuE	355 (67%)	3201 (75%)	204 (61%)
Fisher's exact (P value)	2.78E-134	<4.58E-249	9.68E-88
G2/M phase	Perivascular, N (%)	Stromal, N (%)	Endothelial, N (%)
EcE	490 (25%)	373 (30%)	341 (21%)
EuE	62 (12%)	370 (9%)	54 (16%)
Fisher's exact (P value)	3.18E-165	0.92	2.83E-102
S phase	Perivascular, N (%)	Stromal, N (%)	Endothelial, N (%)
EcE	488 (25%)	283 (23%)	696 (43%)
EuE	110 (21%)	713 (16%)	77 (23%)
Fisher's exact (P value)	1.28E-113	4.81E-85	4.58E-249

Supplementary Table	6. Gene markers	s used for cell clu	ster annotatio	n. The cluster names are
Cluster name	Stromal cells	Stromal fib	roblasts	Cycling stromal cells
Cluster ID	0, 2	5	11	15
Gene markers	IGF1	IGF1	IGF1	IGF1
	ALDH1A2	ALDH1A2	ALDH1A2	ALDH1A2
	PAMR1	PAMR1	PAMR1	PAMR1
	MMP11	MMP11	MMP11	MMP11
	DPP6	LUM	SFRP1	SFRP4
	WT1	OGN	ACTA2	MKI67
		PDGFRA	CNN1	TOP2A
			LONRF2	TYMS
Merged clusters		Stromal		Cycling stromal
	Endothelial	Endothelial		
Cluster name	vein cells	artery cells	B cells	
Cluster ID	1	16	12	
Gene markers	EMCN	EMCN	BANK1	
	ADGRL4	ADGRL4	CD79A	
	VWF	VWF	CD37	
	PECAM1	PECAM1	MS4A1	
	CD34	CD34		
	ACKR1	SEMA3G		
	PLVAP	GJA5		
Merged clusters	Endo	thelial	B cell	
			Innate	
	Natural killer		lymphoid	
Cluster name	cells	T cells	cells	Macrophages
Cluster ID	3	4	17	8
Gene markers	PTPRC	PTPRC	PTPRC	PLEK
	STAT4	STAT4	STAT4	LYZ
	CD69	CD69	CD69	AIF1
	CCL5	IL7R	IL7R	IL1B
	AOAH	CD8A	КІТ	MS4A6A
	GZMA		CXCR4	CD68
	NKG7			CD14
Merged clusters		Immune		Macrophage
	-			
			Perivascular	
	Perivascular	Perivascular	cells	Perivascular cells
Cluster name	cells (RGS5)	cells (STEAP4)	(MYH11)	(GUCY1A2)
Cluster ID	6	7	9	14
Gene markers	RGS5	STEAP4	MYH11	GUCY1A2
	NOTCH3	NOTCH3	NOTCH3	NOTCH3
	PDE3A	PDE3A	PDE3A	PDE3A
	MYH11	MYH11	NTRK3	MYH11
	TBX2	ABCC9	NTRK2	OLFML2B
	CDH6	GGT5	FHL5	AFAP1L2
	NDUFA4L2			
Merged clusters	Perivascular			

Cluster name	Epithelial cells	Unknown cells
Cluster ID	13	10
Gene markers	RHEX	
	EYA2	*No specific
	EPCAM	marker gene set
	PROM1	was identified
	ENPP3	
	FGFR2	
	CDH1	
	SOX9	
	PIFO	
	WFDC2	
Merged clusters	Epithelial	Unknown

Supplementary Table 7. A list of metabolic pathways obtained from KEGG

pathway database	, Homo sapiens	(human).
- · ·		

Pathway name	Pathway identifier	No. of genes
Alanine, aspartate and glutamate metabolism	hsa00250	37
AMPK signaling pathway	hsa04152	121
Citrate cycle (TCA cycle)	hsa00020	30
Fatty acid biosynthesis	hsa00061	18
Fatty acid degradation	hsa00071	43
Fatty acid elongation	hsa00062	27
Glutathione metabolism	hsa00480	57
Glycolysis / Gluconeogenesis	hsa00010	67
HIF-1 signaling pathway	hsa04066	109
Oxidative phosphorylation	hsa00190	134
Pentose phosphate pathway	hsa00030	30
Pyruvate metabolism	hsa00620	47

Supplementary Table 8. A list of genes from steroidogenesis pathway.

Gene	Ensembl gene ID	
ESR1	ENSG00000091831	
ESR2	ENSG00000140009	
AR	ENSG00000169083	
GR	ENSG00000113580	
AKR1C1	ENSG00000187134	
AKR1C2	ENSG00000151632	
AKR1C4	ENSG00000198610	
AKR1D1	ENSG00000122787	
ARO	ENSG00000137869	
CYP11A1	ENSG00000140459	
CYP11B1	ENSG00000160882	
CYP11B2	ENSG00000179142	
CYP17A1	ENSG00000148795	
	ENSG00000137869	
CVP21A2	ENSG00000137803	
	ENSC00000231032	
	ENSC00000278555	
	ENSC00000175394	
HSD17B11	ENSG00000198189	
HSD17B13	ENSG00000170509	
HSD17B14	ENSG00000087076	
HSD17B2	ENSG0000086696	
HSD17B3	ENSG00000130948	
HSD17B4	ENSG00000133835	
HSD17B5	ENSG00000196139	
HSD17B6	ENSG0000025423	
HSD17B7	ENSG00000132196	
HSD17B8	ENSG00000204228	
HSD17B9	ENSG00000135437	
HSD3B1	ENSG00000203857	
HSD3B2	ENSG00000203859	
RDH11 (HAS15)	ENSG00000072042	
SRD5A1	ENSG00000145545	
SRD5A2	ENSG00000277893	
SRD5A3	ENSG00000128039	
STAR	ENSG00000147465	
STS	ENSG00000101846	
SULT1A1	ENSG00000196502	
SULT1A2	ENSG00000197165	
SULT1A3	ENSG00000261052	
SULT1B1	ENSG00000173597	
SULT1E1	ENSG00000109193	
SULT2A1	ENSG00000105398	
SULT2B1	ENSG0000088002	
PGR	ENSG0000082175	