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S1. MASTER EQUATION FOR ELECTRON TRANSPORT IN MOLECULES

Following Refs.1,2, the reduced density matrix ρ of an electron in a molecule can be described

with the quantum master equation

∂tρ =
1
ih̄
[H,ρ]+R(ρ), (S1)

where H is the Hamiltonian of the molecule and R(ρ) is an operator for the phenomenological

description of the interaction with the environmental heat bath. Electrons can also escape from

the molecule. This can be taken into account by adding an imaginary part to the site energy

Hmm− iΓm/2 so that the escape rate from the site m is Γm/h̄. Electrons can also be added to a site

with a rate Jm. The quantum master equation including escape and currents, is

∂tρ =
1
ih̄
[H,ρ]− 1

h̄
{Γ,ρ}+R(ρ)+ J, (S2)

where the matrix Γ = diag{...,Γm/2, ...} and J is a vector with elements Jm. In site representation,

this equation takes the form

ρ̇nm =− i
h̄ ∑

k
(Hnkρkm−ρnkHkm)−

1
2h̄

(Γn +Γm)ρnm +Rnm(ρ)+δnmJn, (S3)

where Rnm(ρ) are the matrix elements of R(ρ) and summations go for all N sites. The site-

based quantum master equation can be transformed into energy representation ρ̂ with transformed

matrix elements ρ i j = ∑nm Ψi
nρnmΨ

j
m, where Ψi

n is the real eigenfunction EiΨ
i
n = ∑m HnmΨi

m of

the Hamiltonian. The transformed equation is

ρ̇
i j =− i

h̄
(Ei−E j)ρ

i j− 1
2h̄ ∑

r
(Γir

ρ
r j +ρ

ir
Γ

r j)+Ri j(ρ)+ Ji j, (S4)

where Γi j = ∑n Ψi
nΓnΨ

j
n, Ji j = ∑n Ψi

nJnΨ
j
n and Ri j = ∑nmkl Ψi

nΨ
j
mRnm(ρ). We assumed that the

Hamiltonian is an N×N real symmetric matrix with real eigenvalues and eigenvectors.

The operator R(ρ) should describe the interaction with the environment and ensure the correct

equilibrium properties of the electron distribution. In the framework of the single electron picture,

the following Liouville master equation3,4 has been introduced to describe electron transport in

nanoscale systems

Ri j(ρ) = (δi j−ρ
i j)∑

p

1
2h̄

(γ ip + γ
jp)ρ pp−ρ

i j
∑
p

1
2h̄

(γ pi + γ
p j)(1−ρ

pp), (S5)

which can account for the exclusion principle, and in equilibrium, in the absence of external cur-

rents and escape, it leads to the Fermi distribution ρ
i j
eq = δi j/(1 + e(Ei−µ)/kT ), where µ is the
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chemical potential of the system. For molecules, the electrons are coupled to the phonon bath,

which induces transitions between the energy levels with rates

γ
i j = γ(ωi j)∑

n
|Ψi

n|2|Ψ j
n|2, (S6)

where ωi j = (Ei−E j)/h̄ is the transition frequency and γ(ω) is the spectral density of the bath,

and obeys the Boltzmann-type detailed balance equation

γ
i j/γ

ji = e−(Ei−E j)/kT . (S7)

There are several models used for the approximation of the spectral density for proteins. One of

them is the Ohmic oscillator bath with cutoff5

γ(ω) = η
h̄ω

eh̄ω/kT −1
e−|ω|/ωc, (S8)

where h̄ωc≈ 0.0185eV is the typical cutoff frequency for proteins. The parameter η = 2πER/h̄ωc≈

1.46 where ER is the reorganization energy.

S2. CONDUCTANCE FORMULA

Our starting point is the derivation of Datta et al.’s low-temperature conductance formula for

molecules in Refs.6 and 7, which we summarize here briefly. The molecule is coupled to a left

and a right electrode. The discrete levels of the molecule Ei are non-resonantly coupled to the

left and right electrode sites with indices n = L and n = R with coupling strengths ΓL and ΓR,

respectively. The presence of contacts broadens the level density, and the energy levels became

resonances Ei− iΓi/2, where Ei and Γi are given by the real and imaginary parts of the eigenvalues

of the Hamiltonian Hnm− iδnmΓn/2. The local density of states has a Lorentzian form

di(E) =
1

2π

Γi

(E−Ei)2 +(Γi/2)2 . (S9)

For concreteness, here we assume tactically that the contacts can be taken into account perturba-

tively and in the first order the real parts Ei are unperturbed, while Γi = ΓL|Ψi
L|2 +ΓR|Ψi

R|2.

If the level Ei is in equilibrium with a contact, then its occupation is

ρ
i
eq(µ) = 2

∫ +∞

−∞

dEdi(E)F(E,µ), (S10)

where µ is the chemical potential in the contact, F(E,µ) = (1+ e(E−µ)/kT )−1 is the Fermi dis-

tribution, and the factor 2 stands for spin degeneracy. The reduced density matrix of the system
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in equilibrium ρ̂eq is diagonal ρ
i j
eq = δi jρ

i
eq(µ). If the occupation of the levels differs from the

equilibrium with the left contact or with the right contact, then it generates material current out of

the left and right contacts

JL =
1
h̄

Tr{Γ̂L(ρ̂eq(µL)− ρ̂)}, (S11)

JR =
1
h̄

Tr{Γ̂R(ρ̂eq(µR)− ρ̂)}, (S12)

where µL/R are the chemical potentials of the contacts and the operators Γ̂L/R have matrix elements

Γ
i j
L = ΓLΨi

LΨ
j
L and Γ

i j
R = ΓRΨi

RΨ
j
R. The two currents are equal and opposite in sign JL = −JR =

J. The electric current is proportional to the material current I = eJ. When the electric field

is switched on (U 6= 0), the chemical potentials at the left and the right contacts differ µL/R =

µ ± eU/2, and a net electric current flows. In the linear regime, we can expand the deviation of

level occupations from their equilibrium values in the leading order

ρ
i
eq(µL/R)≈ 2

∫ +∞

−∞

dEdi(E)[F(E,µ)± f (E,µ)eU/2] = ρ
i
eq(µ)±Di(µ)eU, (S13)

where Di(µ) =
∫+∞

−∞
f (E,µ)di(E)dE and f (E,µ) = ∂µF(E,µ) = 1/4kT cosh2((µ −E)/2kT ) is

the derivative of the Fermi distribution. In molecules, the equilibrium chemical potential is typi-

cally between the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbitals

EHOMO < µ < ELUMO. The derivative of the Fermi distribution is strongly peaked at E = µ and

decays quickly far from the peak. The Lorentzian density of states is strongly peaked at E = Ei.

Combining these delta function-like behaviors yield

Di(µ)≈ di(µ)+ f (Ei,µ), (S14)

where the first term describes electron tunneling, and the second is the thermal excitation.

The population of the levels in the molecule shift from their equilibrium values. We can intro-

duce the deviation δ ρ̂ = ρ̂− ρ̂eq. In leading order, the current can be written as

JL =
1
h̄

Tr(Γ̂L(D̂eU−δ ρ̂)), (S15)

JR =−1
h̄

Tr(Γ̂R(D̂eU +δ ρ̂)), (S16)

where the equilibrium value of the density matrix dropped out, and only deviations from the equi-

librium remain, and D̂ is the operator with matrix elements Di j = δi jDi(µ). The deviation δρ i

satisfies the stationary version of the master equation (S4)

0 =− i
h̄
(Ei−E j)δρ

i j +δRi j− 1
2h̄ ∑

r
(Γir

δρ
r j +δρ

ir
Γ

r j)+
eU
2h̄

(Γ
i j
L −Γ

i j
R )(D

j +Di), (S17)
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where δRi j = Ri j(ρ̂eq +δ ρ̂)−Ri j(ρ̂eq) and we have to keep the terms linear in the deviation only.

The linearized expression takes the form

δRi j =
δi j

2h̄ ∑
p

(
1−Fi

1−Fp
γ

ip +
1−Fj

1−Fp
γ

jp
)

δρ
pp−

δρi j

2h̄ ∑
p

(
1−Fp

1−Fi
γ

pi +
1−Fp

1−Fj
γ

p j
)
, (S18)

where Fi = (1+e(Ei−µ)/kT )−1 is the Fermi distribution. We can introduce new transition rates with

the definition γ̃ i j = γ i j(1−Fi)/(1−Fj), and then (S18) takes a simpler form

δRi j =
δi j

2h̄ ∑
p

(
γ̃

ip + γ̃
jp)

δρ
pp−

δρi j

2h̄ ∑
p

(
γ̃

pi + γ̃
p j) . (S19)

The new transition rates change the detailed balance (S7) to

γ̃
i j/γ̃

ji =
(1−Fi)

2

(1−Fj)2 e−(Ei−E j)/kT =
cosh2((E j−µ)/2kT )
cosh2((Ei−µ)/2kT )

, (S20)

which now reflects the Fermi statistics. If the magnitude of the difference between the chemical

potential and the energy is much larger than the thermal energy, then cosh2((Ei− µ)/2kT ) ≈

e|Ei−µ|/kT/4 and

γ̃
i j/γ̃

ji ≈ e−(|Ei−µ|−|E j−µ|)/kT , (S21)

is the Boltzmann-type detailed balance equation reflecting that states below the chemical potential

can be regarded as hole states, and |Ei−µ| is the energy of the hole.

Finally, we can introduce the evolution operator

Li jpq =−i(Ei−E j)δipδ jq−
1
2
(Γip

δ jq +δipΓ
q j)+

1
2
(
γ̃

ip + γ̃
jp)

δi jδpq−
1
2 ∑

r
(γ̃ri + γ̃

r j)δipδ jq,

(S22)

and write (S18) as

0 =
1
h̄ ∑

pq
Li jpq

δρ
pq + Ji j, (S23)

where Γi j = Γ
i j
L +Γ

i j
R and Ji j = (eU/2h̄)(Γi j

L −Γ
i j
R )(D

j +Di). We can solve (S23) for the density

deviation yielding

δρ
i j =

eU
2 ∑

pq
[L−1]i jpq(Γ

pq
R −Γ

pq
L )(Dq +Dp). (S24)

We can substitute this back to (S15) and get the material current JL and electric current I = eJL

trough the molecule

I =
e2U

h̄

[
∑

i
Γ

ii
LDi− 1

2 ∑
i jpq

Γ
i j
L [L
−1] jipq(Γ

pq
R −Γ

pq
L )(Dq +Dp)

]
(S25)
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Probability conservation guarantees that in the absence of external currents the initial probabil-

ity content of a density matrix is leaving the system through the contacts. Assume that we start

with ρ i j(0) = δipδ jq. The material current flowing out through the contacts is given by

j(t) =
1
h̄ ∑

i j
Γ

ji
ρ

i j(t), (S26)

The total probability through the contacts is equal to the initial probability
∫

∞

0 j(t)dt = Tr(ρ(0)) =

δpq. The evolution equation in the absence of external current is

∂tρ
i j =

1
h̄ ∑

kl
Li jkl

ρ
kl, (S27)

and its solution is ρ i j(t) = ∑kl [exp(Lt/h̄)]i jkl
ρkl(0). Substituting this solution into (S26) and

integrating in time yields

−∑
i j

Γ
ji [L−1]i jpq

=−∑
i j
(Γ

i j
L +Γ

i j
R )[L

−1]i jpq = δpq. (S28)

Using this relation, we can write the conductance G = I/U in a manifestly symmetric form

G =−e2ΓLΓR

h̄ ∑
i jpq
{Ψi

LΨ
j
L[L
−1] jipq

Ψ
p
RΨ

q
R +Ψ

i
RΨ

j
R[L
−1] jipq

Ψ
p
LΨ

q
L}D

p(µ), (S29)

which is the main result and allows the calculation of the conductance in terms of the resolvent

(S23) of the evolution operator.

S3. PERTURBATIVE TREATMENT

Numerical inversion of the N2×N2 matrix of the evolution operator is a daunting task, there-

fore, we develop a perturbative approximation that significantly reduces the computational effort

and allows an analytic treatment if certain conditions are met. We can introduce the left and the

right eigenfunctions of the evolution operator

λkV
i j
k = ∑

pq
Li jpqV pq

k , (S30)

λkU
i j
k = ∑

pq
Lpqi jU pq

k . (S31)

The inverse of the operator can be expressed in terms of the eigenfunctions and eigenvalues

[L−1]i jpq =
∞

∑
k=0

1
λk

V i j
k U pq

k , (S32)
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so that terms with nearly zero λ ≈ 0 eigenvalues dominate the inverse. For a closed system Γi j = 0

the evolution operator has an equilibrium solution with zero eigenvalue λ0 = 0 and

0 = ∑
pq

Li jpqV pq
0 , (S33)

0 = ∑
pq

Lpqi jU pq
0 , (S34)

and the inverse is singular. The real part of the second-largest eigenvalue ℜ(λ1) =−h̄/τrlx deter-

mines the rate of the relaxation to equilibrium. If the system is open Γi j 6= 0, the largest eigenvalue

λ0 =−h̄/τesc determines the rate of the escape of electrons leaking out of the system. If we regard

the couplings Γi j as perturbations of the equilibrium, we can calculate the largest eigenvalue in the

first order of perturbation theory as the expectation value of the perturbation in equilibrium

λ0 =−
1
2 ∑

i jpq
U i j

0 (Γip
δ jq +δipΓ

q j)V pq
0 , (S35)

where U i j
0 and V pq

0 are the left and right eigenfunctions of the operator

Li jpq
0 =−i(Ei−E j)δipδ jq +

1
2
(
γ̃

ip + γ̃
jp)

δi jδpq−
1
2 ∑

r
(γ̃ri + γ̃

r j)δipδ jq. (S36)

The left eigenfunction is U i j
0 = δi j due to probability conservation. The right eigenfunction can

be determined from the detailed balance condition V ii
0 γ̃ ji = γ̃ i jV j j

0 and normalization. Due to the

detailed balance (S20) we get

V ii
0

V j j
0

=
cosh2((µ−E j)/2kT )
cosh2((µ−Ei)/2kT )

, (S37)

and the normalized eigenvector is

V i j
0 =

δi j

N

1
cosh2((µ−Ei)/2kT )

, (S38)

where N = ∑k 1/cosh2((µ −Ek)/2kT ) is the normalization factor. Using these eigenvectors in

(S35) we get

λ0 =−
1

N ∑
k

Γkk

cosh2((µ−Ek)/2kT )
. (S39)

As long as the relaxation to equilibrium is much faster than the escape time τesc � τrlx, we can

use the perturbative first eigenvalue and can neglect the rest of the eigenvalues in the expression

of the inverse, and we get

[L−1]i jpq ≈ 1
λ0

V i j
0 U pq

0 ≈−
1

∑k Γkk/cosh2((µ−Ek)/2kT )
δi jδpq

cosh2((µ−Ei)/2kT )
. (S40)
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Substituting this expression into the conductance formula (S29) and using (S14) yields the con-

ductance

G =
2e2

h
T +

2e2

h̄
ZLZR

ZL +ZR
+

e2

h

[
ZL

ZL +ZR
TR +

ZR

ZL +ZR
TL

]
(S41)

where

ZL = ∑
k

ΓL|Ψk
L|2

4kT cosh2((µ−Ek)/2kT )
, (S42)

ZR = ∑
k

ΓR|Ψk
R|2

4kT cosh2((µ−Ek)/2kT )
, (S43)

and

TL = ∑
k

Γ2
L|Ψk

L|4

(µ−Ek)2 +(Γk/2)2 , (S44)

TR = ∑
k

Γ2
R|Ψk

R|4

(µ−Ek)2 +(Γk/2)2 , (S45)

T = ∑
k

ΓLΓR|Ψk
L|2|Ψk

R|2

(µ−Ek)2 +(Γk/2)2 , (S46)

where Γk = ΓL|Ψk
L|2 +ΓR|Ψk

R|2.
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S4. CODE WORKFLOW

Our starting point is a 3D structure from the Protein Data Bank (https://www.rcsb.org/), which

we process with the Maestro software (https://www.schrodinger.com/platform/products/maestro/).

We connected the appropriate cysteines to the hemes and conducted a force-field minimization

procedure only on the side chains of those cysteines to optimize the spatial arrangement of the

atoms. Then, C-terminal oxygen atoms and missing hydrogen atoms were added to the pro-

tein structures. The outputs of this software are the XYZ files, which contain all the atoms

and their coordinates in 3D. Then, the input files (YAH files) suitable for the Yaehmop software

(https://yaehmop.sourceforge.net/) are created with a few lines of Python code. Then, the quantum

chemistry calculations were carried out by Yaehmop, using the Extended Hückel method. The out-

puts are the Hamiltonian and Overlap matrices of the structures in the non-orthogonal Slater-type

atomic orbital basis.

A. Conductance calculation

First, we transform the Hamiltonian into an orthogonal basis with Löwdin transformation using

scipy.linalg.fractional_matrix_power in Python. Then, with scipy.linalg.eigh, we

solve the eigenvalue problem and get the spectrum and the eigenvectors (molecular orbitals) of the

proteins. These two steps are the most resource-consuming ones as they scale with N3, where N

is the number of atomic orbitals of the protein structure. After that, we choose the atomic orbitals

that are connected to the left and right electrodes (L, R). Utilizing Eqs.(7-9), we lastly calculate

the conductance between these selected atomic orbitals with our own Python code.

B. Visualization

In the original basis, we solve the generalized eigenvalue problem with the Hamiltonian

and Overlap matrices in Python with scipy.linalg.eigh. We also made a 3D rectangu-

lar grid with 1.5Å resolution with the griData module of the MDAnalysis Python package

(https://www.mdanalysis.org/GridDataFormats/). Using the spectrum and the eigenvectors (molec-

ular orbitals), we are able to calculate the functions T (r) and Z (r) on the grid. With the griData

module, we generate DX files that are suitable outputs for the Visual Molecular Dynamics software

(https://www.ks.uiuc.edu/Research/vmd/) to visualize volumetric data and the protein structure it-
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self in 3D. The conductance calculation and visualization code workflow are summarized in the

following chart.

FIG. S1. Code workflow for conductance calculation (left branch) and visualization (right branch).
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