Supplementary Information

Loss of symmetric cell division of apical neural progenitors drives *DENND5A*-related developmental and epileptic encephalopathy

Emily Banks¹, Vincent Francis¹, Sheng-Jia Lin², Fares Kharfallah¹, Vladimir Fonov¹, Maxime Levesque¹, Chanshuai Han¹, Gopinath Kulasekaran¹, Marius Tuznik¹, Armin Bayati¹, Reem Al-Khater³, Fowzan S. Alkuraya⁴, Loukas Argyriou⁵, Meisam Babaei⁶, Melanie Bahlo⁷, Behnoosh Bakhshoodeh⁸, Eileen Barr⁹, Lauren Bartik^{10,11}, Mahmoud Bassiony¹², Miriam Bertrand¹³, Dominique Braun¹⁴, Rebecca Buchert¹³, Mauro Budetta¹⁵, Maxime Cadieux-Dion¹⁶, Daniel G. Calame¹⁷⁻¹⁹, Heidi Cope²⁰, Donna Cushing²¹, Stephanie Efthymiou²², Marwa Abd Elmaksoud²⁴, Huda G. El Said²⁴, Tawfiq Froukh²⁵, Harinder K. Gill²⁶, Joseph G. Gleeson^{27,28}, Laura Gogoll¹⁴, Elaine S.-Y. Goh²¹, Vykuntaraju K. Gowda²⁹, Tobias B. Haack¹³, Mais O. Hashem⁴, Stefan Hauser^{30,31}, Trevor L. Hoffman³², Jacob S. Hogue³³, Akimoto Hosokawa³⁴, Henry Houlden²², Kevin Huang², Stephanie Huynh²⁶, Ehsan G. Karimiani^{35,36}, Silke Kaulfuß⁵, G. Christoph Korenke³⁷, Amy Kritzer³⁸, Hane Lee³⁹, James R. Lupski^{17-19,40}, Elysa J. Marco⁴¹, Kirsty McWalter⁴², Arakel Minassian⁴³, Berge A. Minassian⁴⁴, David Murphy²³, Juanita Neira-Fresneda⁹, Hope Northrup⁴⁵, Denis M. Nyaga³⁴, Barbara Oehl-Jaschkowitz⁴⁶, Matthew Osmond⁴⁷, Richard Person⁴², Davut Pehlivan¹⁷⁻¹⁹, Cassidy Petree², Lynette G. Sadleir³⁴, Carol Saunders^{10,16,48}, Ludger Schoels^{30,31}, Vandana Shashi²⁰, Rebecca C. Spillmann²⁰, Varunvenkat M. Srinivasan²⁹, Paria N. Torbati³⁶, Tulay Tos⁴⁹, Undiagnosed Diseases Network[†], Maha S. Zaki⁵⁰, Dihong Zhou^{10,11}, Christiane Zweier¹⁴, Jean-François Trempe⁵¹, Thomas M. Durcan¹, Ziv Gan-Or^{1,52}, Massimo Avoli¹, Cesar Alves⁵³, Gaurav K. Varshney², Reza Maroofian²², David A. Rudko^{1,54,55}, Peter S. McPherson¹.

¹ Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC H3A 2B4, Canada

² Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA

³ Johns Hopkins Aramco Healthcare, Dhahran 34465, Saudi Arabia

⁴ Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia

⁵ Institute of Human Genetics, University Medical Center, Göttingen 37073, Germany

⁶ Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran

⁷ Walter and Eliza Hall Institute for Medical Research, Parkville Victoria 3052, Australia

⁸ Mashhad University of Medical Sciences, Mashhad, Iran

⁹ Emory University, Department of Human Genetics, Atlanta, GA 30322, USA

¹⁰ University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA

¹¹ Department of Pediatrics, Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO 64108, USA

¹² Faculty of Medicine, Alexandria University, Alexandria, Egypt

¹³ Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany

¹⁴ Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland

¹⁵ Paediatric and Child Neurology Unit, Cava de' Tirreni AOU S. Giovanni di Dio e Ruggiero d'Aragona Hospital, Salerno, Italy

¹⁶ Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA

¹⁷ Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA

¹⁸ Texas Children's Hospital, Houston, TX, USA

¹⁹ Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA

²⁰ Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA

²¹ Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, ON L5M 2N1, Canada

²² Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, WC1N 3BG, UK

²³ Department of Clinical and Movement Neurosciences, University College London (UCL) Queen Square Institute of Neurology, London WC1N 3BG, UK

²⁴ Neurology Unit, Department of Pediatrics, Faculty of Medicine, University of Alexandria, Alexandria, Egypt

²⁵ Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman 19392, Jordan

²⁶ Provincial Medical Genetics Program at BC Women's Health Centre, Vancouver, BC V6H 3N1, Canada ²⁷ Department of Neurosciences, University of California San Diego, La Jolla, CA, USA

²⁸ Rady Children's Institute for Genomic Medicine, San Diego, CA, USA

²⁹ Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India

³⁰ Center for Neurology and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen 72076, Germany

³¹ German Center of Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany

³² Southern California Kaiser Permanente Medical Group, Department of Regional Genetics, Anaheim, CA 92806, USA

³³ Madigan Army Medical Center, Tacoma, WA 98431, USA

³⁴ Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand

³⁵ Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK

³⁶ Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran

³⁷ Department of Neuropediatrics, University Children's Hospital, Klinikum Oldenburg, Oldenburg 26133, Germany

³⁸ Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA

³⁹ 3billion, Inc, Seoul, South Korea

⁴⁰ Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA

⁴¹ Cortica Healthcare, San Rafael, CA 94903, USA

⁴² GeneDx, Gaithersburg, MD 20877, USA

⁴³ Centre for Applied Genomics, Genetics, and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada

⁴⁴ UT Southwestern Medical Center, Departments of Pediatrics and Neurology, Dallas, TX 75390, USA

⁴⁵ Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX 77030, USA

⁴⁶ BIOSCIENTIA-MVZ-Labor-Saar-Practice of Human Genetics, Homburg (Saar), Germany

⁴⁷ Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa K1H8L1, Canada

⁴⁸ Center for Pediatric Genomic Medicine Children's Mercy - Kansas City, Missouri, USA

⁴⁹ University of Health Sciences, Zubeyde Hanim Research and Training Hospital of Women's Health and Diseases, Department of Medical Genetics, Ankara 06080, Turkey

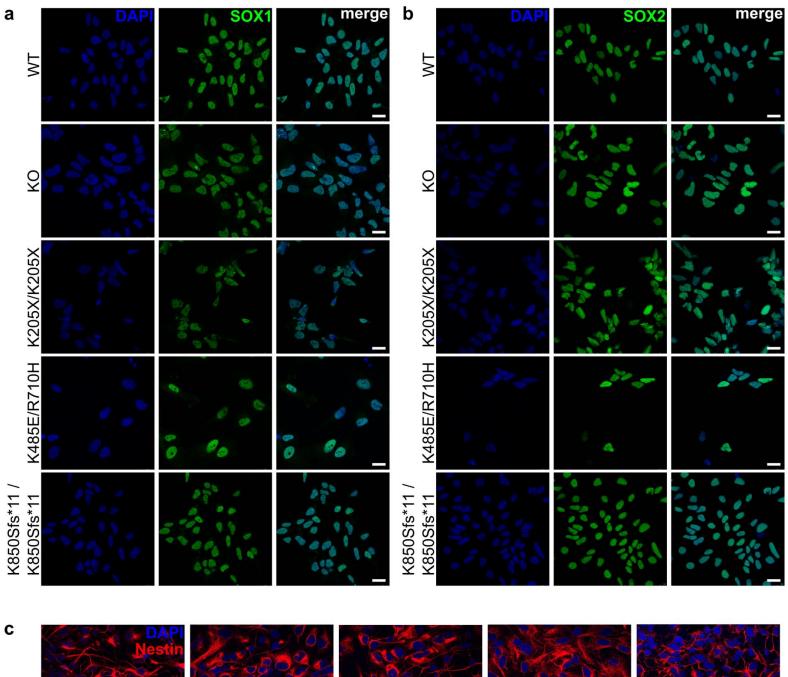
⁵⁰ Human Genetics and Genome Research Institute, Clinical Genetics Department, National Research Centre, Cairo, Egypt

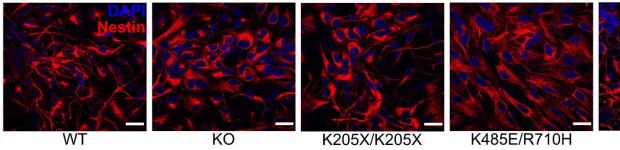
⁵¹ Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 1Y6, Canada

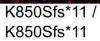
⁵² Department of Human Genetics, McGill University, Montréal, QC H3A 2B4, Canada

⁵³ Division of Neuroradiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA

⁵⁴ McConnell Brain Imaging Centre, the Neuro, Montréal, QC H3A 2B4, Canada

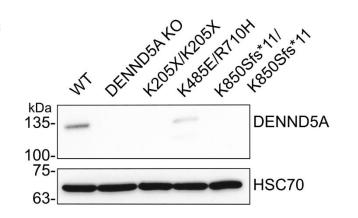

⁵⁵ Department of Biomedical Engineering, McGill University, Montréal, QC H3A 2B4, Canada

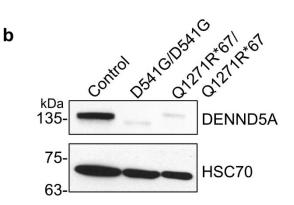

Email: peter.mcpherson@mcgill.ca (P. S. M.)

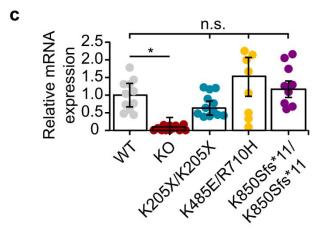

Table of Contents

1.	Supplementary Figures	
	Supplementary Figure 1	6-7
	Supplementary Figure 2	8-9
	Supplementary Figure 3	10-11
	Supplementary Figure 4	12-13
	Supplementary Figure 5	14-15
2.	Supplementary Methods	
	Motor skills scoring system	16
	Neurological phenotype scoring system	17
	Communication skills scoring system	18
	Comorbidities scoring system	19
3.	Supplementary Note	20-21

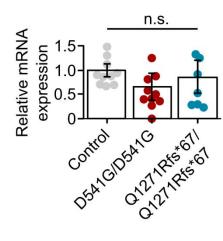
1. Supplementary Figures



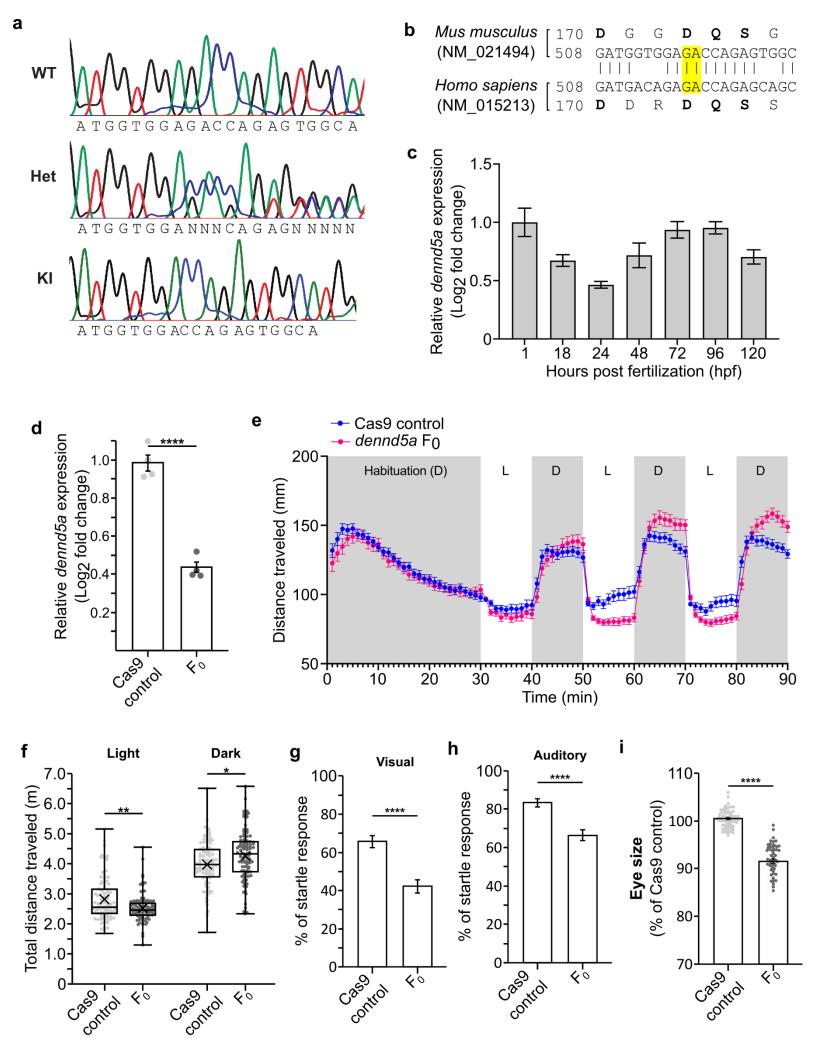


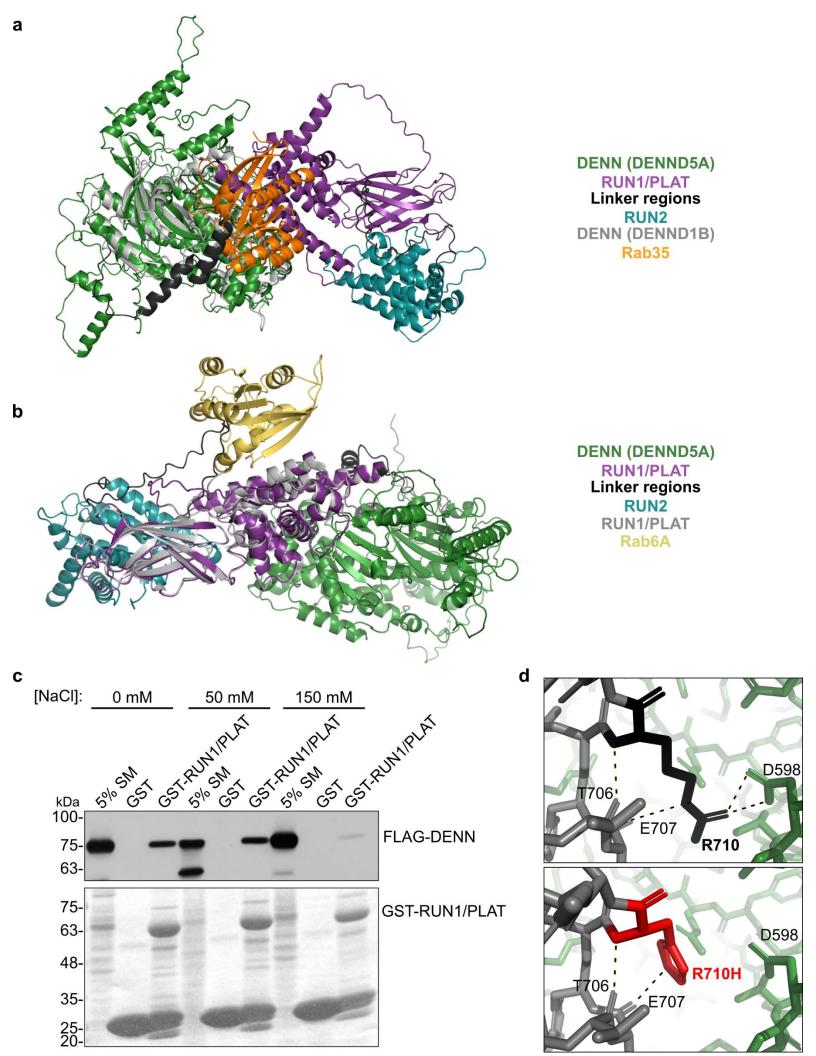


Supplementary Figure 1: All established NPC lines express neural progenitor-specific

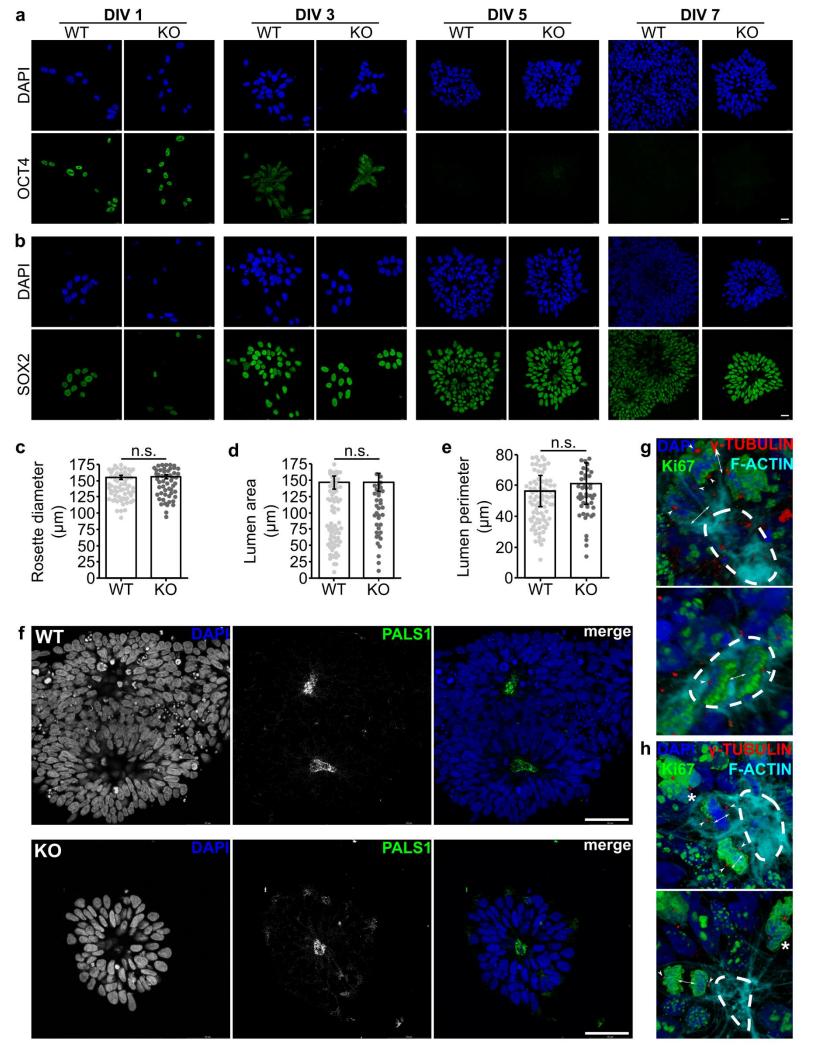

markers. hiPSCs differentiated into NPCs express **a**, SOX1 (green); **b**, SOX2 (green), and **c**, Nestin (red). Blue = DAPI. Scale bars = $20 \mu m$. Results were reproduced each time NPCs were generated, for a total of 8 independent experiments.

d


FLAG-DENND5A


е

Supplementary Figure 2: DENND5A expression varies depending on the variant.


DENND5A protein expression in **a**, NPCs and **b**, lymphoblasts. Results were reproduced in 3 independent experiments. **c**, Relative *DENND5A* mRNA expression measured by RT-qPCR in NPCs. Measurements were made with 4 technical replicates on n = 3 independent samples. Data are mean \pm SEM analyzed via Kruskal-Wallis tests with Bonferroni-corrected pairwise comparisons (H(4) = 21.75, p = .0002). **d**, Relative *DENND5A* mRNA expression measured by RT-qPCR in lymphoblasts. Measurements were made with 4 technical replicates on n = 3 independent samples. Data are mean \pm SEM analyzed via Kruskal-Wallis tests with Bonferroni-corrected pairwise comparisons (H(2) = 2.451, p = .294). **e**, Overexpression of FLAG-DENND5A mutagenized to contain several variants influences protein stability and expression levels in HEK293T. Results were reproduced in 3 independent experiments. Source data for each panel are provided as a Source Data file.

Supplementary Figure 3: Features of DENND5A transgenic animals make them valid models to study *DENND5A*-related DEE. a, Sample chromatograms demonstrating DENND5A DNA sequences in WT, heterozygous (Het), and knock-in (KI) mice. b, DNA and amino acid sequence alignment between human and mouse DENND5A sequences. Highlighted base pairs indicate bases deleted using CRISPR/Cas9. c, The temporal expression of zebrafish dennd5a mRNA by RT-qPCR at different developmental stages from 3 experiments performed with technical triplicates. Expression levels were normalized to the 18S housekeeping gene and compared to 1 hpf embryos. Data are mean \pm SD. **d**, Expression of *dennd5a* mRNA in Cas9 controls and *dennd5a* F₀ knockouts detected by RT-qPCR at 5 dpf. 4 experiments were performed with technical triplicates. Data are mean \pm SEM analyzed via two-tailed student's ttest (t(6) = 10.706, p = .000039). e, Locomotor activities of zebrafish larvae at 5 dpf with n = 96larvae for each group. Data are mean \pm SEM. D = Dark period, L = light period. f, Quantification of distance traveled by each larva during the cycles of light or dark periods, analyzed via twotailed Mann-Whitney U test (light; Z = -2.81, p = .005) and two-tailed student's *t*-test (dark; t(190) = -2.438, p = .016) with n = 96 larvae for each group. Each dot represents one larva. g. Visual startle response in n = 143 larvae at 6 dpf. Data are mean \pm SEM analyzed via two-tailed Mann-Whitney U test (Z = -4.957, $p = 7.15 \times 10^{-7}$). h, Acoustic evoked behavioral response in n = 134 larvae at 6 dpf. Data are mean \pm SEM analyzed via two-tailed Mann-Whitney U test (Z = -4.947, $p = 7.53 \times 10^{-7}$). i, Quantification of eye size in n = 60 larvae. Each dot represents one larva. Data are mean \pm SEM analyzed via two-tailed Welch's *t*-test (t(96.016) = 17.831, p = 3.16x 10^{-32}). Source data for (**d-i**) are provided as a Source Data file.

Supplementary Figure 4: Analysis of the predicted DENND5A structure indicates intramolecular interactions may regulate other protein-protein interactions. a, Structural alignment between the predicted DENND5A structure and PDB:3TW8 (gray, yellow) b, Structural alignment between the predicted DENND5A structure and PDB:3CWZ (gray, yellow) c, Pulldown experiment showing binding capacity between GST-RUN1/PLAT and FLAG-DENN domains of DENND5A under varying NaCl concentrations. Results were reproduced in 2 independent experiments. Uncropped blots are provided as a Source Data file. d, The R710H variant found in the cohort and within the region that interacts with PALS1/MUPP1 results in the removal of two hydrogen bonds with D598 of the DENN domain. Dotted lines indicate hydrogen bonds.

Supplementary Figure 5: WT and DENND5A KO neural rosettes differ in density and cell division properties, but not in marker expression or size. Expression of a, OCT4 and b, SOX2 during neural rosette development. Blue = DAPI, green = OCT4/SOX2. Scale bars = 20 µm. Results were reproduced in 2 independent experiments c, Average diameter of individual rosettes. n = 159 rosettes were analyzed from 2 independent experiments. Data are mean \pm SEM and analyzed via two-tailed student's t-test (t(157) = -0.182, p = .856). **d**, Average lumen area of rosettes. n = 294 rosettes were analyzed from 2 independent experiments. Data are mean \pm SEM and analyzed via two-tailed Mann-Whitney U test (Z = -0.091, p = .928). e, Average lumen perimeter of rosettes. n = 294 rosettes were analyzed from 2 independent experiments. Data are mean \pm SEM and analyzed via two-tailed Mann-Whitney U test (Z = -0.917, p = .359). f, PALS1 staining (green) shows an apical localization in both WT and KO neural rosettes. Scale bars = 50 μm. Results were reproduced in 2 independent experiments. g, 3D-rendered images of apical progenitors of WT neural rosettes. Blue = DAPI, green = Ki67, red = -tubulin, cyan = F-actin. Arrowheads indicate centrosomes, arrows indicate orientation of cell divisions, dotted lines indicate the lumen. Results were reproduced in 2 independent experiments. h, 3D-rendered images of apical progenitors of KO neural rosettes. Blue = DAPI, green = Ki67, red = -tubulin, cyan = F-actin. Arrowheads indicate centrosomes, arrows indicate orientation of cell divisions, asterisks indicate abnormally condensed chromatin, dotted lines indicate the lumen. Results were reproduced in 2 independent experiments. Source data for (c-e) are provided as a Source Data file.

2. Supplementary Methods

Motor skills scoring system

Item	Scoring
Able to reach/grasp objects	+1 if positive
Able to roll over	+1 if positive
Able to sit with support	+1 if positive OR is able to sit
	without support
Able to sit without support	+1 if positive
Able to stand with support	+1 if positive OR is able to stand
	without support
Able to stand without support	+1 if positive
Able to walk with support	+1 if positive OR is able to walk
	without support
Able to walk without support	+1 if positive
Muscle tone or spasm problems	+1 if negative for all
	(hyperreflexia, spastic tetraplegia,
	clonus, and current
	hyper/hypotonia)
Motor regression after seizure	+1 if negative AND could
	perform one of the above
	behaviors in past
TOTAL	10

Scoring system used for quantifying motor abilities. A low score reflects minimal motor abilities, a high score indicates a high degree of motor capabilities. If a child's ability to do a skill is unknown, it is counted as positive.

Neurological phenotype scoring system

Item	Scoring
Seizures	+1 if positive
Reduced volume (cerebral or	+1 if positive
supratentorial parenchymal	
volume loss)	
Cerebellum abnormalities	+1 if positive
(hypoplastic vermis, reduced	
volume)	
Thalamus abnormalities (thalami	+1 if positive
fusion or reduced volume, massa	
intermedia prominence)	
Basal ganglia abnormalities	+1 if positive
(dysplasia or reduced volume)	
Calcifications	+1 if positive
Ventricle or CSF abnormalities	+1 if positive
White matter abnormalities	+1 if positive
(reduced corpus callosum or other	
white matter tract volume, delayed	
myelination or hyperintensity)	
Hemorrhage or ischemic event	+1 if positive
Cortical visual impairment	+1 if positive
TOTAL	10

Scoring system used for quantifying neurological phenotypes. A low score corresponds to few neurological abnormalities, a high score indicates many neurological abnormalities.

Communication skills scoring system

Item	Scoring
Smiles	+1 if positive
Eye contact	+1 if positive
Points at objects/people	+1 if positive
Babbles	+1 if positive OR if speaks in at
	least single words
Uses PECS board	+1 if positive OR if speaks in at
	least single words
Speaks in single words	+1 if positive OR if speaks in at
	least short phrases
Speaks in short phrases	+1 if positive OR if speaks in
	sentences
Speaks in sentences	+1 if positive
Language regression after seizure	+1 if negative AND if had
	language skills in past
Receptive language delay	+1 if negative AND at least
	babbles
TOTAL	10

Scoring system used for quantifying communication abilities. A low score reflects minimal communication ability, a high score reflects more advanced language and communication abilities.

Comorbidities scoring system

Item	Scoring
Chronic constipation	+1 if positive
Autism spectrum disorder	+1 if positive
(formally diagnosed or clinically	
suspected)	
Psychiatric disorders (ADHD,	+1 if positive
anxiety)	
Behavioral disorders or	+1 if positive
abnormalities (self-injury, poor	
sleep, hyperphagia)	
Lung or breathing abnormalities	+1 if positive
(restrictive lung disease, asthma)	
Cardiac abnormalities	+1 if positive
(ventricular/atrial septal defects,	
arrythmia)	
Blindness	+1 if positive
Obesity	+1 if positive
Bone abnormalities (low density	+1 if positive
or osteoporosis, scoliosis,	
vertebral fusion, posterior fossa	
abnormality)	
GERD	+1 if positive
TOTAL	10

Scoring system used for quantifying neurological phenotypes. A low score corresponds to few comorbidities, a high score indicates many comorbidities.

3. Supplementary Note

Members of the Undiagnosed Diseases Network include:

Maria T. Acosta, Margaret Adam, David R. Adams, Pankaj B. Agrawal, Mercedes E. Alejandro, Justin Alvey, Laura Amendola, Ashley Andrews, Euan A. Ashley, Mahshid S. Azamian, Carlos A. Bacino, Guney Bademci, Eva Baker, Ashok Balasubramanyam, Dustin Baldridge, Jim Bale, Michael Bamshad, Deborah Barbouth, Gabriel F. Batzli, Pinar Bayrak-Toydemir, Anita Beck, Alan H. Beggs, Edward Behrens, Gill Bejerano, Jimmy Bennet, Beverly Berg-Rood, Raphael Bernier, Jonathan A. Bernstein, Gerard T. Berry, Anna Bican, Stephanie Bivona, Elizabeth Blue, John Bohnsack, Carsten Bonnenmann, Devon Bonner, Lorenzo Botto, Brenna Boyd, Lauren C. Briere, Elly Brokamp, Gabrielle Brown, Elizabeth A. Burke, Lindsay C. Burrage, Manish J. Butte, Peter Byers, William E. Byrd, John Carey, Olveen Carrasquillo, Ta Chen Peter Chang, Sirisak Chanprasert, Hsiao-Tuan Chao, Gary D. Clark, Terra R. Coakley, Laurel A. Cobban, Joy D. Cogan, F. Sessions Cole, Heather A. Colley, Cynthia M. Cooper, Heidi Cope, William J. Craigen, Andrew B. Crouse, Michael Cunningham, Precilla D'Souza, Hongzheng Dai, Surendra Dasari, Mariska Davids, Jyoti G. Dayal, Matthew Deardorff, Esteban C. Dell'Angelica, Shweta U. Dhar, Katrina Dipple, Daniel Doherty, Naghmeh Dorrani, Emilie D. Douine, David D. Draper, Laura Duncan, Dawn Earl, David J. Eckstein, Lisa T. Emrick, Christine M. Eng, Cecilia Esteves, Tyra Estwick, Marni Falk, Liliana Fernandez, Carlos Ferreira, Elizabeth L. Fieg, Paul G. Fisher, Brent L. Fogel, Irman Forghani, Laure Fresard, William A. Gahl, Ian Glass, Rena A. Godfrey, Katie Golden-Grant, Alica M. Goldman, David B. Goldstein, Alana Grajewski, Catherine A. Groden, Andrea L. Gropman, Irma Gutierrez, Sihoun Hahn, Rizwan Hamid, Neil A. Hanchard, Kelly Hassey, Nichole Hayes, Frances High, Anne Hing, Fuki M. Hisama, Ingrid A. Holm, Jason Hom, Martha Horike-Pyne, Alden Huang, Yong Huang, Rosario Isasi, Fariha Jamal, Gail P. Jarvik, Jeffrey Jarvik, Suman Jayadev, Jean M. Johnston, Lefkothea Karaviti, Emily G. Kelley, Jennifer Kennedy, Dana Kiley, Isaac S. Kohane, Jennefer N. Kohler, Deborah Krakow, Donna M. Krasnewich, Elijah Kravets, Susan Korrick, Mary Koziura, Joel B. Krier, Seema R. Lalani, Byron Lam, Christina Lam, Brendan C. Lanpher, Ian R. Lanza, C. Christopher Lau, Kimberly LeBlanc, Brendan H. Lee, Hane Lee, Roy Levitt, Richard A. Lewis, Sharyn A. Lincoln, Pengfei Liu, Xue Zhong Liu, Nicola Longo, Sandra K. Loo, Joseph Loscalzo, Richard L. Maas, Ellen F. Macnamara, Calum A. MacRae, Valerie V. Maduro, Marta M. Majcherska, May Christine V. Malicdan, Laura A. Mamounas, Teri A. Manolio, Rong Mao, Kenneth

Maravilla, Thomas C. Markello, Ronit Marom, Gabor Marth, Beth A. Martin, Martin G. Martin, Julian A. Martínez-Agosto, Shruti Marwaha, Jacob McCauley, Allyn McConkie-Rosell, Colleen E. McCormack, Alexa T. McCray, Elisabeth McGee, Heather Mefford, J. Lawrence Merritt, Matthew Might, Ghayda Mirzaa, Eva Morava-Kozicz, Paolo M. Moretti, Marie Morimoto, John J. Mulvihill, David R. Murdock, Mariko Nakano-Okuno, Avi Nath, Stan F. Nelson, John H. Newman, Sarah K. Nicholas, Deborah Nickerson, Donna Novacic, Devin Oglesbee, James P. Orengo, Laura Pace, Stephen Pak, J. Carl Pallais, Christina GS. Palmer, Jeanette C. Papp, Neil H. Parker, John A. Phillips III, Jennifer E. Posey, Lorraine Potocki, Barbara N. Pusey, Aaron Quinlan, Wendy Raskind, Archana N. Raja, Genecee Renteria, Chloe M. Reuter, Lynette Rives, Amy K. Robertson, Lance H. Rodan, Jill A. Rosenfeld, Natalie Rosenwasser, Robb K. Rowley, Maura Ruzhnikov, Ralph Sacco, Jacinda B. Sampson, Susan L. Samson, Mario Saporta, C. Ron Scott, Judy Schaechter, Timothy Schedl, Kelly Schoch, Daryl A. Scott, Prashant Sharma, Vandana Shashi, Jimann Shin, Rebecca Signer, Catherine H. Sillari, Edwin K. Silverman, Janet S. Sinsheimer, Kathy Sisco, Edward C. Smith, Kevin S. Smith, Emily Solem, Lilianna Solnica-Krezel, Rebecca C. Spillmann, Joan M. Stoler, Nicholas Stong, Jennifer A. Sullivan, Kathleen Sullivan, Angela Sun, Shirley Sutton, David A. Sweetser, Virginia Sybert, Holly K. Tabor, Cecelia P. Tamburro, Queenie K.-G. Tan, Mustafa Tekin, Fred Telischi, Willa Thorson, Cynthia J. Tifft, Camilo Toro, Alyssa A. Tran, Brianna M.