Science Advances

Supplementary Materials for

CDCA7 is an evolutionarily conserved hemimethylated DNA sensor in eukaryotes

Isabel E. Wassing et al.

Corresponding author: Atsuya Nishiyama, uanishiyama@g.ecc.u-tokyo.ac.jp; Kyohei Arita, aritak@yokohama-cu.ac.jp; Hironori Funabiki, funabih@rockefeller.edu

Sci. Adv. **10**, eadp5753 (2024) DOI: 10.1126/sciadv.adp5753

This PDF file includes:

Figs. S1 to S12 Tables S1 to S3

Fig. S1. Evolutionary conservation of the zf-4CXXC_R1 domain of CDCA7 homologs ClustalW multi-sequence alignment of CDCA7 zf-4CXXC_R1 domain, also referred to as the hemimethylation-sensing zinc finger (HMZF) domain, characterized by eleven conserved cysteine (yellow) and three ICF3 patient-associated (cyan) residues. *X. laevis, Xenopus laevis* (African clawed frog); *H. sapiens, Homo sapiens* (human); *O. biroi, Ooceraea biroi* (clonal raider ant); *C. gigas, Crassostrea gigas* (Pacific oyster); *N. vectensis, Nematostella vectensis* (starlet sea anemone); *A. thaliana, Arabidopsis thaliana* (thale cress). Amino acid positions of ICF3 associated mutations in *X. laevis* CDCA7e, *H. sapiens* CDCA7 isoform 1 (NP_114148) and the shorter isoform 2 (NP_665809) are indicated. An arrow indicates the position of cysteine 339 of *H. sapiens* CDCA7 isoform 2, the site that was mutated to serine in Fig. 3, Fig. 4, fig. S3D, fig. S4 and fig. S5 and fig. S7. Schematics of the domain composition of *X. laevis* CDCA7e and *H. sapiens* CDCA7 isoform 2 are also shown.

Fig. S2. HELLS and CDCA7 enrichment on hemi-methylated chromatin

(A) Magnetic beads coupled with 3 kb pBluescript DNA with unmethylated CpGs (un-Me), hemimethylated CpGs (hemi-Me), or fully methylated CpGs (full-Me), were incubated with interphase *Xenopus* egg extracts. Beads were collected after 60 min and analyzed by western blotting. (B) *X. laevis* sperm nuclei were isolated at indicated time points after incubation with interphase *Xenopus* egg extracts in the presence or absence of 0.5 μ M mouse DPPA3 (mDPPA3), a protein that inhibits binding of UHRF1 and DNMT1 to chromatin. Chromatin-associated proteins were analyzed by western blotting. (C) *X. laevis* sperm nuclei were incubated with interphase *Xenopus* egg extracts in the presence of 0.5 μ M recombinant geminin. At each indicated time point, chromatin was isolated and analyzed by western blotting. (D) Immunoprecipitation by control IgG or anti-HELLS antibody from *Xenopus* egg extracts containing ³⁵S-labeled UHRF1 and ³⁵S-labeled CDCA7e. Representative of n=2 shown. (E) Immunoprecipitation by control IgG or anti-HELLS antibody from *Xenopus* egg extracts containing ³⁵S-labeled HELLS and ³⁵S-labeled UHRF1 serum from *Xenopus* egg extracts containing ³⁵S-labeled HELLS and ³⁵S-labeled UHRF1. Autoradiography is shown in D and E.

Fig. S3. Characterization of the minimum hemimethylated DNA-binding domain of human CDCA7

(A) AlphaFold2-modeled structure of the *H. sapiens* HMZF (zf-4CXXC_R1) domain and schematic of full-length *H. sapiens* CDCA7. Yellow lines indicate the position of conserved cysteine residues, three ICF3 patient-associated residues indicated in cyan. Orange bar indicates the conserved C-terminal helix. (B-D) Native gel electrophoresis mobility shift assay for detecting the interaction of hCDCA7 ₂₆₄₋₃₄₀ (B) hCDCA7 ₂₃₅₋₃₄₀ (C), and hCDCA7 ₂₆₄₋₃₇₁ C339S (D) with double stranded DNA oligonucleotides with a hemi-methylated (hemi-Me), fully-methylated (full-Me) or unmethylated (un-Me) CpG. (E) Coomassie-stained gel of the indicated purified hCDCA7 fragments.

Fig. S4. Cryo-EM single particle analysis of hCDCA7 bound to linker DNA

(A) Cryo-EM data particle processing and refinement workflow of hCDCA7₂₆₄₋₃₇₁ C339S bound to Nuc+75W. (B) Local resolution of cryo-EM map of hCDCA7₂₆₄₋₃₇₁ C339S bound to Nuc+75W (left). Fourier shell correlation (FSC) curve of hCDCA7₂₆₄₋₃₇₁ C339S bound to linker DNA (right).

Fig. S5. Refinement workflow for cryo-EM map of linker DNA bound to hCDCA7 density (A) Focused refinement of the linker DNA bound by hCDCA7₂₆₄₋₃₇₁ C339S moiety. Left figure shows the cryo-EM map of hCDCA7₂₆₄₋₃₇₁ C339S bound to nucleosome. The mask file is shown as a green mesh (center) covering the hCDCA7₂₆₄₋₃₇₁ C339S moiety bound to the linker DNA. The cryo-EM map corresponding to the hCDCA7₂₆₄₋₃₇₁ C339S moiety bound to the linker DNA was improved by local refinement at 4.83 Å resolution (right). (B) Local resolution of the hCDCA7₂₆₄₋₃₇₁ C339S moiety bound to linker DNA (left). FSC curve of hCDCA7₂₆₄₋₃₇₁ C339S bound to nucleosome (right). (C) Overlay of AF2 model of hCDCA7₂₆₄₋₃₇₁ C339S on the cryo-EM map. Conserved C-terminal helix indicated in orange.

Fig. S7. Cryo-EM single particle analysis of hCDCA7 bound to nucleosome (A) Cryo-EM data particle processing and refinement workflow of hCDCA7₂₆₄₋₃₇₁ C339S bound to the nucleosome (Nuc -58W). (B) Local resolution of cryo-EM map of hCDCA7₂₆₄₋₃₇₁ C339S bound to nucleosome (left). FSC curve of hCDCA7₂₆₄₋₃₇₁ C339S bound to nucleosome (right). (C) Predicted position of ICF disease-associated G294 relative to one of the coordinated zinc ions. D) hCDCA7₂₆₄₋₃₇₁ C339S structure model bound to Nuc-58W superimposed on cryo-EM density obtained for CDCA7 bound to Nuc+75W.

Fig. S8. AF2 structure prediction of the CDCA7-HELLS/DDM1 complex

(A, B) AF2 structure prediction analysis of *X. laevis* HELLS and CDCA7e. (A) The predicted aligned error map of the best model, with the minimum inter-chain predicted aligned error of 1.7 Å. (B) PLDDT scores of the top five predicted models, with the interface highlighted on top of the figure. The top five predictions were converged (region is shaded in gray), and the interface has relatively high PLDDT scores, with the average value of 63. (C-H) AF2 structure prediction of HELLS/DDM1 of indicated species in complex with CDCA7 and CDCA7 paralogs. (I) Left; atomic model of DDM1-nucleosome complex cryo-EM structure (7UX9). Right; surface electrostatic potential of DDM1. The DNA-binding positively charged groove, which is predicted to be occupied by the autoinhibitory CC by AlphaFold2 models, is marked with a pink circle.

Putative DDM1-Binding Helix

Fig. S9. Evolutionary conservation of putative DDM1-CDCA7 interaction interfaces in green plants

(A) Sequence alignment of putative DDM1-binding helix of CDCA7 homologs in green plants. (B) Sequence alignment of the putative autoinhibitory CC1 and the CDCA7-binding CC2 of DDM1 homologs in green plants.

Fig. S10. N-terminal CDCA7 segment lacking the zf-4CXXC_R1 domain is sufficient for HELLS binding

Wildtype (WT) or truncated versions of recombinant FLAGx3-tagged *X. laevis* CDCA7e proteins were incubated with *Xenopus* egg extracts, followed by immunoprecipitation with anti-FLAG coupled beads. Isolated proteins were analyzed by western blotting using anti-HELLS and anti-FLAG antibodies.

Fig. S11. CDCA7 and HELLS are not required for global maintenance DNA methylation in *Xenopus* egg extracts

X. laevis sperm nuclei (A) or erythrocyte nuclei (B) were incubated with egg extracts for 60 min with *S*-[methyl-³H]-adenosyl-L-methionine with or without geminin, which inhibits DNA replication initiation. Radioactivity associated with chromosomal DNA is measured. Results include three biological replicates (A) or two biological replicates (B), each of which includes two technical replicates (shown in the same color). Geminin (200 nM) effectively inhibited DNA incorporation of ³H, demonstrating that DNA methylation of sperm chromatin depends on DNA replication.

Fig. S12. CDCA7 depletion does not impact DNA replication in Xenopus egg extract *X. laevis* sperm nuclei were incubated with mock- or CDCA7-depleted egg extracts for the indicated time points in the presence of $[\alpha$ -³²P] dATP. Radioactivity associated with chromosomal DNA replication is measured. Results include three biological replicates.

Name	Sequence (sense strand)	
54 bp oligo	GCGGGTGATGGACCCTATACGCGGCCGCCCTGGAGAA	
non-Me Fw	TCCCGGTGCCGCGGCCG	
54 bp oligo	/5Biosg/CGGCCGCGGCACCGGGATTCTCCAGGGCGGC	
non-Me Rv	CGCGTATAGGGTCCATCACCCGC	
54 bp oligo	GCGGGTGATGGACCCTATACGCGGCCGCCCTGGAGAA	
Me Fw	TCCMGGTGCMGMGGCMG	
54 bp oligo	/5Biosg/MGGCMGMGGCACMGGGATTCTCCAGGGCGG	
Me Rv	CCGCGTATAGGGTCCATCACCCGC	
	/5Biosg/TCGGGTTATGTGATGGACCCTATACGCGGGCG	
200 bp	CC <u>CTGGAGAATCCTGCAGCCGAGGCCGCTCAATTGGT</u>	
	<u>CGTAGCAAGCTCTAGCACCGCTTAAACGCACGTACGC</u>	
unmethylated	<u>GCTGTCCCCCGCGTTTTAACCGCCAAGGGGATTACTC</u>	
DNA Widom601	<u>CCTAGTCTCCAGGCACGTGTCAGATATATACATCCTGT</u>	
	GCATGTATTGAACAGCGAC	
200 bp hemimethylated DNA Widom601	/5Biosg/TMGGGTTATGTGATGGACCCTATAMGMGGGMG	
	CC <u>CTGGAGAATCCTGCAGCMGAGGCMGCTCAATTGGT</u>	
	MGTAGCAAGCTCTAGCACMGCTTAAAMGCAMGTAMG	
	MGCTGTCCCCMGMGTTTTAACMGCCAAGGGGATTACT	
	CCCTAGTCTCCAGGCAMGTGTCAGATATATACATCCTG	
	<u>T</u> GCATGTATTGAACAG M GAC	

 Table S1. DNA ultramer sequence used for DNA pull-downs

*M:5-methylcytosine **/5Biosg/: 5' biotin modification

Table S2. DNA sequence used for nucleosome reconstruct
--

Name	Sequence (sense strand) and primers		
	ATCTGGGCC <u>M</u> GCCAT <u>ATCAGAATCCCGGTGCCGAGGC</u>		
5mC at -78*	<u>CGCTCAATTGGTCGTAGACAGCTCTAGCACCGCTTAAA</u>		
position on	<u>CGCACGTACGCGCTGTCCCCCGCGTTTTAACCGCCAA</u>		
Watson strand	<u>GGGGATTACTCCCTAGTCTCCAGGCACGTGTCAGATAT</u>		
in 5'-linker DNA	ATACATCGAT (160 bp)		
(*Dvad is +0			
position)	Primer		
pooldony	Forward: 5'-		
(Nuc-78W)	ATCTGGGCC <u>M</u> GCCATATCAGAATCCCGGTGCCGA		
(GGCCG		
	Reverse: 5'-AICGAIGIAIAIAICIGACACGIGC		
	AICAGAAICCCGGIGCCGAGGCCGCICAAIIGGICGI		
Emp at 175			
SmC at +75	GICICLAGGCACGIGICAGAIAIAIACAICGAICCMGC		
Position on	AGGCC (1570p)		
in 2' linkor DNA	Brimor		
(Nuc+75\//)			
(1400 - 7 544)	Oligo nucleotide		
	Reverse: 5'-CTGCCCTGCGGG		
	ATCAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGT		
	AGACAGCTCTAGCACCGCTTAAACGCACGTACGCGCT		
	GTCCCCCGCGTTTTAACCGCCAAGGGGATTACTCCCTA		
5mC at +64	GTCTCCAGGCACGTGTCAGATATA M GCATCGATGCAG		
position on	G (150 bp)		
Watson strand			
in Widom601	Primer		
sequence	Forward: 5'- ATCAGAATCCCGGTGCCGAGGCCGC		
	Reverse: 5'-TCTCAGATATCCCGTCTCGCGTATATCTGA		
(Nuc+64W)	CACGTGCCTG		
	Oligo nucleotide		
	Forward: 5'- TA <u>M</u> GCATCGATGCAGG		
	Reverse: 5'-CCTGCATCGATG		

Name	Sequence (sense strand) and primers
	ATCAGAATCCCGGT <u>M</u> GCGAGGCCGCTCAATTGGTCGT
5mC at -58	AGACAGCTCTAGCACCGCTTAAACGCACGTACGCGCT
position on	GTCCCCCGCGTTTTAACCGCCAAGGGGATTACTCCCTA
Watson strand	GTCTCCAGGCACGTGTCAGATATATACATCGAT (145 bp)
of Widom601	
	Primer
(Nuc-58W)	Forward: 5' ATCAGAATCCCGGT <u>M</u> GCGAGGCCGC
	Reverse: 5'- ATCGATGTATATATCTGACACGTGC
	ATCAGAATCC M GGTGCCGAGGCCGCTCAATTGGTCGT
5mC at -62	AGACAGCTCTAGCACCGCTTAAACGCACGTACGCGCT
position on	GTCCCCCGCGTTTTAACCGCCAAGGGGATTACTCCCTA
Watson strand	GTCTCCAGGCACGTGTCAGATATATACATCGAT (145 bp)
of Widom601	
	Primer
(Nuc-62W)	Forward: 5'- ATCAGAATCC M GGTGCCGAGGCCGC
	Reverse: 5'- ATCGATGTATATATCTGACACGTGC
	ATCAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGT
5mC at -58	AGACAGCTCTAGCACCGCTTAAACGCACGTACGCGCT
position on	GTCCCCCGCGTTTTAACCGCCAAGGGGATTACTCCCTA
Crick strand of	GTCTCCAGGCACGTGTCC <u>G*</u> ATATATACATCGAT (145
Widom601	bp) *5mC on Crick strand
(Nuc-58C)	Primer
(Forward: 5'- ATCAGAATCCCGGTGCCGAGGCCGC
	Reverse: 5'- ATCGATGTATATATMGGACACGTGC
	ATCAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGT
5mC at -64	AGACAGCTCTAGCACCGCTTAAACGCACGTACGCGCT
position on	GTCCCCCGCGTTTTAACCGCCAAGGGGATTACTCCCTA
Crick strand of	GTCTCCAGGCACGTGTCAGATATC <u>G*</u> ACATCGAT (145
Widom601	bp) *5mC on Crick strand
(Nuc-64C)	
(Forward: 5'- AI CAGAAI CCCGG I GCCGAGGCCGC
	Reverse: 5'- AICGAIGI <u>M</u> GAIAICIGACACGIGC

*M:5-methylcytosine, underline indicates Widom601 sequence.

Data collection and processing					
	hCDCA7:Nuc-58W	hCDCA7:Nuc+75W			
	Overall	Overall	hCDCA7:linker DNA (focused map)		
EMDB number	EMD-39594	EMD-38198	EMD-38199		
Microscope	Krios G4 (RIKEN BDR)				
Voltage (keV)		300			
Camera		K3/BioQuantum			
Magnification	105,000				
Pixel size at detector (Å)	0.83				
Total electron exposure (e ⁻ /Å ²)	51.4	60.7			
Exposure rate (e ⁻ /pixel/sec)	13.7	19.0			
Exposure time (sec)	2.6	2.2			
Defocus range (µm)	0.8-1.6 (interval: 0.2)				
Number of frames	48				
Energy filter slit width	15				
Micrographs collected (no.)	19,346	4,000			
Initial particle images (no.)	8,009,770	1,652,465	672,791		
Final particle images (no.)	257,342	154,998	154,998		
Map resolution (Å) FSC threshold	3.00	3.18	4.83		
Automation software	EPU				
Model building and refinement					
	hCDCA7:Nuc-58s				
PDB number	8YV8				
Initial model					
Nucleosome	PDB: 3LZ0				
CDCA7	AF2: AF-Q9BWT1-F1 (residues 261-374)				

Table S3. Cryo-EM data collection statics for hCDCA7:nucleosome

Model composition		
Non-hydrogen atoms	12,248	
Residues (Protein/Nucleotide/Zn)	861 / 264 / 3	
RMSDs from ideal		
Bond lengths (Å)	0.004	
Bond angles (°)	0.601	
Validation		
All-atom clashscore	9.98	
Rotamer outliers (%)	4.16	
Ramachandran plot		
Favored (%)	97.86	
Allowed (%)	2.02	
Outlier (%)	0.12	