Supplementary Information

Comparative Analysis of Polysaccharide and Cell Wall Structure in *Aspergillus nidulans* and *Aspergillus fumigatus* by Solid-State NMR

Isha Gautam¹, Jayasubba Reddy Yarava¹, Yifan Xu¹, Reina Li¹, Faith J. Scott², Frederic Mentink-Vigier², Michelle Momany³, Jean-Paul Latgé^{4,5}, Tuo Wang^{1,*}

¹ Department of Chemistry, Michigan State University, East Lansing, MI, USA
² National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
³ Department of Plant Biology, University of Georgia, Athens, GA, USA
⁴ Institute of Molecular Biology and Biotechnology, University of Crete, Heraklion, Greece
⁵ Fungal Respiratory Infections Research Unit and SFR ICAT, University of Angers, France

*Correspondence: wangtuo1@msu.edu

Supplementary Figure 1. Overlay for showing the zoom spectra of carbohydrate region. The spectra are color coded to show the black spectra for *A. nidulans* and orange for *A. fumigatus*. (a) Carbohydrates showing the highly mobile glucans obtained by INEPT experiment. (b) The semi mobile glucans probed by 2 s DP spectra and (c) The quantitative glucans represented by the 35 s DP spectra (d) The rigid molecules probed by CP experimentation.

Supplementary Figure 2. Change is the mobile carbohydrates in different *Aspergillus* fungi. (a) The 2D ¹³C-DP INADEQUATE spectra showing all the mobile glucans. (b) The mobile spectra representing Af293 strains of *A. fumigatus* showing no ¹³C bond for GalNAc, (C1- C2) and GalN, (C1-C2). (c) The mobile spectra representing for CEA17 Δ akuB^{KU80} with the signals for GalNAc(C1-C2) and GalN(C1-C2). The spectra of A28 and Af293 were measured at 15 kHz and CEA17 Δ akuB^{KU80} was measured at 12 kHz.

Supplementary Figure 3. β -1,3/1,4-glucose present in Af293. (a) 2D ¹³C-¹³C CORD spectra showing the rigid components in *A. fumigatus* (Af293) (turquoise) and (b) 2D ¹³C-¹³C CORD spectra showing the rigid components for *A. fumigatus* (CEA17 Δ akuB^{KU80}) in orange spectra. (c) 2D ¹³C-¹³C CORD spectra showing the rigid components for *A. nidulans* (A28) in gray spectra. All measurements were obtained using 800 MHz NMR spectrometer.

Supplementary Figure 4. Water-edited analysis for *Aspergillus* **cell wall. (a)** Proton spectra illustrating the retention of 84% of water magnetization in *A. nidulans* (A28) and 80% in *A. fumigatus* (Af293) after the ¹H-T₂ filter. (b) Overlay of the ¹³C CP spectra where T₂ is 1.6 ms × 2 and T₂ is 1.2 ms × 2 with no spin diffusion presented in *A. nidulans* (A28) and *A. fumigatus* (Af293) respectively. The ¹H-T₂ filtered resulted in a loss of 90% and 89% of the water magnetization in *A. nidulans* (A28) and *A. fumigatus* (Af293), respectively. (c) The water to build up curve illustrated for each glucan type which are color coded blue, green and orange for β-1,3-glucan, α-1,3-glucan and chitin respectively. (d) Water-edited intensities of carbohydrate carbon sites in *A. nidulans*, A28 (left) and *A. fumigatus*, Af293 (right). All the measurements were taken on a 400 MHz spectrometer at 10 kHz MAS and 280 K.

Supplementary Figure 5. 2D ¹³C-¹³C spectra for measuring ¹³C-T₁ relaxation. a, The 2D ¹³C-¹³C T₁ relaxation spectra obtained for examining cellular mobility in *A. nidulans* (top) and *A. fumigatus* (bottom). The spectra are organized in a sequence showing the varying z-filter duration durations; 0 s, 0.1 s, 1 s, 3 s, and 9 s. b, ¹³C-T₁ relaxation curves of *Aspergillus* cell wall polysaccharides. The 2D ¹³C-T₁ relaxation curves are displayed for *A. nidulans* (top) and *A. fumigatus* (bottom). The data are acquired on a 400 MHz (9.4 Tesla) spectrometer with a 10 kHz MAS and at 298 K. The best fit is determined using a single exponential equation. β -1,3-glucan are represented by the blue curves while the α -1,3-glucan and chitin are represented as green and orange curves respectively. Symbols are used for assigning different carbons in the polysaccharides.

Supplementary Figure 6. ¹H-T_{1p} relaxation curves of *Aspergillus* cell wall polysaccharides. The ¹H-T_{1p} relaxation curves are displayed for *A. nidulans* (top) and *A. fumigatus* (bottom). The data are acquired on a 400 MHz (9.4 Tesla) spectrometer with a 10 kHz MAS. The best fit is determined using a single exponential equation. β -1,3-glucan are represented by the blue curves while the α -1,3-glucan and chitin are represented as green and orange curves respectively. Symbols are used for assigning different carbons in the polysaccharides.

Minima	l Media
Salt components	g/L
NaNO ₃	120.0
KCl	10.4
MgSO ₄ .7H ₂ O	10.4
KH ₂ PO ₄	120
K_2HPO_4	20.9
Glucose	10.0
Trace element solution	1ml
Trace Elements	g/100ml
CoCl ₂ .6H ₂ O g	0.16
$CuSO_4 \cdot 5H_2O$	0.16
MnCl2 ·4H2O	0.5
(NH4)6M07O24.4H2O	0.11
Na ₂ EDTA · 4H ₂ O	0.11
ZnSO4 ·7H2O	2.2
H_3BO_3	1.1
FeSO ₄ .7H ₂ O	0.5

Supplementary Table 1: Salt Solution concentration and minimal media components for *A. nidulans* (A28) and *A. fumigatus* (Af293) culture.

Supplementary Table 2. The average cell wall thickness of the three similar fungi. Results are described as the mean and the standard deviation of 10 individual cells with n=100 measurements in each fungal cell sample. Statistical analysis was performed using one-tailed, paired t-test at 95% confidence level (p < 0.05).

Sample	A. nidulans	A. fumigatus	A. fumigatus
	A28	Af293	CEA17∆akuB ^{KU80}
Average cell wall thickness (nm)	191 ±16	180 ± 23	206 ± 54

Supplementary Table 3. Solid- state NMR experimental parameters for *A. nidulans and A. fumigatus* The experimental parameters include the ¹H Larmor frequency, total experiment time (t), recycle delay (d1), number of scans (NS), The number of points for the direct (td2) and indirect (td1) dimensions, the acquisition time of the direct dimension (aq2) and the evolution time of indirect dimension (aq1), mixing time (t_m), and T filter times (t_z). * Indicates the water-polysaccharide spin diffusion and the DARR mixing time.

	Samples	Experiments	(Temp K)	B ₀ (T)	v _{MAS} (kHz)	d1 (s)	NS	td2	td1	aq2 (ms)	aq1 (ms)	t _m (ms)	tz
	A28 Af293	СР	298	18.8	15	2	1024	3600		18			
	A28	DP	298	18.8	15	2 35	512	3600		18			
	Af293		293	293		2 30	128 32	4096		29			
1D	A28 Af293	Water-edited	280	9.4	10	2	512	2000		16		0, 1, 4,9,16,25,36,49,6 4, 81,100	
	A28 Af293	${}^{1}\mathrm{H}T_{1\rho}$ relaxation	298	9.4	10	2	512	1400		16			SL (0.1-19 ms)
	A28	INEDT	298	10.0	15	3.5	1024	3200		16			
	Af293	INEPT	293	10.0	13.5	3.0	64	4400		30.8			
	1.20	1	1	1		1				1			-
	A28 Af293	2D CORD	298	18.8	15	2	32	3200	400	16	5.2	50	
	A28 Af293	CP J INADEQUATE	298	18.8	15	2	32	2800	472	14	5.2		
20	A28 A293	DP J INADEQUATE	298	18.8	15	2	32	2800	472	14	5.2		
2D	A28 Af293	Pseudo 3D ¹³ C-T ₁	298	9.4	10	2	32	2000	100	16	5.5	50	(10 ⁻⁷ , 0.1, 1, 3, 9) s
	A28 Af293	Water-edited control	280	9.4	10	2	64	2000	1	16	5.5	0/50*	T ₂ 10 ⁻⁴ ms
	A28 Af293	Water-edited	280	9.4	10	2	64	2000	1	16	5.5	4/50*	$T_2 1.6 ms$ $T_2 1.2 ms$
			1	1	[1	1		
		DNP CP	-	14.1	10	2	8	2048	1	10.24			
		N(CA)CX		14.1	10	3.64	32	1700	50	12.69	3.13	100	
DNP	A28	n(en)en	92	14.1	10	3.64	32	1700	50	12.69	3.13	3000	
		PAR		14.1	10	3.64	16	1800	400	13.44	7	2	
				14.1	10	3.64	16	1800	400	13.44	7	20	

Supplementary Table 4. Experimental parameters used for proton detection experiments. All experiments were performed on 800 MHz (18.8 T) spectrometer and with the MAS frequency of 40 kHz.

Expt	Samples	Temperature	re CP duration (µs)		D1 NS		Td2	Td1	Aq2 (ms)	aq2 (ms)	Decoupling	Water suppression	J-evolution (ms)
20		(K)	t _{cp1}	t _{cp2}					(IIIS)	(IIIS)	power	(ms)	(1115)
	A28	304									s1nTPPM ¹	MISSISSIPI ²	
hCH	Af293	291	200	50	3	8	1204	512	19.98	6.4	(rf 10 kHz)	(total duration) 200	
	CEA17 $\Delta akuB^{KU80}$	293											
	A28	304											
refINEPT- HSQC	Af293	291	-	-	3	16	2408	768	39.9	9.6	WALTZ-16 ³	3 200	2
	CEA17 $\Delta akuB^{KU80}$	293	-										

Biomolecule		C1	C2	C3	C4	C5	C6	N	Experimental Methods	Cell Wall Portion	References
β-1,3-glucan		103.6	74.3	86.6	68.1	77.4	61.1				Shim et al. 2007 ⁴
α -1,3-glucan (A ^a) α -1,3-glucan (A ^b)		101.1 100.0	71.8 71.6	84.5 -	69.8 -	71.7 71.6	60.2 -		¹³ C- ¹³ C CORD		Bhanja et al 2014 ⁵
	а	104.0	55.2	73.5	83.1	75.9	60.7	126.2	COPD 13C 13C	Rigid	
Chitin	b	103.8	55.6	73.7	83.4	76.1	61.4	123.3	¹⁵ N- ¹³ C N(CA)CX		Fontaine et al. 2011 ⁶
Chitin	с	103.5	54.5	73.6	83.0	75.4	60.9	125.5			
	d	103.6	55.9	73.1	82.1	<u>76.1</u>	61.6				
Mn ^{1,2}		101.1	78.2	71	67.4	73.5	61.4				Latge et al. 1994 ⁷
Mn ^{1,6}		102.5	70.8	73.3	67.4	73.3	66.2				
Galf		107.4	81.7	77.1	82.7	71.8	63.6		13C 13C		Chakraborty et al. 2021 ⁸
Gal ^a p		92.6	72.1	70.2	73.3	72.1	61.2		J- DP INADEQUATE	Mobile	
Gal ^b p		96.7	75.0	76.6	70.4	72.7	61.6				Poulhazan et al. 2021 ⁹
GalN		91.5	54.6	71.6	81.8	-	-				Fontaine et al.
GalNAc		95.6	57.3	75.2	76.5	-	-				2011 ^{6, 10}

Supplementary Table 5. ¹³C and ¹⁵N chemical shift (ppm) of biomolecules in the cell wall in *A. nidulans* (A28). Underline represents the ¹³C connectivity with ambiguity and the (-) denotes unidentified.

Biomolecule		C1	C2	C3	C4	C5	C6	Experimental Methods	Cell Wall Portion	References
β-1,3-glucan		103.6	74.3	86.6	68.1	77.3	61.1			Shim et al. 2007 ⁴
β-1,4-glucan		103.2	69.4	72.2	85.3	74.3	63.3	¹³ C- ¹³ C CORD	D' '1	Kang et al. 2018 ¹¹
α -1,3-glucan (A ^a) α -1,3-glucan (A ^b)		101.1 100.0	71.8 71.5	84.5 -	69.8 -	71.7 71.5	60.2		(Fontaine et	Bhanja et al 2014 ⁵
Chitin	а	104.0	55.2	73.5	83.1	75.9	60.7	CORD- ¹³ C- ¹³ C	CORD- ¹³ C- ¹³ C	Fontaine et al.
Cniun	b	103.8	55.6	73.7	83.4	76.1	61.4			20114
Mn ^{1,2}		101.1	78.2	71	67.4	73.5	61.4			Latge et al. 1994 ⁷
Mn ^{1,6}		102.5	70.8	73.3	67.4	73.3	66.2			
Galf		107.4	81.7	77.1	82.7	71.8	63.6	¹³ C- ¹³ C		Latge et al. 1994 ⁷ Chakraborty et al.
Gal ^a p		92.6	72.1	70.2	73.3	72.1	61.2	<i>J-</i> DP INADEOUATE	Mobile	2021 ⁸
Gal ^b p		96.7	75.0	76.6	70.4	72.7	61.6			Poulhazan et al. 2021 ⁹
GalN		91.5	54.4	71.6	81.8	-	-			Fontaine et al.
GalNAc		95.4	57.2	75.2	76.5	-	-			20116

Supplementary Table 6. ¹³C chemical shifts (ppm) of biomolecules in the cell wall of *A. fumigatus* (Af293). Underline represents the ¹³C connectivity with ambiguity and the (-) denotes unidentified.

Supplementary Table 7. Relative molar composition of *Aspergillus* cell wall. Molar composition of rigid and mobile components were calculated using the integrals of well-resolved cross peaks of β -1,3-glucan, α -1,3-glucan, and chitin in 2D ¹³C-¹³C CORD spectra and 2D ¹³C-¹³C *J*-INADEQUATE. The results were already normalized by number of scans. (-) is the notation for not detected.

			A28			A293			CEA17 $\Delta akuB^{KU80}$	1	
	Polysa	iccharide	Cross-peaks	%	Error %	Cross-peaks	%	Erro r %	Cross-peaks	%	Error %
Digid	β -1,3-glucan		B1-3, B1-5, B1-2, B1-4, B2-4, B2-6, B3-5, B3-2, B3-4, B3-6, B5-2, B5-4, B5-6	25.2	0.1	B1-3, B1-4, B1-2, B1-6, B1-5, B3-5, B3-2, B3-6, B5-6, B5-4, B2-4, B4-6	31.6	7.2	B1-3, B1-4, B1-5, B3-4, B3-5, B3-2, B5-4, B5-2, B2-4	50%	6%
Rigid Composition	β -1,4	-glucose	G1-4, G1-2, G1-6	/	/	G1-6, B3-6, G4-5	5.2	1.6	/		
Composition α-1,3-gluc		-glucan	A1-2/5, A1-3, A1-4, A3-4, A3-2/5, A2/5-6, A2/5-4	44	0.9	A1-4. A1-2/5, A1-4, A1- 6, A3-2/5, A2/5-6	40.4	10.5	A1-4. A1-2/5, A3-2/5, A3-4	42%	7%
	Chitin		Ch1-4, Ch1-5, Ch1-2, Ch3-2, Ch4-2, Ch4-3, Ch4-5, Ch5-2, Ch5-3, Ch3-2	31.2	0.1	Ch1-4. Ch1-2, Ch4-6, Ch4-5, Ch4-3, Ch2-4, Ch2-6	22.4	4.8	Ch1-4, Ch1-2, Ch1-5, Ch1-3, Ch4-2, Ch4-2, Ch4-3, Ch4-5, Ch5-3, C3-2, Ch5-2	8%	3%
		Galf	Galf 1-2, Galf 2-3, Galf 5-6	13	3	Galf 1-2, Galf 2-3, Galf 4- 5, Galf 3-4, Galf 5-6	24.8	6.7	Galf 1-2, Galf 3-4	20%	2%
	GM	Mn ^{1,2}	Mn ^{1,2} 1-2, Mn ^{1,2} 2-3, Mn ^{1,2} 3-4, Mn ^{1,2} 5-6,	7	2	Mn ^{1,2} 1-2, Mn ^{1,2} 3-4, Mn ^{1,2} 5-6	10.9	2.5	Mn ^{1,2} 1-2, Mn ^{1,2} 4-5	24%	1%
composition		Mn ^{1,6}	Mn ^{1.6} 3-4, Mn ^{1.6} 5-6,	8	2	Mn ^{1,6} 1-2, Mn ^{1,6} 3-4, Mn ^{1,6} 2-3	20.4	6.8	Mn ^{1,6} 1-2, Mn ^{1,6} 3-4,	5.1%	0.3%
composition		Galp	Gal1-2, Gal3-4, Gal5-6, Gal2-3	29.7	9	Gal1-2, Gal3-4, Gal5-6	20.2	6.0	Gal1-2, Gal3-4	27%	2%
	GAG	GalNAc	GalNAc 1-2, GalNAc 3-4, GalNAc 2-3	20	10	GalNAc 1-2, GalNAc 3-4	11.3	5.2	GalNAc 1-2, GalNAc 3-4	13%	3%
		GalN	GalN1-2, GalN3-2	16.3	5	GalN	1.9	4.1	GalN 1-2, GalN3-4	6%	1%
			B1-2	4	1	B-2, B3-6	9.0	0.4	A1-2, A4-5	0.83%	0.1%
other	other		A2/5-6	2	1	A2/5-4	1.5	0.3	B1-2, B4-5	4%	1%

Supplementary Table 8. Intermolecular interaction of polysaccharides in *A. nidulans* cell wall. The chemical shifts for the two dimensions of the spectra (ω_1 and ω_2), The cross-peak assignments and the spectral type are documented in the table below.

Cross Bash	Chamical Shift (a)	Chemical Shift	2 ms	20 mg DAD	NCACX
Cross Peak	Chemical Shift (ω_1)	(ω ₂)	PAR	20 ms PAR	(3 s PDSD)
ChMe-Me'	23.3	22.2		х	
ChMe'-Me	21.5	22.2		х	
ChMe-Ch4	82.3	22.4		х	
Ch1-ChO	<u>103.3</u>	174.0		х	
A2-Ch4	83.0	71.1		Х	
A5-Ch4	83.0	71.1		х	
A4-Ch2	60.0	83.4		х	
A1-Ch1	103.6	101.1		х	
A1-Ch2	55.0	101.1		х	
A1-Ch4	<u>82.3</u>	101.4	х	х	
A1-Ch6	60.1	100.1		х	
A2-Ch4	71.2	83.0		х	
A5-Ch4	71.2	83.0		Х	
A6-ChMe	60.2	22.3		х	
A2-ChCO	72.1	176.8		х	
A5-ChCO	72.1	176.8		х	
A3-ChMe	84.0	22.6		х	
A1-ChMe	101.4	22.3		х	
Ch2-A1	101.3	55.8		Х	
Ch2-A6	60.0	54.5		х	
Ch3-A1	73.3	100.1		х	
Ch4-A2	83.3	70.2	х	х	
ChMe-A1	101.4	23.4		х	
ChMe-A3	84.0	22.4		х	
CHMe-A2	82.3	22.6		х	
CHMe-A5	71.6	22.6		х	
ChN-A3	84.8	126.5			Х
A6-B6	622	60.0	х	Х	
A1-B2	74.4	101.3		х	
A1-B4	<u>68.3</u>	101.1	х	х	
A1-B6	<u>68.8</u>	100		х	
B5-A6	60.07	77.2		х	
B6-A1	100.1	61.2		х	
B6-A6	62.2	60.0		х	
B1-ChMe	103.6	22.4			
B6-ChMe	61.7	22.3		х	
B5-Ch6	60.7	77.2		х	
Ch2-B6a	61.8	55.0		х	
Ch4-B4	68.6	83.2		х	
ChN-B3	86.1	126.1			Х
ChN-B5	77.5	126.4			Х
B5-ChMe	77.2	22.5		х	
ChMe-B5	22.4	77.7		х	
ChMe-B6	61.6	21.5		х	
B2-ChCO	74.8	177.1		х	
B1-ChCO	103.3	177.2		х	

Supplementary Table 9: Water-edited intensities of the polysaccharides. The intensity ratios are obtained by comparing the peak intensities between water-edited and the control 2D spectra of the *Aspergillus* cell walls. The error bars represent propagated standard deviations from NMR signal-to-noise ratios, with an error margin typically below 10%,

β-1,3-gl	ucan	A28	Af293	α-1,3-	glucan	A28	Af293	Chi	itin	A28	Af293
	103.6	0.25±0.03	0.31±0.02		101.1	0.22 ± 0.04	0.28+0.02				
	86.7	0.4 ± 0.1	0.40 ± 0.09		101.1 84.5	0.22 ± 0.04	0.28 ± 0.03 0.20±0.07		103.4	0.26±0.03	0.32±0.03
102 line	77.4	0.3±0.1	0.5±0.1	101 line	04.5 71.6	0.3±0.1	0.20 ± 0.07	102 line	83.1	-	0.19 ± 0.07
105 mie	74.3	0.22 ± 0.05	0.32±0.03	101 mile	60.6	0.19 ± 0.00	0.20 ± 0.04	105 Ille	61.1	0.20 ± 0.09	0.32 ± 0.08
	68.1	0.3±0.1	0.37±0.06		60.7	0.3 ± 0.1	0.22 ± 0.00		55.3		0.05 ± 0.02
	61.1	0.19 ± 0.09	0.32±0.08		00.7	0.30±0.07	0.28±0.09				
	103.5	0.3±0.1	0.23±0.06		101.1	0.14+0.08	0.18+0.05		103.6	0.22+0.02	0.28+0.08
	86.6	0.4 ± 0.1	0.21±0.08		84 5	0.14 ± 0.08 0.22±0.05	0.18 ± 0.05		103.0 82.7	0.25±0.05	0.28±0.08
86 line	77.3	0.40 ± 0.07	0.3±0.1	84 line	04.5 71.6	0.22 ± 0.03	0.23 ± 0.03	82 line	03.7 73.4	-	0.3±0.1
ou inte	74.3	0.24 ± 0.09	0.25±0.07	04 IIIe	71.0	0.20 ± 0.00	0.24 ± 0.04 0.18±0.06	65 IIIe	60.3	-	-
	68.2	0.4 ± 0.1	0.24±0.07		70.2 60.6	0.24 ± 0.08	0.18±0.00		54 7	-	0.20 ± 0.08 0.25±0.02
	61.1	0.3±0.1	0.31±0.09		00.0	0.3±0.1	0.14 ± 0.00		34.7	-	0.23±0.02
	103.5	$0.4{\pm}0.1$	0.22±0.07						103.6	0.23+0.08	0.23+0.09
	86.71	$0.4{\pm}0.1$	0.16±0.09		100.9	0.31±0.07	0.27 ± 0.05		83.2	0.20±0.08	0.19+0.06
77 line	77.1	0.29 ± 0.04	0.34±0.04	70 line	84.5	0.20±0.09	0.30 ± 0.08	75 line	05.2 75 1	0.20±0.08	0.19 ± 0.00 0.18±0.03
// inte	74.4	0.24±0.09	0.22±0.06	70 mie	70.6	0.30±0.03	0.27 ± 0.02	75 mie	60.8	0.21 ± 0.03	0.13 ± 0.03
	68.1	0.28±0.09	0.25±0.05		60.8	0.30±0.06	0.27 ± 0.05		54.8	0.15 ± 0.09 0.17 ±0.08	0.5 ± 0.1
	61.2	0.33±0.06	0.24±0.05						34.0	0.17±0.08	0.13±0.05
	103.5	0.24 ± 0.04	0.25±0.03								
	86.6	0.3±0.1	0.35±0.09		101.0	0.21±0.06	0.18±0.03		103.6	0.27 ± 0.08	0.25±0.03
74 line	77.2	0.32 ± 0.08	0.07 ± 0.02	71 line	84.6	0.24±0.09	0.23±0.05	73 line	83.2	-	0.20±0.07
74 mie	74.2	0.25 ± 0.02	0.27±0.02	/1 mic	71.4	0.27±0.03	0.22 ± 0.02	75 IIIC	60.9	0.20 ± 0.08	0.18±0.06
	68.2	0.32 ± 0.08	0.24±0.05		60.7	0.26±0.07	0.19±0.03		55.2	0.43 ± 0.07	0.3±0.1
	61.0	0.18 ± 0.05	0.19±0.05								
	103.6	0.3±0.1	0.24±0.05								
	86.6	0.30 ± 0.07	0.26±0.08		101.1	0.19±0.06	0.23±0.07		103.6	0.25 ± 0.09	0.16+0.04
68 lina	77.4	0.3±0.1	0.32±0.07	61 line	84	-	0.24 ± 0.08	61 line	61.0	0.25 ± 0.07	0.10 ± 0.04 0.23 ±0.01
00 mile	74.3	$0.4{\pm}0.1$	0.22±0.05	01 mie	71.7	0.29 ± 0.06	0.21±0.03	or me	55.6	0.18±0.08	0.23±0.01
	68.5	0.25 ± 0.06	0.20±0.03		61.0	0.26±0.02	0.23±0.01		55.0	0.10±0.00	_
	61.1	0.29±0.09	0.21±0.05								
	103.6	0.25±0.09	0.24±0.05						103.8	0 13+0 01	0.09+0.03
	86.6	0.30±0.09	0.4±0.1						83.2	0.15±0.01	0.09 ± 0.03 0.12±0.03
61 line	77.5	0.32 ± 0.09	0.34±0.05					55 line	03.2 75.6	-	0.12 ± 0.03
or me	74.7	0.22 ± 0.07	0.27±0.05					55 mie	73.0	-	0.4 ± 0.1
	68.3	0.21±0.07	0.21±0.03						13.2	0.14 ± 0.00 0.11±0.05	0.3±0.1
	61.0	0.26 ± 0.02	0.23±0.01						00.4	0.11±0.05	0.20±0.00
Avera	ige	0.29	0.27			0.24	0.23			0.20	0.22
n		36	36			21	22			17	26

Supplementary Table 10. ¹H-T₁, relaxation times of polysaccharides. A single exponential equation was used to fit the T₁ data $I(t) = e^{-t/T_I}$. A single exponential equation was used to fit the T₁ data: $I(t) = e^{-t/T_{I\rho}}$. Error bars are standard deviations of the fit parameters.

Sample	Cross	$^{1}\mathrm{H}_{-}\mathrm{T}_{1}$ (me)	Average
Туре	peaks	Π- Π (ΠΙ 5)	Average
	B1	9.4 ± 0.8	
	B3	7.0 ± 0.8	
	B5	5.2 ± 0.6	75 ± 07
	B2	7.0 ± 0.7	1.5 ± 0.1
	B4	8.0 ± 0.7	
	B6	8.1 ± 0.7	
	A1	12.5 ± 0.9	
A28	A3	14.7±0.9	
	A2/5	10.3 ± 0.8	11.0 ± 0.8
	A4	9.6 ± 0.9	
	A6	8.1 ± 0.7	
	Ch1	9.4 ± 0.8	
	Ch3	7.6 ± 0.7	87 ± 08
	Ch5	-	0.7 ± 0.0
	Ch6	8.1 ± 0.7	
	Ch2	9.6 ± 0.8	
	1		
	B1	8.5 ± 0.4	
	B3	7.8 ± 0.4	
	B5	6.1 ± 0.3	
	B2	7.4 ± 0.4	7.5 ± 0.4
	B4	7.8 ± 0.4	7.5 ± 0.4
	B6	7.4 ± 0.5	
	A1	12.5 ± 0.6	
Af293	A3	11.6 ± 0.7	
	A2/5	10.0 ± 0.7	10.1 . 0.6
	A4	8.8 ± 0.6	10.1 ± 0.6
	A6	7.4 ± 0.5	
	Ch1	8.5 ± 0.4	1
	Ch4	12.5 ± 0.4	
	Ch6	7.4 ± 0.5	9.8 ± 0.5
	Ch2	10.8 ± 0.5	

Supplementary Table 11. 2D ¹³C-T₁ relaxation times of polysaccharides within *Aspergillus* cell walls. Data are presented for the *A. nidulans* (A28) and *A. fumigatus* (Af293). The bold values indicate average measurements for each polysaccharide within each sample. The relaxation times were obtained through 2D ¹³C-¹³C correlation experiments and are fit using single exponential equation $I(t) = e^{-t/T_I}$. Error bars are standard deviations of the fit parameters.

β-1,3-glucans cross peaks	A. nidulans A28	A. fumigatus Af293	Chitin Cross peaks	A28	Af293	α-1,3- glucans cross peaks	A28	Af293
B6-1	1.4±0.3	1.4±0.5	Ch2-1	-	5.4±0.5	A1-3	5.8±0.4	6.3±0.2
B6-3	1.9±0.3	1.7±0.2	Ch2-4	2.9±0.9	3.1±0.9	A1-2/5	5.1±0.2	4.6±0.3
B6-5	1.2±0.2	1.0±0.2	Ch2-3	-	3.3±0.7	A1-4	4.5±0.4	4.2±0.2
B6-2	1.2±0.4	1.1±0.2	Ch2-3	3.9±0.4	3.3±0.7	A1-6	4.4±0.4	5.2±0.7
B6-4	1.9±0.7	1.5±0.4	Ch4-6	2.9±0.5	-	A3-1	5.3±0.7	-
B4-3	2.0±0.7	2.1±0.2	Ch4-2	4.7±0.6	-	A3-2/5	4.9±0.2	-
B4-2		1.9±0.7	Ch1-4	2.7±0.6	-	A3-4	5.1±0.5	-
B4-6	1.6±0.7	2.8±0.7	Ch1-5	$0.8{\pm}0.5$	2.6±0.4	A3-6	4.4±0.3	-
B2-1	1.7±0.1	1.7±023	Ch1-3	2.5±0.5	-	A2/5-1	4.8±0.1	4.9±0.2
B2-3	1.5±0.2	1.3±0.2	Ch1-2	2.3±0.3	4.2±0.8	A2/5-3	4.6±0.4	5.4±0.3
B2-5	1.0±0.5	0.9±0.2	Ch6-1	1.4±0.3	2.1±0.7	A2/5-6	4.4 ± 0.4	4.4±0.3
B2-6	0.9±0.3	0.7±0.3	Ch3-1	2.1±0.5	2.0±0.4	A4-1	4.3±0.6	-
B5-4	0.8±0.1	1.5±0.3	Ch5-3	-	4.4±0.4	A4-3	4.1±0.4	5.8±1.4
B5-1	-	1.3±0.2	Ch5-2	-	3.7±0.4	A4-2/5	3.4±0.6	2.9±0.7
B5-3	-	1.7±0.5	Ch3-4	3.7±0.9	2.6±0.6	A6-3		3.8±0.6
B5-6	1.3±0.2	1.5±0.5	Ch3-5	1.2±0.7	-	A6-2/5		3.5±0.6
B3-6	2.2±0.7	-	Ch3-6	0.1±0.5	0.1 ± 0.04	A6-1		5.2±0.7
B1-3	0.9±0.2	-	Ch3-2	2.6±0.6	2.0±0.8	A6-4		4.2±0.4
B1-5	0.8±0.2	-	Ch4-1		4.1±0.6	A4-6		3.6±0.7
B1-4	3±0.7	1.3±0.1	Ch4-3		4.0±0.4	A2/5-4		1.2±0.3
B1-6	0.6±0.3	-	Ch1-6		1.2±0.2			
B1-6	0.6±0.3	-						
B3-1	-	1.2±0.1						
B3-5	-	1.6±0.3						
Average	1.39	1.48		2.41	3.0		4.65	4.35
n	19	19		14	16		14	15

Supplementary Table 12. ¹**H and** ¹³**C chemical shifts of** *A. nidulans* **polysaccharides.** For each carbon site, the ¹³C and ¹H chemical shifts are shown in the top and bottom rows, respectively. All ¹H proton chemical shifts were following Safeer et al. 2023¹². Chemical shifts of NRa, NRb, Rb, B, and A are following Ehren et al. 2020¹³. Chemical shifts of Mn, Galf, Galp, GalN, GalNAc are following values from Latgé et al. 1994⁷ and Chakraborthy et al. 2021⁸.

Biomolecule	C1	C2	C3	C4	C5	C6	C8
α-1,3-glucan	101.1 5.4	71.8 3.7	84.5 3.6	69.8 3.7	71.7 3.8	60.9 3.8	
β-1,3-glucan	103.6 4.9	74.3 3.6	86.7 3.6	68.1 3.4	77.3 3.4	60.9 3.8	
Chitin	103.7 4.0	55 3.8	73.5 3.6	83 3.6	75.6 3.6	60.9 3.8	22.8 2.1
NR ^a	98.6 5.0						
R ^b	98.4 4.9					<u></u>	
NR ^b	103.1 4.7	73.8 3.9					
В	103.1 4.7	73.8 3.9					
Mn ^{1,2}	101.1 5.2	78.6 4.0	71.1 3.8	67.4 3.7	73.7 4.1	61.7 3.8	
Mn ^{1,6}	102.6 5.0	70.7 3.9	73.2 4.1	67.5 3.7	73.7 4.1	66.3 3.7	
Galf	107.4 5.2	81.7 4.1	77.7 4.0	83.2 4.0	71.5 3.8	63.5 3.7	
Gal ^a p	92.6 5.2	72.1 3.5	70.2 3.4		72.1 3.8	61.3 3.8	
Gal ^b p	96.7 5.4	-	76.5 3.4	70.3 3.4	-	61.6 3.8	
	I				1	Г	1
GalN		54.4 3.2		81.8 4.1	-	-	
GalNAc	96.4/95.6 4.6	57.2 3.7		76.9 4.0	-	-	22.7 2.0

References

- Lewandowski, J. R.; Sein, J.; Sass, H. J.; Grzesiek, S.; Blackledge, M.; Emsley, L., Measurement of Site-Specific 13C Spin–Lattice Relaxation in a Crystalline Protein. J. Am. Chem. Soc. 2010, 132, 8252-8254.
- 2. Zhou, D. H.; Rienstra, C. M., High-performance solvent suppression for proton detected solid-state NMR. J. Magn. Reson. 2008, 192 (1), 167-172.
- 3. Shaka, A.; Keeler, J.; Frenkiel, T.; Freeman, R., An improved sequence for broadband decoupling: WALTZ-16. J. Magn. Reson. 1983, 52 (2), 335-338.
- 4. Shim, J.-H.; Sung, K.-J.; Cho, M.-C.; Choi, W.-A.; Yang, Y.; Lim, J.-S.; Yoon, D.-Y., Antitumor Effect of Soluble Beta-1, 3-Glucan from Agrobacterium sp. R259 KCTC 1019. *Journal of microbiology and biotechnology* **2007**, *17* (9), 1513-1520.
- 5. Bhanja, S. K.; Rout, D.; Patra, P.; Sen, I. K.; Nandan, C. K.; Islam, S. S., Water-insoluble glucans from the edible fungus Ramaria botrytis. *Bioactive carbohydrates and dietary Fibre* **2014**, *3* (2), 52-58.
- 6. Fontaine, T.; Delangle, A.; Simenel, C.; Coddeville, B.; van Vliet, S. J.; Van Kooyk, Y.; Bozza, S.; Moretti, S.; Schwarz, F.; Trichot, C., Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus. *PLoS pathogens* **2011**, *7* (11), e1002372.
- Latgé, J. P.; Kobayashi, H.; Debeaupuis, J. P.; Diaquin, M.; Sarfati, J.; Wieruszeski, J. M.; Parra, E.; Bouchara, J. P.; Fournet, B., Chemical and Immunological Characterization of the Extracellular Galactomannan of Asperillus fumigatus. *Infection and Immunity* 1994, *62*, 5424-5433.
- Chakraborty, A.; Fernando, L. D.; Fang, W.; Dickwella Widanage, M. C.; Wei, P.; Jin, C.; Fontaine, T.; Latgé, J. P.; Wang, T., A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR. *Nat. Commun.* 2021, *12*, 6346.
- 9. Poulhazan, A.; Dickwella Widanage, M. C.; Muszyński, A.; Arnold, A. A.; Warschawski, D. E.; Azadi, P.; Marcotte, I.; Wang, T., Identification and Quantification of Glycans in Whole Cells: Architecture of Microalgal Polysaccharides Described by Solid-State Nuclear Magnetic Resonance. J. Am. Chem. Soc. 2021.
- Fernando, L. D.; Pérez-Llano, Y.; Dickwella Widanage, M. C.; Jacob, A.; Martínez-Ávila, L.; Lipton, A. S.; Gunde-Cimerman, N.; Latgé, J.-P.; Batista-García, R. A.; Wang, T., Structural adaptation of fungal cell wall in hypersaline environment. *Nature Communications* 2023, *14* (1), 7082.
- Kang, X.; Kirui, A.; Muszyński, A.; Widanage, M. C. D.; Chen, A.; Azadi, P.; Wang, P.; Mentink-Vigier, F.; Wang, T., Molecular architecture of fungal cell walls revealed by solid-state NMR. *Nat. Commun.* 2018, 9 (1), 1-12.
- 12. Safeer, A.; Kleiburg, F.; Bahri, S.; Beriashvili, D.; Veldhuizen, E. J. A.; van Neer, J.; Tegelaar, M.; de Cock, H.; Wosten, H. A. B.; Baldus, M., Probing Cell-Surface Interactions in Fungal Cell Walls by High-Resolution 1H-Detected Solid-State NMR Spectroscopy. *Chem. Euro. J.* **2023**, *29*, e202202616.
- 13. Ehren, H. L.; Appels, F. V. W.; Houben, K.; Renault, M. A. M.; Wosten, H. A. B.; Baldus, M., Characterization of the cell wall of a mushroom forming fungus at atomic resolution using solid-state NMR spectroscopy. *Cell Surf.* **2020**, *6*, 100046.