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Supplementary Note 1. Structure factor calculations

In order to simulate the peak intensity, we calculate the structure factor (S), which is proportional to the square
root of the peak intensity. Without considering any charge density wave (CDW)-induced lattice distortion, S can be
expressed as:

S = Σjfj exp(2πi(Hxj +Kyj + Lzj)), (1)

where H, K, L are Miller indices for a diffraction peak, xj , yj , zj are the positions of the j-th atom in a unit cell, and
fj is an atomic form factor that depends on (H K L). Here, we only consider in-plane V-V bond distortions within the
two kagome planes, because they are the leading lattice instabilities that generate the CDW as predicted by theories
and demonstrated by X-ray diffraction measurements [1, 2].

As mentioned in the main text, the two candidates for the 2×2×2 CDW structure are the MLL (and its symmetry-
equivalent nematic domains, i.e. LML, LLM) and LLL structures, formed by a combination of one M distortion
and two L distortions and three L distortions along three directions 120◦ apart from each other, respectively. The
modified S due to the CDW formation can be easily calculated by counting all the V atoms in the expanded unit cell
and substituting xj → xj + δxj and yj → yj+δyj , where δxj and δyj correspond to the distortion induced by the
V-V bond contraction. In this simulation, we assume that the relative V-V bond distortion is about 0.5% compared
to the undistorted bond length for all M and L distortions [3]. The simulation results of the CDW superlattice
peak intensity in the (0 K L) plane are shown in Supplementary Figure 1. Although both MLL and LLL phases
can plausibly create all half-integer (H K L) peaks since both structures induce a 2 × 2 × 2 unit cell expansion, S
calculation shows that in the LLL structure, the peak intensity at (0 -1.5 2.5) (red circle) accidentally vanishes as
the S from the upper and lower kagome plane cancels each other. On the other hand, the peak intensity at (0 -1.5 3)
(green circle) in the LLL structure is similar to that of the MLL structure, so this peak could originate from both the
MLL and LLL structures. Lastly, the peak at (-0.5 -1 2) is also predominantly contributed by the MLL structure,
albeit not shown here. The above statement is qualitatively true even if we consider the LLL (85%)+MMM (15%)
structure evidenced by recent ARPES experiments [4] rather than the pure LLL structure: the peak intensity at (0
-1.5 2.5) and (-0.5 -1 2) are at least two orders of magnitude smaller in LLL+MMM than in MLL, while the intensity
at (0 -1.5 3) is on the same order for both structures. Note that LLL + MMM is actually a single homogeneous
phase without domain structures. It represents a structure very similar to LLL, with the only disparity being that
the amount of distortion in the inverse star of David and star of David is different. One could also argue that the
proportion of the LLL phase may be several orders of magnitude larger than that of the MLL. However, this is
inconsistent with any previous static X-ray diffraction measurements, which all provide evidence of MLL. If LLL
were dominant, X-ray should manifest features of its presence. We therefore conclude that (0 -1.5 2.5) and (-0.5 -1
2) indeed are predominantly contributed by MLL. Since the three CDW peaks may originate from different CDW
structures, it is possible to track the responses of various CDWs by monitoring different peaks.
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Supplementary Figure 1. Structure factor calculation results for CDW satellite peaks. Calculated (0 K L) CDW
superlattice peak intensity map of a, the MLL (and its symmetry-equivalent nematic domains LML, LLM) and b, the LLL
structures. The red and green circles denote the peaks at (0 -1.5 2.5) and (0 -1.5 3.0) studied in this work, respectively. We
neglect the Bragg peaks for simplicity.
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Supplementary Note 2. Temperature dependence of the CDW peak intensity

We first scrutinize the static CDW peak intensity as a function of temperature T close to the CDW transition
temperature Tc at the three peak positions (0 -1.5 2.5), (-0.5 -1 2), and (0 -1.5 3). We observe that nonzero intensity
at the CDW reciprocal lattice vectors only appears below Tc = 91 K. We note that the peak intensity is only one
to two orders of magnitude larger than the background given our experimental geometry and accumulation time,
demonstrating the relatively weak CDW peak intensity [5]. Above Tc = 91 K, we detect no diffuse scattering at these
three peak positions within our signal-to-noise ratio.

We note that although previous X-ray diffraction studies have reported the temperature dependence of selected
CDW peaks, their temperature step is usually on the order of 1 K or larger [5–10]. In contrast, we conduct a
temperature scan with a finer step of 0.1 K and within a narrower range around Tc, allowing us to better resolve
the critical behavior of different peaks. We also note that the Bragg conditions which are fulfilled at 88 K almost
hold for the entire temperature range. Our careful measurements show that the L = half integer peaks exhibit a
smoother intensity onset as temperature decreases compared to the two L = integer peaks (Supplementary Figure 2).
As discussed in the main text, the former is mainly contributed by the L order parameter, while the latter peaks are
contributed by both L and M order parameters. As later shown in Note 7, L exhibits a second-order phase transition
while M depicts a first-order transition at Tc, when they are not coupled (insets of Supplementary Figure 2). These
differences provide an explanation for the distinct critical temperature dependence around Tc of different peaks with
different indices and lay the foundation of their decoupling upon pumping.

We then unblock the pump and measure the peak intensity at different temperatures at a time delay t = 0.5 ps
with a pump pulse at F = 1.5 mJ/cm2. The peaks at (0 -1.5 2.5) and (0 -1.5 3) show an obvious intensity drop upon
pumping at all temperatures below Tc (Supplementary Figures 2a and 2c), with relative amplitudes similar to those
measured at 30 K. The change in intensity of the peak at (-0.5 -1 2) is less apparent (Supplementary Figure 2b), also
in agreement with its much smaller change at 30 K compared to the other two peaks.

It is worth noting that Tc does not change within our experimental resolution even when the pump laser is turned
on, indicating negligible pump-induced heating at least around Tc. Since the heat capacity is just three times smaller
at 30 K compared to that at 90 K [11], the heating at 30 K should be three times larger than that at 90 K and thus
also marginal.
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Supplementary Figure 2. Temperature-dependence of the integrated intensity of CDW peaks near Tc. The integrated
intensity as a function of temperature for a, the peak at (0 -1.5 2.5), b, the peak at (-0.5 -1 2), and c, the peak at (0 -1.5 3)
both in the presence and absence of a pump at F = 1.5 mJ/cm2 acquired at t = 0.5 ps. Landau theory simulations of the
temperature dependence of L (second-order) and M (first-order) are depicted in the inset.
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Supplementary Note 3. Rocking curve scans with and without pump

We scanned the rocking curve around the Bragg position of each peak by rotating the µ angle of the six-circle
diffractometer [12] with a 0.02◦ step to find the optimal Bragg condition that maximizes the peak intensity. As shown
in Supplementary Figure 3, upon light impingement, the peak intensity uniformly decreases without any noticeable
peak shift, indicating a predominant melting of the CDW order. This holds true for all the CDW satellite peaks
investigated throughout the experiment. The uniform intensity drop across the µ range indicates that the significant
difference in the intensity drop for the three CDW peaks is not an artifact caused by light-induced deviations from
the exact Bragg condition.
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Supplementary Figure 3. Rocking curves for the CDW peak at (0 -1.5 2.5) in the presence and absence of pumping.
a, Rocking curves taken at t = 0.5 ps with (light red) and without (dark red) a pump at F = 1 mJ/cm2. The solid lines are
fits to Gaussians. b, Relative light-induced intensity change, which is nearly a constant as shown by the solid line around the
unshaded peak region.
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Supplementary Note 4. Momentum dependence of the CDW peak dynamics

Previous tr-XRD studies have reported various possible momentum-(q) dependent dynamics of CDW. For example,
in the cuprate superconductor La2−xBaxCuO4, the recovery time of the intensity close to the CDW superlattice peak
exhibits a q2-dependence, indicating diffusive CDW dynamics [13]. Meanwhile, in the case of a rare-earth tritelluride,
q-dependent dynamics reflecting the formation of CDW domain walls have been observed [14]. To test whether the
aforementioned physics occurs in CsV3Sb5, we analyze the q-dependence of the CDW peak dynamics. As shown in
Supplementary Figure 4, we find that along both q// and q⊥ directions, the CDW melting and recovery dynamics of
the peak at (0 -1.5 2.5) do not show noticeable q-dependence upon a pump at F = 2.5 mJ/cm2. The q-independence
of the CDW dynamics indicates that neither diffusive behavior nor ultrafast domain wall formation is related to
our system. However, we do notice that the magnitude of suppression is more significant at larger q away from the
CDW diffraction peak, suggesting that the peak width is reduced upon photo-excitation. It is also worthy noting
that this phenomenon is more apparent along q⊥ than q//, demonstrating a more significant decrease of width in the
out-of-plane direction, in agreement with the conclusion we draw in the main text.
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Supplementary Figure 4. Temporal evolution of different momentum cuts of the CDW peak at (0 -1.5 2.5). a,
Raw image of the (0 -1.5 2.5) superlattice peak before pumping. Colorscale indicates corresponding counts on the detector.
The red and blue dashed lines denote the momentum space cuts along the q// and q⊥ directions as shown in panels b and c,

respectively. b, Temporal evolution of different q⊥ cuts around the CDW peak at (0 -1.5 2.5) acquired at F = 2.5 mJ/cm2. c,
Temporal evolution of different q// cuts around the CDW peak at (0 -1.5 2.5) acquired at F = 2.5 mJ/cm2. Solid lines are fits
to a single-exponential decay. Curves are displaced vertically for clarity.
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Supplementary Note 5. Fluence dependence of the coherent oscillation

We closely examine the oscillation that appears exclusively in the peak at (0 -1.5 2.5) as a function of pump fluence
F . The oscillatory components of the peak intensity time traces at various F are depicted in Supplementary Figure
5a, and their fast Fourier transform (FFT) spectra are shown in Supplementary Figure 5b. A single peak at around
1.3 THz can be seen at all F , while at the lowest fluence, another peak may emerge at around 3.1 THz. Both modes
have been detected before in transient reflectivity and polarization rotation measurements at lower fluences [15–17].

We focus on the 1.3 THz mode since it shows up in every trace. We fit the traces shown in Supplementary Figure 5a
with a single-damped sinusoid A exp(−t/τ) sin(2πft+ ϕ), where A, τ , f , and ϕ are the amplitude, lifetime, frequency,
and phase of the mode, respectively. As shown in Supplementary Figure 5c, f does not exhibit softening despite the
CDW melting, consistent with the absence of phonon softening observed previously by inelastic X-ray scattering and
Raman spectroscopy [3, 7, 18]. On the other hand, A shows an initial increase with F and then saturates at around
F = 0.5 mJ/cm2 (Supplementary Figure 5d). We note that a data point representing zero amplitude at zero pump
fluence is included in the plot to depict the trend clearly.

We would like to comment on the nature of this mode. Previous optical measurements demonstrate that this mode
exclusively emerge below Tc, suggesting its direct connection to the CDW. Since its frequency matches the frequency
of a Cs motion calculated by density functional theory (DFT), the authors assign it to the zone-folded coherent phonon
involving Cs motion [15]. However, previous DFT theories and X-ray diffraction measurements also demonstrate a
minor effect of Cs motion on the formation of CDW [1, 2]. From this perspective, it is less likely that a coherent Cs
motion strongly modulates the CDW superlattice peak which arises predominantly from V displacements. On the
other hand, the frequency of this mode is very close to the lowest acoustic phonon energy at the CDW reciprocal
lattice vector before zone-folding and shows no softening upon temperature changes [3, 7, 18]. Therefore, it is also
possible that this mode is the amplitude mode of MLL, which does not soften, signifying its unconventional nature.
We note that this does not contradict the recent angle-resolved photoemission results, where the amplitude modes
of the LLL phase are found and indeed exhibit softening with F [19]. Although our results cannot conclusively
determine the origin of this mode, further investigation is required to understand its unusual behavior. Nevertheless,
regardless of its nature, our main conclusion remains unchanged. Without loss of generality, in the time-dependent
Landau theory (TDLT) simulations in Note 7, we treat this mode as a linearly coupled phonon.
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Supplementary Figure 5. Fluence dependence of the coherent oscillation. a, Temporal evolution of the integrated
intensity of the peak at (0 -1.5 2.5) subtracted by the single exponential decay background at various pump fluences. Fits to
damped sinusoids are overlaid atop the data. Curves are offset for clarity. b, Fourier transform spectra of the curves in panel
a. Curves are offset for clarity. c, Fluence dependence of the coherent oscillation frequency. d, Fluence dependence of the
coherent oscillation amplitude. Solid lines are guides to eyes. A data point representing zero amplitude at zero pump fluence
is included to depict the trend clearly.
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Supplementary Note 6. Temporal evolution of the structural Bragg peaks

The temporal evolution of two Bragg peaks at (0 0 1) and (0 -1 3) upon photo-excitation is shown in Supplementary
Figure 6. By integrating the pixels where the Bragg peak is located and subtracting the background, we can obtain
the peak intensity change ∆I as a function of time delay t. We can also fit the integrated linecut of the two peaks
with a Gaussian along both q// and q⊥ directions to obtain their full width at half maximum (FWHM) σ// and
σ⊥ as a function of t. In the short timescale t < 10 ps, we do not observe any prominent change in peak intensity
and peak width within our signal-to-noise ratio (Supplementary Figure 6), in contrast to the melting and sharpening
(broadening) of CDW peaks. We indeed observe that the intensity of the peak at (0 0 1) exhibits a slow decrease
in the long timescale spanning several hundreds of picoseconds under F = 6 mJ/cm2, which can be understood as
the Debye-Waller effect arising from heating. However, this effect only appears at a relatively long timescale and at
fluences higher than the range where we focus on. Therefore, we can conclude that all the transient changes in peak
intensity and width of the CDW peaks are nonthermal.
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Supplementary Figure 6. Temporal evolution of the intensity and width of structural Bragg peaks. a,b, Temporal
evolution of the normalized differential intensity of the peaks at (0 0 1) and (0 -1 3), respectively. The results are acquired
at 30 K with a pump at F = 2.5 mJ/cm2. c, d, Temporal evolution of the normalized differential FWHM along the in-plane
direction of the peaks at (0 0 1) and at (0 -1 3), respectively. e, f, Temporal evolution of the normalized differential FWHM
along the out-of-plane direction of the peaks at (0 0 1) and at (0 -1 3), respectively. The solid lines in all the panels are guides
to eyes.
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Supplementary Note 7. Time-dependent Landau theory simulations

Static Landau theory

Previous density functional theory (DFT) calculations have identified two unstable phonon modes in CsV3Sb5,
which transform as the M+

1 and L−
2 irreducible representations of the space group P6/mmm [15, 20, 21]. These

phonon modes occur at three symmetry-equivalent reciprocal lattice vectors located at the three distinct M and three
distinct L points in the hexagonal Brillouin zone. The vectors of M are:

Q
(1)
M = (0.5 0 0), Q

(2)
M = (0 0.5 0), Q

(3)
M = (−0.5 − 0.5 0), (2)

and those of L are:

Q
(1)
L = (0.5 0 0.5), Q

(2)
L = (0 0.5 0.5), Q

(3)
L = (−0.5 − 0.5 0.5). (3)

In real space, both Mi and Li modes primarily involve nearest neighbour V-V bond contraction as shown in Fig. 1 in
the main text, where the in-plane displacements of the V atoms account for over 90% of the total CDW displacements
[20]. The distinction between M and L is in the relative phase of the displacements in consecutive kagome layers
along the c-axis: the V atoms are displaced in-phase between the neighbouring layers for the M mode, while the
displacement is out-of-phase between the neighbouring layers for the L mode. Clearly, each Mi forms a stripe pattern
that doubles the unit cell along the stripe direction, while for Li, the unit cell is also doubled along the c-axis.

The different “3Q” CDW structures correspond to distinct superpositions of three Mi and Li CDW order param-
eters. We denote the phases formed by M and L modes using a general notation M1M2M3 + L1L2L3. A distortion
with the opposite sign, namely an expansion of the V-V bond, is denoted as M or L. For distortions where all the M
or L order parameters have zero amplitude, we simplify the notation to L1L2L3 and M1M2M3, respectively. Also,
we note that domains equivalent to each other up to a translation or rotation can be obtained as long as the sign of
production M1M2M3 and L1L2L3 is preserved. For instance, M1M2M3 = M1M2M3 and L1L2L3 = L1L2L3.
The Landau free energy functional for the coupled Mi and Li order parameters is determined by symmetry, and

its general form expanded up to the quartic order can be expressed as:

F = FM + FL + FML, (4)

where

FM =
αM (1− T/TM )

2
M2 +

βM

3
M1M2M3 +

uM

4
M4 +

λM

4
(M2

1M
2
2 +M2

2M
2
3 +M2

1M
2
3 ),

FL =
αL(1− T/TL)

2
L2 +

uL

4
L4 +

λL

4
(L2

1L
2
2 + L2

2L
2
3 + L2

1L
2
3),

FML =
βML

3
(M1L2L3 + L1M2L3 + L1L2M3) +

λ
(1)
ML

4
(M1M2L1L2 +M2M3L2L3 +M1M3L1L3)

+
λ
(2)
ML

4
(M2

1L
2
1 +M2

2L
2
2 +M2

3L
2
3) +

λ
(3)
ML

4
M2L2,

(5)

where M2 = M2
1 +M2

2 +M2
3 and M4 = (M2)2, with L2 and L4 defined analogously. αM and αL are the coefficients

of the quadratic terms with tunable temperature T . Also note that since Mi and Li belong to different irreducible
representations, αM and αL are not necessarily identical, manifested as different transition temperatures TM and TL

in the absence of coupling. Both αM and αL should be negative so that the ordered phase can be realized when

T < TM/L. uM , uL, λM , λL, λ
(1)
ML, λ

(2)
ML, and λ

(3)
ML are the coefficients of the quartic terms. βM and βML are the

coefficients of the cubic terms.
One unambiguous feature of the functional is that while FM and FML contain a trilinear term, FL does not. This

arises from the fact that different reciprocal lattice vectors of Mi and Li obey different symmetries: Q
(1)
M +Q

(2)
M +Q

(3)
M

and Q
(1)
M + Q

(2)
L + Q

(3)
L are zero modulo a reciprocal lattice vector, and thus the trilinear term is allowed. On the

other hand, Q
(1)
L + Q

(2)
L + Q

(3)
L ̸= 0, and thus the trilinear term L1L2L3 is prohibited. Interestingly, this difference

renders M more of a first-order nature, while L is more of second-order, as can be seen from FM and FL. This is
also manifested in the different temperature dependence of the CDW superlattice peak intensity, where the peaks
contributed exclusively by L exhibit a smoother increase at the transition while the peaks contributed by both show a
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more abrupt increase due to the first-order characteristic of M (Supplementary Figure 2). Additionally, the presence
of the trilinear term leads to Mi ̸= Mi, but its absence yields Li = Li. One can intuitively understand this by
examining the real-space CDW superlattice structure: M1M2M3(+000) corresponds to a structure in which the two
neighbouring kagome planes form aligned inverse star-of-David (soD) distortions, while M1M2M3 corresponds to a
distortion where the two neighbouring kagome planes form aligned soD patterns. These two superlattice structures
are not necessarily energy-equivalent. However, both (000+)L1L2L3 and L1L2L3 correspond to different domains of
the same superlattice with aligned alternative inverse soD and soD planes and are identical up to a translation along
c-axis.

A combination of instabilities at M and L points finally leads to six possible 2× 2× 2 CDW structures, namely
M1M2M3 (aligned soD), M1M2M3 (aligned inverse soD), L1L2L3 (aligned alternating inverse soD and soD), M100+
0L2L3 (staggered soD), M100 + 0L2L3 (staggered inverse soD), and M1M20 + 00L3 (staggered alternating inverse
soD and soD) [4]. Intriguingly, these states are not always thermodynamically stable in the presence of the trilinear
coupling term βML. For instance, the L1L2L3 phase is inevitably accompanied by a finite amount of M1M2M3

or M1M2M3 and becomes the L1L2L3 + M1M2M3 intertwined phase [20], which has been confirmed by the recent
angle-resolved photoemission spectroscopy results [4]. Similarly, the M1M20+00L3 phase acquires additional M and
L distortions from the two trilinear terms and cannot emerge as the leading instability [20].
All the Landau coefficients have been obtained from recent DFT calculations [1]: αM = −2.53 eV/Å2, αL = −2.53

eV/Å2, βM = −22.16 eV/Å3, βML = −24.15 eV/Å3, uM = 76.43 eV/Å4, uL = 89.93 eV/Å4, λM = −137.67 eV/Å4,

λL = −194.47 eV/Å4, λ
(1)
ML = 347.73 eV/Å4, λ

(2)
ML = 332.28 eV/Å4, λ

(3)
ML = 24.20 eV/Å4. Based on these parameters,

free energy landscape of different CDW structures can be simulated and a minimization of the free energy yields the
values of the order parameters.

At zero temperature, M100 + 0L2L3 is found to have the lowest energy, in agreement with a wide array of ex-
perimental observations [2, 5, 6, 17, 22, 23]. At elevated temperatures, a reasonable choice of TL and TM (TL=91
K and TM = 85 K< TL) predicts a ground state of L1L2L3 + M1M2M3, in line with another set of observations
[4, 10, 24, 25]. The Landau theory simulations thus reproduce the two experimentally proposed CDW structures and
demonstrate that they are energetically similar. For simplicity, we denote these two phases as MLL and LLL in the
following discussions (MMM notation is dropped for LLL+MMM because the M distortion is much smaller than
the L distortion as shown shortly after, but the non-zero M is preserved). The Landau free energy for the two phases
can be thus simplified as:

FMLL =
αM (1− T/TM )

2
M2 +

uM

4
M4+

2αL(1− T/TL)

2
L2 +

4uL + λL

4
L4+

βML

3
ML2 +

2λ
(3)
ML

4
M2L2,

(6)

FLLL =
3αM (1− T/TM )

2
M2 +

βM

3
M3 +

9uM + 3λM

4
M4+

3αL(1− T/TL)

2
L2 +

9uL + 3λL

4
L4+

3βML

3
ML2 +

3λ
(1)
ML + 3λ

(2)
ML + 9λ

(3)
ML

4
M2L2,

(7)

where for MLL we set M1 = M , L2 = L3 = L, and for LLL, M1 = M2 = M3 = M ,L1 = L2 = L3 = L.
The free energy landscapes of the aforementioned two phases are shown in Supplementary Figure 7a and Supple-

mentary Figure 8a, respectively. Both potentials unambiguously depict an asymmetry along the M coordinate and a
symmetry along the L coordinate due to the trilinear coupling terms, in agreement with our predictions. The MLL
free energy potential shows two equivalent minima at both finite M and L and their distortion amplitudes are also
nearly identical, i.e. M ∼ L. This confirms that a staggered inverse soD ground state is energetically favorable. On
the other hand, for the LLL free energy potential, the distortion amplitude of M is significantly smaller than that
of L when the energy is minimized, in line with the angle-resolved photoemission spectroscopy results, where the
former is 7 times weaker than the latter [4]. Also note that the coexistence of finite M and L indicates that they form
intertwined order and are spatially homogeneous. The resulting structure is still an aligned alternating inverse soD
and soD, but the in-plane distortion value is different for the two kagome planes (L−M and L+M , respectively).
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Time-dependent Landau theory simulations

We now derive the equations of motion for the order parameters. For the phenomenological treatment, whether
Mi and Li are lattice distortions or electronic order parameters of CDW is not critical, since they transform as the
same irreducible representations. We assume they are electronic and thus display overdamped dynamics since on the
phononic timescale, electrons nearly adiabatically adjust themselves to the local minimum of the Landau potential
[26, 27]. The simulation results will not qualitatively change if we assume they are phononic and display second-order
dynamics. To account for the phonon oscillation that exclusively occurs in L = half integer peaks, we introduce a
lattice order parameter X in a harmonic potential, which primarily linearly couples to L and displays underdamped
(second-order) dynamics [26, 27]:

F = FMLL/LLL + FX , (8)

where

FX =
1

2
ω2X2 + gXL, (9)

where ω is the phonon frequency (2π × 1.3 THz) and g is the electron-phonon coupling constant. Our approach by
linearly coupling a phonon to L serves the exactly identical purpose as adding a phonon which only affects L=half
integer peaks. The reason why we did not adopt the latter is because M and L involve V atom displacements,
while previous literature has demonstrated the phonon we observed involves Cs atom motion (Note 5). Based on the
principle of parsimony, we model the Cs motion as a linearly coupled phonon to L instead of involving additional
atoms in the structure factor calculation.

We also assume that the photo-excitation acts as a homogeneous energy quench to the quadratic term αM/L, which
is proportional to the pump fluence, while the other Landau parameters are independent on time:

αM/L(t) = αM/L(1− T/TM/L)[1− κM/LF
(1 + erf t√

2tr
)

2
(e−t/τ + C)]. (10)

Here, F is pump fluence, κM/L is a proportionality constant for normalizing F but they can be different for M and
L, erf is the error function, tr is the rise time of the quasiparticles after excitation, τ is the thermal relaxation time
of the quasiparticles, and C is the long-term background constant within the simulation time window. The form of
the time-dependent quench mimics the carrier excitation and relaxation dynamics measured by transient reflectivity
experiments [15, 16].

Based on these assumptions, the dynamical equations of order parameters can be expressed as:

1

γM
∂tM = − ∂F

∂M
,

1

γL
∂tL = −∂F

∂L
,

∂t
2X = −2γX∂tX − ∂F

∂X
,

(11)

where γM , γL, and γX are phenomenological decay constants to account for damping of electronic and structural
order parameters.

We first investigate the dynamics of the MLL phase. We assume tr = 0.1 ps, τ = 1 ps, C = 0.9, γM = 1 THz,
γL = 0.5 THz, γX = 0.2 THz. The initial values of M , L, and X are set at their local minima. We also carefully
choose the fluence regime and tentatively set κM = 1 and κL = 3, i.e. L is roughly three times more susceptible to
light excitation than M to best reproduce the experimental results. The simulated temporal evolution of L and M
normalized to their equilibrium values are shown in Supplementary Figures 7b and 7c, respectively. It is evident that
neither of the two order parameters is fully quenched in this fluence regime, but L indeed shows a more substantial
suppression than M . Additionally, the linearly coupled phonon exhibits a pronounced oscillation in L because of the
linear coupling. However, due to the coupling between M and L, the oscillation also exists in M , albeit weakly.

Using the temporal evolution of M and L obtained from the simulation, we can calculate the dynamics of peak
intensity I(t) by incorporating their dynamics into the structure factor of different peaks: δxi(t) and δyi(t) can be
expressed as a linear superposition of M and L. The simulated dynamics of each peak are shown in Supplementary
Figures 7d-e. The peak at (0 -1.5 2.5) shows a considerable decrease accompanied by phonon oscillation upon
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light excitation (Supplementary Figure 7d). This L = half-integer peak mainly reflects the dynamics of the L order
parameter, as M can not generate L = half-integer peaks. In contrast, the peak at (-0.5 -1 2) exhibits a smaller
intensity drop, while the peak at (0 -1.5 3) exhibits a drastic drop similar to the peak at (0 -1.5 2.5).

To emulate the measured intensity change, the dramatic penetration depth mismatch between the pump and the
probe pulses at different wavelength ranges should be considered. Due to the pump-probe penetration depth mismatch,
different depths z below the sample surface experience a different level of quenching of the potential. The reported
pump and probe penetration depths are δpu =78 nm [28] and δpr =568 nm, respectively, which is approximately a
seven-fold difference. To simulate the effects of the penetration depth mismatch, we assume the sample is composed
of thin layers with thickness d = 1 nm and an exponential z-dependence of quenching with F (z) = F exp(−z/δpu)
arising from an exponentially decaying photo-carrier distribution. We then solve the temporal evolution of M(z, t),
L(z, t), and I(z, t) for each layer. The probed-region-integrated value of Iint(t) is calculated by summing over all the
layers with each layer weighted by the probe penetration depth: Iint(t) =

∑∞
z=0 exp(−z/δpr)I(z, t). The integrated

simulation results are shown in Figs. 2d and 2e. Supplementary Figures 7d-f can thus be understood as showing the
dynamics of peak intensity from the top excited layer. A comparison between Iint and I reveals a 100% reduction of
I should correspond to a nearly 18% drop in Iint (Supplementary Figure 13).

Although at first glance, it is plausible to attribute all three peaks to the MLL phase, two features suggest a
different origin of the peak at (0 -1.5 3). First, the intensity drop observed in peaks (0 -1.5 2.5) and (0 -1.5 3)
are very similar. After considering penetration depth mismatch, they are still quantitatively similar (Supplementary
Figures 7g-i), whereas the experimental results show that the reduction of the latter is more considerably larger than
the former. Second, since both order parameters are far from complete suppression, the simulated dynamics of all
the peaks exhibit no clear features of dynamical slowing down of recovery time [27], at odds with the experimental
observation of an apparent slowing down of dynamics at peak (0 -1.5 3).
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Supplementary Figure 7. TDLT simulations of the MLL phase. a, Free energy landscape of the MLL phase. The initial
ground state is marked by a yellow dot. b,c, Temporal evolution of L and M order parameters at various fluences, respectively.
d-f, Temporal evolution of intensity change of peak at (0 -1.5 2.5), (-0.5 -1 2), and (0 -1.5 3) at various pump fluences. g-i,
Temporal evolution of the integrated intensity change of peak at (0 -1.5 2.5), (-0.5 -1 2), and (0 -1.5 3) at various pump fluences.
The maximal intensity decrease measured experimentally are marked by arrows. The fluence range is identical in all the panels.
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Supplementary Figure 8. TDLT simulations of the LLL phase. a, Free energy landscape of the LLL phase. The inital
ground state is marked by a yellow dot. b,c, Temporal evolution of L and M order parameters at various fluences, respectively.
d-f, Temporal evolution of intensity change of peak at (0 -1.5 2.5), (-0.5 -1 2), and (0 -1.5 3) at various pump fluences. g-i,
Temporal evolution of the integrated intensity change of peak at (0 -1.5 2.5), (-0.5 -1 2), and (0 -1.5 3) at various pump fluences.
The maximal intensity decrease measured experimentally are marked by arrows. The fluence range is identical in all the panels.

It is thus reasonable to suspect that the peak at (0 -1.5 3) may mainly originate from the LLL phase, since based
on the structure factor calculation in Note 1, both structures can contribute to this peak with similar amplitude. To
investigate this, we simulate the dynamics of M and L in the LLL phase (Supplementary Figures 8b and 8c). We
explore the same fluence range employing the same set of parameters as we have used for MLL except for two: TM ,
which we set to be 10K, or at T = 30 K LLL will not be the global minimum but a local minimum, and g, which
we set to be 0, since the peak at (0 -1.5 3) does not exhibit phonon oscillation within our resolution. However, we
note that the absence of phonon should not be used as evidence for coexistence of two phases. We set g = 0 to better
match the experimental observations here. Also note that although we show the normalized intensity change here,
the absolute value of L is about 9 times larger than M , which matches the experimental value [4].

In contrast to the MLL case, despite the 3-times higher sensitivity of L in response to a light excitation, both M
and L in LLL depict a similar level of melting at the same fluence and a complete melting of both is realized at an
intermediate fluence. This may arise from the fact that the equilibrium value of M is so small that a moderate light
excitation can fully quench it. In addition, a dynamical slowing down of the melting and recovery time can be observed
at the critical fluence where both order parameters are completely quenched. Employing the same aforementioned
method, we calculate the peak intensity dynamics I(t) at the three peak positions (Supplementary Figures 8d-f) and
include the pump-probe penetration depth mismatch to emulate the experimental case (Supplementary Figures 8g-i).
Again, we note that the absolute equilibrium intensity of the peak at (0 -1.5 2.5) is two orders of magnitude smaller
than the other two peaks and the same peak in the MLL phase, confirming that this peak should be predominantly
contributed by the MLL phase. Although the absolute equilibrium intensity of the peak at (-0.5 -1 2) is similar to
that of (0 -1.5 3) in LLL, its intensity is two orders of magnitude smaller than the same peak contributed by the
MLL phase.

Dynamics of I(t) also confirm that the first two peaks cannot mainly arise from LLL, because akin to M and L,
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all the peaks show similar levels of intensity drop at the same fluence (Supplementary Figures 8d-i), in contrast to
the dramatically different experimental behaviors. Moreover, all the peaks exhibit dynamical slowing down around
the same fluence, which is absent in the experimental data. However, the behavior of peak (0 -1.5 3) qualitatively
agrees with the experimentally measured dynamics, and the intensity drop in integrated Iint(t) quantitatively agrees
with the experimental value (Supplementary Figures 8i), demonstrating that the peak at (0 -1.5 3) mainly reflects
the dynamics of the LLL phase.

We would like to note that despite its simplicity, the phenomenological TDLT simulation accurately predicts the
dynamics of various peaks and disentangle the order parameter evolution of different phases. With almost no adjustable
parameters in our calculation, it is encouraging to see a reasonable match in the absolute value of the CDW suppression
between experiments and simulations. Indeed, a few ingredients can be further added to the model to improve its
quantitative agreement with the measurements, such as fluence-dependent relaxation time τ , spatial inhomogeneity,
and higher-order phonon couplings.

Robustness of the simulation results
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Supplementary Figure 9. a, Simulated fluence dependence of the normalized integrated intensity of the three peaks with all the
microscopic parameters (α’s, β’s, u’s, and λ’s) equal to the values obtained from the first-principles calculations (×1), half of
those values (×1/2), and double of those values (×2). All the dynamical parameters and the penetration depths are identical
to the values that have been used in this note. b, Simulated fluence dependence of the normalized integrated intensity of the
three peaks with κL/κM equal to 1, 2, 3, and 5. All the microscopic parameters, the other dynamical parameters, and the
penetration depths are identical to the values that have been used in this note.

Here, we demonstrate the robustness of the TDLT simulation results against variations of the simulation parameters.
The simulation parameters we employed can be categorized into three groups: 1) microscopic parameters α’s, β’s,
u’s, λ’s, and T ’s determining the shape of the potential energy surface (PES) and equilibrium values of the order
parameters M and L. These values are adopted from previous first-principles calculations [1]. Modifying them is
expected to modulate the PES shape, while the peak intensity decrease should remain qualitatively similar with a
scaling of the pump fluence. 2) dynamical parameters κL/M , tr, τ , C, γL/M , ω, and g, which determine the rise time,
decay time, oscillation frequency, oscillation damping time, and oscillation amplitude of the order parameters. Among
these parameters, only κL/M determines the photo-susceptibility (the amount of melting upon 1 mJ/cm2 pumping) of
M and L and thus the relative intensity drop of different peaks, while the others are less relevant to the magnitude of
intensity decrease. 3) penetration depths of pump δpu and probe δpr, which are critical in determining the measured
peak intensity decrease.

To assess the impact of parameter variations on peak intensity decreases, we performed more comprehensive TDLT
simulations by considerably varying all three groups of parameters. In Supplementary Figure 9, we plot the simulated
normalized integrated intensity Iint for the three targeted peaks with different sets of parameters as a function of the
pump fluence F at t = 0.5 ps where the drop is maximal. To compare the relative intensity drops of different peaks
between different sets of parameters, we apply a scaling factor for all the peaks along the pump fluence axis. This is
valid because there exists a scaling factor between simulated and experimental pump fluence. Supplementary Figure
9a demonstrates that halving or doubling all the microscopic parameters minimally affects the relative magnitude
of intensity decrease (∼1%), in line with our expectation. Supplementary Figure 9b explores a large range of the
ratio κL/κM , revealing qualitative consistency in peak intensity decrease of different peaks for κL/κM ∈ (2, 5), with
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κL/κM ∼ 3 providing the closest agreement with experimental results. This confirms that L is more susceptible than
M against photo-excitation and variations in dynamical parameters do not qualitatively alter the simulation results.
As detailed in Supplementary Note 13, reasonable choices for penetration depths do not impact the peak dynamics
qualitatively. Therefore, we can conclude that our simulation results quantitatively match the experimental values
against even considerable variations in all the parameters.
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Supplementary Note 8. Temporal evolution of the width of the peak at (-0.5 -1 2)

Temporal evolution of the width of the peak at (-0.5 -1 2) upon photo-excitation exhibits qualitatively similar
features to that of the peak located at (0 -1.5 2.5) (Supplementary Figure 10). Moreover, the decrease in peak
widths along both the in-plane (σ//) and out-of-plane (σ⊥) directions of (-0.5 -1 2) and (0 -1.5 2.5) show quantitative
agreement. This observation suggests that both peaks possibly arise from the same CDW phase (MLL), even though
there is a significant difference in the degree of reduction in peak intensity.
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Supplementary Figure 10. Temporal evolution of the width of the peak at (-0.5 -1 2). a,b, Normalized width change
of the peak at (-0.5 -1 2) along the in-plane and the out-of-plane directions, respectively, acquired at F = 0.5 and 2.5 mJ/cm2.
Solid lines are fits to a single-exponential decay.
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Supplementary Note 9. Temperature dependence of the CDW peak width

Supplementary Figure 11 shows that the width of the CDW satellite peaks as a function of temperature around Tc

= 91 K in the absence of the pump pulse. As shown by the normalized linecuts along q⊥, the peak width increases as
the temperature approaches Tc from below (Supplementary Figure 11a). We fit the linecuts of different peaks along
both q⊥ and q// directions with a Gaussian and obtain the half width at the half maximum (HWHM) σ// and σ⊥ as
functions of temperature (Supplementary Figures 11b-e). The width of all the investigated CDW peaks moderately
increases when T approaches 90.5 K and quickly diverges when T approaches Tc, indicating a significant decrease in
the correlation length of each CDW domain. This is in sharp contrast to the temporal dynamics of the peak width at
(0 -1.5 2.5), where the peak width decreases after pumping. Therefore, we conclude that the anomalous photo-induced
sharpening of the peak at (0 -1.5 2.5) is not due to a thermal effect.

Also we note that both σ// and σ⊥ are presented in reciprocal lattice units (r.l.u.). We thus get the correlation
length of the MLL phase at around 89 K is around 250 unit cells within the kagome plane and around 80 unit cells
across the kagome plane, while the correlation length of the LLL phase is around 100 unit cells within the kagome
plane and around 25 unit cells across the kagome plane. This indicates that the in-plane phase coherence of both
phases is larger than their out-of-plane phase coherence, which is consistent with the out-of-equilibrium behavior where
the out-of-plane stacking is more perturbed than the in-plane 2 × 2 distortions by a light excitation. Additionally,
the MLL phase exhibits a longer correlation length than the LLL phase.
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Supplementary Figure 11. Equilibrium temperature dependence of CDW peak width near Tc. a, Integrated linecuts
of the peak at (0 -1.5 2.5) along q⊥ direction at various temperatures near Tc= 91 K. Solid lines are fits to a Gaussian. b,c,
Temperature dependence of the CDW peak HWHM at (0 -1.5 2.5) along the in-plane and out-of-plane directions, respectively.
d,e, Temperature dependence of the CDW peak HWHM at (0 -1.5 3) along the in-plane and out-of-plane directions, respectively.
Solid lines are guides to eyes.
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Supplementary Note 10. Temporal evolution of the CDW peak position
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Supplementary Figure 12. Temporal evolution of the CDW peak position. a, Real-space configuration of the charge
density with different sizes of anti-domain. Only a subset of the simulated region is shown for clarity (50 < x < 130). b,
Normalized |FFT|2 spectra of the CDW with different sizes of anti-domain. c,d, Temporal evolution of the peak position
around (0 -1.5 2.5) along the in-plane and the out-of-plane directions, respectively. The data are acquired at F = 0.5 and 2.5
mJ/cm2. Solid lines are fits to a single-exponential decay. e,f, Temporal evolution of the peak position around (0 -1 3) along
the in-plane and the out-of-plane directions, respectively. The data are acquired at F=2.5 mJ/cm2. Solid lines are guides to
eyes.

We observe a subtle but noticeable peak position shift accompanied by peak width modulation, manifested as an
asymmetric dip-peak-dip or peak-dip-peak feature in the differential linecuts shown in Fig. 3 in the main text. Note
that not only is this shift almost instantaneous upon light excitation, in contrast to the slow modulation of Bragg
peak position that reflects thermal expansion, but its amplitude is also nearly one order of magnitude larger than
the thermal expansion in the same timescale (Supplementary Figures 12c-f). The peak shift at first glance may be
counter-intuitive because in a commensurate CDW system, the charge order is strongly pinned to the lattice, making
its periodicity highly robust against perturbation. However, as we show later in a toy model simulation, the peak
position change does not necessarily indicate a reciprocal lattice vector change. Instead, a change in the CDW phase
can modulate the peak position in the reciprocal space.

To illustrate this effect, we conduct a toy model simulation starting with a one-dimensional CDW order with a
uniform phase ϕ = 0. The order is present in a finite chain of 200 sites with a periodicity of 2 sites and a correlation
length of 100 sites, mimicking the case of CsV3Sb5. We can express the real-space charge density modulation y as a

Gaussian-enveloped sinusoid, i.e. y(x) = A sin(2πQx+ ϕ) exp
[
− (x− d

2 )
2

2σ

]
, where Q = 0.5 is the reciprocal periodicity,

d = 200 is the size, σ = 100 is the correlation length, A = 1 is the amplitude, and ϕ = 0 is the phase. FFT indeed
produces a peak centered at q = 0.5 with a finite width proportional to the inverse of σ.

Since the periodicity is 2, the CDW phase can be either 0 or π. Now without changing the periodicity, we introduce
an anti-domain, i.e., a CDW domain with the same periodicity Q = 0.5 and opposite phase ϕ = π. In the anti-domain,
the phase increases from 0 to π at both edges in 2 sites but remains at π in the middle. We set the amplitude of
the anti-domain to be half of the zero-phase domain and set the size of the anti-domain to be a value smaller than
the correlation length of the dominant ϕ = 0 CDW. Therefore, effectively both A and ϕ are functions of x in the 200
sites. The presence of these domains can be visualized in real space (Supplementary Figure 12a). Then we randomly
set the position of this anti-domain within the 200 sites and calculate the FFT spectra. Further, we repeat this
procedure 200 times to emulate the randomness of the anti-domains distributed in real space and sum over all the
FFT spectra. Finally, we convolve the total spectrum with a Gaussian function representing the momentum resolution
of the experimental instrument. The |FFT|2 spectra of the anti-domains of different sizes are shown in Supplementary
Figure 12b. Unequivocally, as the anti-domain size increases, both the peak width increase and a shift in the peak
position away from Q = 0.5 can be observed, manifested as an asymmetric broadening. Note that this conclusion can
be extended to higher-dimensional cases, and the results of the simulation will be qualitatively identical.
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This toy model provides a qualitative demonstration that the modulation of the phase and amplitude of a CDW
without changing its periodicity can lead to a shift in the corresponding momentum peak position and width. To
be specific, the annihilation of ϕ = π domains within the dominant ϕ = 0 region will induce a peak sharpening and
position shift. In the case of CsV3Sb5, LLL surrounded by MLL can be considered as the anti-domain within the
π = 0 domain. Therefore, along with the light-induced modulation of domain size, the peak position corresponding to
different CDW phases will show a slight shift. Our simulation predicts that as the size of the anti-domain changes from
45 to 25 in the 200 sites, the peak width decreases by 3% and the peak position shifts by 0.0003 r.l.u. (Supplementary
Figure 12b). Both values qualitatively match the experimental results, demonstrating that the two domains are
mesoscopically separated rather than inhomogeneously entangled in real space (Supplementary Figure 12 and Fig. 3
in the main text) [29]. In addition, we indeed observe a larger peak shift along q⊥ than q// (Supplementary Figures
12c and 12d), in agreement with the larger change in peak width along q⊥.
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Supplementary Note 11. Landau theory for two competing phases

We consider a system with two spacetime-dependent real order parameter fields ∆1(r, t) and ∆2(r, t). The general
free energy functional F can be expressed as [30, 31]:

F [∆1,∆2] ∝
∫

dDr(f1[∆1] + f2[∆2] + fc[∆1,∆2]), (12)

where f1,2 characterizes the free energy of individual ∆1,2(r, t), and fc expresses the competition between the two
orders where the presence of one would suppress the other such that the only stable minima are located at the ∆1(r, t)
and ∆2(r, t) axes, i.e. one of them is zero. The free energy of both orders is assumed to be of first-order without loss
of generality:

fi[∆i] = −αi(t)∆
2
i + βi∆

3
i + ui∆

4
i + (ξi∇∆i)

2. (13)

Here αi and ui are positive while βi is negative so the minima are realized when ∆i > 0. The cubic term makes the
transition first-order (for the second order case, βi = 0). ξi > 0 represents the correlation length. Only the quadratic
term is modulated by light. The competition term has the form:

fc[∆1,∆2] = c∆2
1∆

2
2, (14)

where c is large and positive.
Based on the aforementioned assumptions, the equilibrium global minima will be reached at

∆i,0 =
−3βi +

√
9β2

i + 32uiαi

8ui
. (15)

Minimizing f in one dimension with the boundary conditions ∆1(x → −∞) = ∆1,0, ∆1(x → ∞) = 0, ∆2(x →
−∞) = 0, and ∆2(x → ∞) = ∆2,0, the domain wall profile can be approximated as [31]:

∆i[x] = ∆i,0(± tanh (x/ξDW ) + 1)/2, (16)

where +/− corresponds to i = 2 and 1, respectively, and ξDW ∝ ξ/
√
|α| characterizes the domain wall size.

We can also estimate the motion of interface between the two phases upon light excitation [31]. In the linear
response regime, the displacement of a domain wall can be expressed as:

∆x =
1

d20

∫
dt[−∆2

1,0(α1(t)− α1(0)) + ∆2
2,0(α2(t)− α2(0))], (17)

where d20 ≈ α1(0)
u1γ1ξ1

+ α2(0)
u2γ2ξ2

and α(t) are given by Supplementary Equation 10.

This theory can be in principle used to capture the dynamics of our targeted system, where ∆1(r, t) and ∆2(r, t)
represent the MLL and LLL phases, respectively, with the latter being more suppressed by light excitation. However,
we need to treat each phase (MLL and LLL) described by a single order parameter, which contradicts with the general
Landau theory employed in this system. Furthermore, all Landau parameters as defined before remain undetermined.
Given the considerable uncertainty and arbitrariness, we refrain from modeling the competition between the two
phases, as we deem the experimental observation sufficiently direct evidence.
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Supplementary Note 12. Simulated and measured fluence dependence of the CDW
peak intensity

In this note, we clarify the correspondence between the simulated and measured pump fluence dependence of the
CDW diffraction peak intensity. We first show the simulation results. When the topmost single layer is 100% melted
(F ∼ 1.7, Supplementary Figure 13a), an ∼18% decrease of the integrated intensity across the probed region is reached
(Supplementary Figure 13b). Since the pump has a finite penetration depth (∼85 unit cells), further increasing the
fluence leads to the complete melting of additional layers beneath the topmost layer. Therefore, the integrated
intensity within the probe penetration depth continues to decrease (Supplementary Figure 13b). Specifically, the
observed 22% decrease signifies the complete suppression of the LLL phase in the ∼25 top layers at our highest
experimental fluence. Also note that due to the significant pump-probe penetration depth mismatch, the integrated
intensity does not exhibit a distinct saturation behavior as in the topmost layer when LLL is fully suppressed. Instead,
only a change in photo-susceptibility (slope of Iint vs F ) can be observed, as captured by our experiments (Fig. 2f
and Supplementary Figure 14).
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Supplementary Figure 13. Pump fluence dependence of the a, topmost layer intensity and b, integrated intensity within the
probe penetration depth acquired at t = 0.5 ps from TDLT simulation of LLL. Thick lines are guides to the eyes. Shaded area
denotes the region where the CDW of the topmost layer has been fully melted.

To experimentally examine the difference in photo-susceptibility between different order parameters M and L and
different phases MLL and LLL, we conducted a finer pump fluence dependent measurement of the three peaks
at t = 0.5 ps, where the intensity drop is maximized. Supplementary Figure 14 clearly shows that the photo-
susceptibility of the (-0.5 -1 2) peak is ∼3 times smaller than the (0 -1.5 2.5) peak, corroborating the ∼ 3 times
higher photo-susceptibility of L than M . Notably, both peaks do not exhibit clear saturation within the investigated
fluence range. We refrain ourselves from reaching higher fluence to avoid sample damage, but an extrapolation would
predict the saturation fluence to be higher than ∼5 mJ/cm2. On the contrary, the (0 -1.5 3) peak originating from
LLL shows a ∼2 times faster suppression and displays saturation behavior at ∼2 mJ/cm2 when the relative change
is ∼18%, consistent with the results in Fig. 2 and our simulation.
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Supplementary Figure 14. Fluence dependence of the intensity drop of the three CDW peaks measured at T = 30 K and t =
0.5 ps. Thick colored lines are guides to the eyes.
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Supplementary Note 13. Ruling out alternative possible interpretations

Mismatch in pump and probe penetration depths

It is worth noting that the probe penetration depth varies when we measure different peaks due to our experimental
geometry. We used a six-axis diffractometer with θ (or η depending on the convention) = 2.95◦ [12], where the angle
µ, which is close to but not exactly equal to the azimuthal rotation ϕ, is rotated to reach different diffraction peaks.
Thus, as the sample is rotated, the incident angle βin is not exactly equal to θ = 2.95◦, and thus the X-ray penetration
depth is not constant. Therefore, it is possible that the disparity in penetration depths when measuring different peaks
gives rise to the difference in the magnitude of peak intensity drop.

To quantitatively address this effect, we calculated the real X-ray incidence angles and corresponding penetration
depths for the three CDW peaks: (0, -1.5, 2.5) peak: βin = 2.94◦, δpr = 564 nm; (-0.5, -1, 2) peak: βin = 2.78◦,
δpr = 534 nm; (0, -1.5, 3) peak: βin = 2.89◦, δpr = 555 nm. We find a ∼5% variation in X-ray penetration depth.
Precisely, the intensity drops with accurate δpr values are 0.1%, 0.4%, and 0.3% larger than the intensity drops with
an identical δpr = 568 nm, corresponding to a constant βin = θ = 2.95◦, for the (0 -1.5 2.5), (-0.5 -1 2), and (0 -1.5
3) peaks, respectively. These disparities cannot account for the difference in the measured intensity drop of different
peaks, which are at least one order of magnitude larger. To induce an “artificial” difference solely from penetration
depth mismatch between different peaks, a ∼55% variation in x-ray penetration depth would be required, which is
impractically large. Therefore, we can confidently rule out the variation in βin as the primary cause of the disparity
in the amount of melting of different peaks.

The optical pump penetration depth could also vary as we rotate µ, if the sample is anisotropic in plane. Here, we
show that the optical in-plane anisotropy of CsV3Sb5 is negligible for our measurement. First, the space groups of the
MLL and LLL phases are Fmmm (point group D2h) and P6/mmm (point group D6h), respectively. The symmetry
of the latter necessitates strict in-plane isotropy of the optical constant, while the former does not. However, previous
Raman spectroscopy measurements on Ag and E2g modes indicate no polarization-angle dependence both above and
below Tc [18]. Additionally, no reports of in-plane anisotropy have emerged from optical conductivity measurements
[28, 32]. These findings suggest negligible optical in-plane anisotropy, if any, when both phases coexist. Furthermore,
we only moderately rotate µ by ∼15◦ to reach the three peaks. Therefore, the change in pump penetration depth due
to the in-plane anisotropy is negligible when measuring the three peaks.

Static-strain induced spatial inhomogeneity of CDW domains

Assuming the coexistence of two CDW domains (MLL and LLL) and a static strain around the sample surface
induced by cleavage, the CDW domain sizes around the surface can deviate from those in the deeper bulk. Since
the surface domains are predominantly melted by light, the observed diffraction would primarily stem from the less
perturbed bulk and the melting of only surface layers could result in a change in the measured peak width, which
seems to explain the anomalous peak width alteration in our data. However, we provide four perspectives against this
scenario as follows.

First, we note that the interlayer interaction in CsV3Sb5 is rather weak. We can easily exfoliate a few top layers off
the sample with tape, instead of cleaving conventional 3D bulk samples by knocking off a post glued on the sample
surface with epoxy. The weak interlayer coupling leads to inefficient strain transfer, and thus the strain induced
by exfoliation, if any, should affect only a few layers near the sample surface. Moreover, investigations on AV3Sb5
using surface-sensitive techniques like angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling
microscopy (STM) show no evidence that cleavage alters the CDW distribution or structure, although cleavage has
been routinely employed in these measurements.

Second, to more accurately assess the strain generated by exfoliation, we performed a toy-model calculation as
illustrated in Supplementary Figure 15. In the mechanical exfoliation process, normal (F⊥) and shear forces (F//)
are applied to the sample surface. With an order of magnitude estimate, both forces should not be over ∼ 1 N. These
forces will thus induce a pressure P = F/A ∼ 1 N/(2 mm×2 mm) ∼ 0.0002 GPa, resulting in lattice deformation
both perpendicular (∆L) and parallel (∆x) to the sample surface. The magnitudes of the perpendicular (∆L/L) and
parallel (∆x/L) strains are determined by the Young’s modulus (E) and shear modulus (G) of the sample, which
are around 89 and 33 GPa, respectively, based on DFT calculations [33]. These values yield ∆L/L = 0.0002% and
∆x/L = 0.0006%, respectively. Given L ∼ 50 µm, we have ∆L ∼ 1 Å and ∆x ∼ 3 Å. These values are even smaller
than the dimension of one unit cell, which can hardly induce changes in the CDW domain sizes. Even if we assume



22

distortion occurs entirely in one domain, e.g. LLL, the relative change in domain size due to exfoliation along the two
directions should be ∆L/σ⊥ ∼ 1 Å/23 nm = 0.4% and ∆x/σ// ∼ 3 Å/55 nm = 0.5%, respectively. If light does not
modulate the domain sizes of different CDW structures but merely melt the topmost domains, the expected change
in the integrated peak width σ⊥ and σ// within the probed region (∼560 nm) would be both around 0.01%. This
is at least two orders of magnitude smaller than our measured values (∼12% and 3%, respectively). Consequently,
the strain generated in the exfoliation process alone cannot account for the orders of magnitude larger peak width
changes.

F┴

F//

F┴

A

L

ΔL
F//

A

L

Δx

a b c

Supplementary Figure 15. Illustration of a, the forces generated in the exfoliation process, b, Young’s modulus, and c, shear
modulus.

For reference, previous experiments on CsV3Sb5 that investigated the change in Tc as a function of hydrostatic
pressure [34–36] and uniaxial strain [37] also confirmed the negligible change in CDW induced by such a small
strain/pressure. Specifically, with a pressure of 0.0002 GPa and 0.0006% strain, the anticipated relative changes in
Tc should be around 0.001 K/91 K ∼ 0.001% and 0.0001 K/91 K ∼ 0.0001%, respectively.
Third, the temporal evolution of the peak width also provides evidence against this scenario. If the peak width

change simply arises from the melting of the surface layers with different domain sizes, a synchronized change in peak
intensity and width would be anticipated. To interrogate the initial changes in peak width and intensity, we closely
examine their dynamics around time zero as shown in Supplementary Figure 16. We note that although the intensity
decreases within ∼0.2 ps upon light excitation, potentially constrained by the time resolution, the peak width along
both q// and q⊥ directions shows a notable delay which continues to increase until ∼0.7 ps, a duration not limited by
the temporal resolution. This temporal disparity unequivocally contradicts the proposed scenario.
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Supplementary Figure 16. Temporal evolution of the intensity and the width along q// and q⊥ directions of the (0 -1.5 3) peak

pumped at F = 0.25 (light green) and 2.5 mJ/cm2 (dark green). Solid colored lines are fits to a single exponential decay. The
vertical dashed lines denote the time delay when the transient changes of each variable starts to saturate or decay.

Last, we need to note that, although the relative changes in peak width along both q// and q⊥ directions for the
LLL peak are substantial, ∼3% and ∼12%, respectively, the absolute domain wall motion is not extensive, due to
the relatively small static domain size of LLL, as demonstrated in Supplementary Note 9. The absolute domain
wall motion along the two directions are ∆x = 100 × 5.5 Å×3% = 16.5 Å and ∆z = 25 × 9 Å×12% = 27 Å. The
speed of expansion or contraction in domain size should be limited by the speed of sound. Inelastic X-ray scattering
measurements and ab initio calculations have reported the speed of sound in CsV3Sb5 in a range from 2300 to 4600
m/s [7, 33]. Taking the mean value of 3400 m/s, the estimated time required for the domain wall motion along the
two directions is ∼0.5 ps and ∼0.8 ps, respectively, qualitatively consistent with our experimental results as shown
in Supplementary Figure 16. Therefore, our proposed mechanism of light-induced contraction of LLL domain and
expansion of MLL domain indeed provides a persuasive explanation for our data.
Considering these perspectives collectively, we believe that our proposed scenario of phase competition better aligns
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with our experimental observations. However, due to the limited signal-to-noise ratio of the peak width dynamics, we
refrain from reaching quantitative conclusions about the exact timing of peak width changes in the main text.
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