Supplementary Information – Online Resource 4

Evaluating cost-utility of continuous glucose monitoring in individuals with type 1 diabetes: a systematic review of methods and quality of studies using decision models and/or empirical data.

de Jong LA^{1*} (ORCID ID: 0000-0001-8814-0670), Li X² (ORCID ID: 0000-0002-0225-6937), Emamipour S³, van der Werf S⁴ (ORCID ID: 0000-0001-5856-7657), Postma MJ^{1,5}, van Dijk PR⁶ (ORCID ID: 0000-0002-9702-6551), Feenstra TL² (ORCID ID: 0000-0002-5788-0454)

¹ Department of Health Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands

² Unit of PharmacoTherapy, -Epidemiology & -Economics, University of Groningen, Groningen Research Institute of Pharmacy (GRIP), Groningen, the Netherlands

³ Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands

⁴Central Medical Library, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands

⁵ Department of Economics, Econometrics and Finance, Faculty of Economics & Business, University of Groningen, Groningen, the Netherlands

⁶ Department of Endocrinology. University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

*Corresponding author: <u>t.l.feenstra@rug.nl</u>

 Table 1. Utility instruments used in the included studies.
 Summary of cost-effectiveness outcomes

Publication (author year, country)	Cohort/Scenario	Original currency and price year	Incremental costs (2022 US\$)	Incremental QALYs	ICER (cost per QALY; 2022 US\$
Emamipour 2022, The Netherlands [1]	-	EUR 2016	-\$2,192	0.030	Dominant
Huang 2010, US [30]	Within-trial, HbA1c ≥ 7.0%	USD 2008 ^b	NR	NR	\$600,288
	Within-trial, HbA1c < 7.0%		NR	NR	\$554,248
	Long-term, HbA1c ≥ 7.0%		\$79,803	0.600	\$134,002
	Long-term, HbA1c < 7.0%		\$118,666	1.110	\$118,666
Ly 2014, Australia [2]	-	AUD 2013	\$1,320	0.037	\$15,456
Wan 2018, US [3]	Within-trial analysis	USD 2015	\$3,151	NR	NR
	Long-term analysis		\$68,114	0.540	\$121,043
Bilir 2018, Sweden [4]	-	SEK 2016	\$32,685	0.801	\$40,790
Chaugule 2017, Canada [5]	-	CAD 2016	\$111,236	3.354	\$33,163
Conget 2018, Spain [6]	NHS perspective	EUR 2016	\$92,466	1.880	\$49,262
	Societal perspective		\$79,606	1.880	\$42,410
Gomez 2016 , Colombia [7]	-	USD 2014	\$110,286	3.810	\$28,899
Isitt 2022, Australia [8]	rt-CGM vs SMBG	AUD 2020 ^a	\$16,921	1.199	\$14,119
	rt-CGM vs isCGM		\$8,669	0.569	\$15,243
Jendle 2017, Sweden [9]	Cohort with increased risk of hypoglycemia	SEK 2015	\$37,131	1.877	\$19,782
	Cohort with uncontrolled HbA1c at baseline		\$38,052	1.067	\$35,646
Jendle 2019, Sweden [10]	-	SEK 2018	\$42,039	1.900	\$22,161
Jendle 2021, Sweden [11]	-	SEK 2019 ^c	\$96,415	1.950	\$49,532
Kamble 2012, US [12]	SAPT with 3-d sensor	USD 2010	\$115,842	0.376	\$308,210
	SAPT with 6-d sensor		\$84,786	0.376	\$225,586
Lambadiari 2022, Greece [13]	vs SAP + PLGM	EUR 2015	-\$22,853	0.284	Dominant
	vs MDI + isCGM		\$179,383	2.708	\$66,246
Nicolucci 2018, Italy [14]	Cohort at increased risk of hypoglycemia	EUR 2014	\$119,372	1.877	\$63,597
	Cohort with uncontrolled HbA1c		\$122,957	1.448	\$84,908
Riemsma 2016, UK [15]	vs MDI + SMBG	GBP 2014	\$138,844	0.664	\$209,197
	vs CSII + SMBG		\$86,151	0.083	\$1,039,211
Roze 2015, Sweden [16]	-	SEK 2011	\$39,894	0.760	\$52,378

Roze 2016, France [17]	Cohort with an elevated risk for hypoglycemia	EUR 2014	\$57,278	1.187	\$48,258
	due to impaired awareness of hypoglycemia		¢50.520	1.425	¢25.206
Pozo 2016 UK [19]	Cohort with uncontrolled HbA1c	GBP 2013	\$50,530 \$64,111	1.435 2.990	\$35,206 \$21,447
Roze 2016, UK [18]	- Cohort with hyperglycomic at baseline	GBP 2015	\$41,386		\$28,580
Roze 2017, Denmark [19]	Cohort with hyperglycemia at baseline	DKK 2015		1.450	
	Cohort with an increased risk for hypoglycemia		\$30,887	1.880	\$16,455
Roze 2019, The Netherlands [20]	Cohort with hyperglycemia at baseline	EUR 2014	\$68,922	1.770	\$38,965
	Cohort with an increased risk for hypoglycemia		\$57,563	2.160	\$26,604
Roze 2019, Turkey [21]	Cohort with poor glycemic control at baseline	TRY 2016	\$80,866	1.403	\$57,638
	Cohort at increased risk for hypoglycemia		\$90,216	1.733	\$52,069
Roze 2020, UK [22]	Cohort reflecting the DIAMOND trial T1D population	GBP 2018	\$23,100	1.490	\$15,512
	Cohort reflecting the DIAMOND trial T1D population with baseline HbA1c at least 8.5% (69 mmol/mol)		\$21,383	1.390	\$15,382
Roze 2021, Canada [23]	-	CAD 2019	\$32,762	2.088	\$15,690
Roze 2021, UK [24]	-	GBP 2018	\$57,491	1.730	\$33,141
Roze 2021, France [25]	-	EUR 2020	\$32,198	1.380	\$23,339
Serné 2022, The Netherlands [26]	-	EUR 2020	\$22,082	2.230	\$9,898
Zhao 2021, China [27]	RCT scenario	CNY 2021	\$14,505	1.220	\$1,524
	RWE scenario		-\$430	1.320	Dominant
Garcia-Lorenzo 2018, Spain [28]	-	EUR 2017	\$224,678	0.046	\$4,858,767
Health Quality Ontario 2018, Canada [29]	CGM + MDI vs SMBG + MDI	CAD 2017	\$100,300	0.094	\$1,071,144
	SAP vs SMBG + MDI		\$128,211	0.132	\$973,669
	CGM + insulin pump vs SMBG + insulin pump		\$77,888	0.104	\$752,234
	SAP vs SMBG + insulin pump		\$78,299	0.137	\$572,088
McQueen 2011, US [31]	-	USD 2007	\$33,198	0.523	\$63,477
Pease 2020, Australia [32]	-	AUD 2019	\$105,672	3.724	\$29,828
Pease 2022, Australia [33]	-	AUD 2021	\$28,803	1.150	\$24,966
Rotondi 2022, Canada [34]	CGM vs SMBG	CAD 2021	NR	NR	\$31,165
	isCGM vs SMBG		NR	NR	\$15,564

^a NR; assumed price level two years before publication year.

^b NR; assumed the same price level as the year the trial was published.

^cNR; assumed the same price level for all costs as for the productivity losses.

Abbreviations: AUD, Australian dollars; CAD, Canadian dollars; CGM, continuous glucose monitoring; CNY, Chinese Yen; DKK, Danish Krone; EUR, euros; GBP, Great British pound; isCGM, intermittently-scanned continuous glucose monitoring; MDI, multiple daily injections; NR, not reported; RCT, randomized-controlled trial; SAP, sensor-augmented pump; SEK, Swedish krona; SMBG, self-monitoring of blood glucose; TRY, Turkish lira; T1D, type 1 diabetes; UK, United Kingdom; US, United States.

References

- 1. Emamipour S, van Dijk PR, Bilo HJG, Edens MA, van der Galiën O, Postma MJ, et al. Personalizing the Use of a Intermittently Scanned Continuous Glucose Monitoring (isCGM) Device in Individuals With Type 1 Diabetes: A Cost-Effectiveness Perspective in the Netherlands (FLARE-NL 9). J Diabetes Sci Technol. 2022.
- 2. Ly TT, Brnabic AJM, Eggleston A, Kolivos A, McBride ME, Schrover R, et al. A cost-effectiveness analysis of sensor-augmented insulin pump therapy and automated insulin suspension versus standard pump therapy for hypoglycemic unaware patients with type 1 diabetes. Value Health. 2014;17(5):561–9.
- 3. Wan W, Skandari MR, Minc A, Nathan AG, Winn A, Zarei P, et al. Cost-effectiveness of Continuous Glucose Monitoring for Adults With Type 1 Diabetes Compared With Self-Monitoring of Blood Glucose: The DIAMOND Randomized Trial. Diabetes Care. 2018 Jun 1;41(6):1227–34.
- 4. Bilir SP, Hellmund R, Wehler B, Li H, Munakata J, Lamotte M. Cost-effectiveness Analysis of a Flash Glucose Monitoring System for Patients with Type 1 Diabetes Receiving Intensive Insulin Treatment in Sweden. Eur Endocrinol. 2018 Sep 1;14(2):73–9.
- 5. Chaugule S, Graham C. Cost-effectiveness of G5 Mobile continuous glucose monitoring device compared to self-monitoring of blood glucose alone for people with type 1 diabetes from the Canadian societal perspective. J Med Econ. 2017 Nov 2;20(11):1128–35.
- 6. Conget I, Martín-Vaquero P, Roze S, Elías I, Pineda C, Álvarez M, et al. Cost-effectiveness analysis of sensor-augmented pump therapy with low glucose-suspend in patients with type 1 diabetes mellitus and high risk of hypoglycemia in Spain. Endocrinol Diabetes Nutr. 2018 Aug 1;65(7):380–6.
- 7. Gomez AM, Alfonso-Cristancho R, Orozco JJ, Lynch PM, Prieto D, Saunders R, et al. Clinical and economic benefits of integrated pump/CGM technology therapy in patients with type 1 diabetes in Colombia. Endocrinol Nutr. 2016 Nov 1;63(9):466–74.
- 8. Isitt JJ, Roze S. Long-term cost-effectiveness of Dexcom G6 real-time continuous glucose monitoring system in people with type 1 diabetes in Australia: Response to letter from Hellmund, Richard and Welsh, Zoe. Diabet Med. 2023 Feb 1;40(2).
- 9. Jendle J, Smith-Palmer J, Delbaere A, de Portu S, Papo N, Valentine W, et al. Cost-Effectiveness Analysis of Sensor-Augmented Insulin Pump Therapy with Automated Insulin Suspension Versus Standard Insulin Pump Therapy in Patients with Type 1 Diabetes in Sweden. Diabetes Ther. 2017 Oct 1;8(5):1015–30.
- 10. Jendle J, Pöhlmann J, De Portu S, Smith-Palmer J, Roze S. Cost-Effectiveness Analysis of the MiniMed 670G Hybrid Closed-Loop System Versus Continuous Subcutaneous Insulin Infusion for Treatment of Type 1 Diabetes. Diabetes Technol Ther. 2019 Mar 1;21(3):110–8.
- 11. Jendle J, Buompensiere MI, Holm AL, de Portu S, Malkin SJP, Cohen O. The Cost-Effectiveness of an Advanced Hybrid Closed-Loop System in People with Type 1 Diabetes: a Health Economic Analysis in Sweden. Diabetes Ther. 2021 Nov 1;12(11):2977–91.
- 12. Kamble S, Schulman KA, Reed SD. Cost-effectiveness of sensor-augmented pump therapy in adults with type 1 diabetes in the United States. Value Health. 2012 Jul;15(5):632–8.
- 13. Lambadiari V, Ozdemir Saltik AZ, De Portu S, Buompensiere MI, Kountouri A, Korakas E, et al. Cost-Effectiveness Analysis of an Advanced Hybrid Closed-Loop Insulin Delivery System in People with Type 1 Diabetes in Greece. Diabetes Technol Ther. 2022 May 1;24(5):316–23.

- 14. Nicolucci A, Rossi MC, D'Ostilio D, Delbaere A, de Portu S, Roze S. Cost-effectiveness of sensor-augmented pump therapy in two different patient populations with type 1 diabetes in Italy. Nutr Metab Cardiovasc Dis. 2018 Jul 1;28(7):707–15.
- 15. Riemsma R, Ramos IC, Birnie R, Büyükkaramikli N, Armstrong N, Ryder S, et al. Integrated sensor-augmented pump therapy systems [the MiniMed® Paradigm[™] Veo system and the Vibe[™] and G4® PLATINUM CGM (continuous glucose monitoring) system] for managing blood glucose levels in type 1 diabetes: a systematic review and economic evaluation. Health Technol Assess. 2016 Feb 1;20(17):1–252.
- 16. Roze S, Saunders R, Brandt AS, de Portu S, Papo NL, Jendle J. Health-economic analysis of real-time continuous glucose monitoring in people with Type 1 diabetes. Diabet Med. 2015 May 1;32(5):618–26.
- 17. Roze S, Smith-Palmer J, Valentine W, Payet V, De Portu S, Papo N, et al. Cost-Effectiveness of Sensor-Augmented Pump Therapy with Low Glucose Suspend Versus Standard Insulin Pump Therapy in Two Different Patient Populations with Type 1 Diabetes in France. Diabetes Technol Ther. 2016 Feb 1;18(2):75–84.
- 18. Roze S, Smith-Palmer J, Valentine WJ, Cook M, Jethwa M, De Portu S, et al. Long-term health economic benefits of sensor-augmented pump therapy vs continuous subcutaneous insulin infusion alone in type 1 diabetes: a U.K. perspective. J Med Econ. 2016 Mar 3;19(3):236–42.
- 19. Roze S, de Portu S, Smith-Palmer J, Delbaere A, Valentine W, Ridderstråle M. Cost-effectiveness of sensor-augmented pump therapy versus standard insulin pump therapy in patients with type 1 diabetes in Denmark. Diabetes Res Clin Pract. 2017 Jun 1;128:6–14.
- 20. Roze S, Smith-Palmer J, De Portu S, Delbaere A, De Brouwer B, De Valk HW. Cost-effectiveness of sensor-augmented insulin pump therapy vs continuous subcutaneous insulin infusion in patients with type 1 diabetes in the Netherlands. Clinicoecon Outcomes Res. 2019;11:73–82.
- 21. Roze S, Smith-Palmer J, De Portu S, Özdemir Saltik AZ, Akgül T, Deyneli O. Cost-Effectiveness of Sensor-Augmented Insulin Pump Therapy Versus Continuous Insulin Infusion in Patients with Type 1 Diabetes in Turkey. Diabetes Technol Ther. 2019 Dec 1;21(12):727–35.
- 22. Roze S, Isitt J, Smith-Palmer J, Javanbakht M, Lynch P. Long-term Cost-Effectiveness of Dexcom G6 Real-time Continuous Glucose Monitoring Versus Self-Monitoring of Blood Glucose in Patients With Type 1 Diabetes in the U.K. Diabetes Care. 2020 Oct 1;43(10):2411–7.
- 23. Roze S, Isitt JJ, Smith-Palmer J, Lynch P. Evaluation of the Long-Term Cost-Effectiveness of the Dexcom G6 Continuous Glucose Monitor versus Self-Monitoring of Blood Glucose in People with Type 1 Diabetes in Canada. Clinicoecon Outcomes Res. 2021;13:717–25.
- 24. Roze S, Buompensiere MI, Ozdemir Z, de Portu S, Cohen O. Cost-effectiveness of a novel hybrid closed-loop system compared with continuous subcutaneous insulin infusion in people with type 1 diabetes in the UK. J Med Econ. 2021;24(1):883–90.
- 25. Roze S, Isitt JJ, Smith-Palmer J, Lynch P, Klinkenbijl B, Zammit G, et al. Long-Term Cost-Effectiveness the Dexcom G6 Real-Time Continuous Glucose Monitoring System Compared with Self-Monitoring of Blood Glucose in People with Type 1 Diabetes in France. Diabetes Ther. 2021 Jan 1;12(1):235–46.
- 26. Serné EH, Roze S, Buompensiere MI, Valentine WJ, De Portu S, de Valk HW. Cost-Effectiveness of Hybrid Closed Loop Insulin Pumps Versus Multiple Daily Injections Plus Intermittently Scanned Glucose Monitoring in People With Type 1 Diabetes in The Netherlands. Adv Ther. 2022 Apr 1;39(4):1844–56.
- 27. Zhao X, Ming J, Qu S, Li HJ, Wu J, Ji L, et al. Cost-Effectiveness of Flash Glucose Monitoring for the Management of Patients with Type 1 and Patients with Type 2 Diabetes in China. Diabetes Ther. 2021 Dec 1;12(12):3079–92.
- 28. García-Lorenzo B, Rivero-Santana A, Vallejo-Torres L, Castilla-Rodríguez I, García-Pérez S, García-Pérez L, et al. Cost-effectiveness analysis of real-time continuous monitoring glucose compared to self-monitoring of blood glucose for diabetes mellitus in Spain. J Eval Clin Pract. 2018 Aug 1;24(4):772–81.
- 29. Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment. Ontario; 2018 Feb.
- 30. Huang ES, O'Grady M, Basu A, Winn A, John P, Lee J, et al. The cost-effectiveness of continuous glucose monitoring in type 1 diabetes. Diabetes Care. 2010 Jun;33(6):1269–74.

- 31. McQueen RB, Ellis SL, Campbell JD, Nair K V., Sullivan PW. Cost-effectiveness of continuous glucose monitoring and intensive insulin therapy for type 1 diabetes. Cost Eff Resour Alloc. 2011 Sep 14;9.
- 32. Pease A, Zomer E, Liew D, Earnest A, Soldatos G, Ademi Z, et al. Cost-Effectiveness Analysis of a Hybrid Closed-Loop System Versus Multiple Daily Injections and Capillary Glucose Testing for Adults with Type 1 Diabetes. Diabetes Technol Ther. 2020 Nov 1;22(11):812–21.
- 33. Pease A, Callander E, Zomer E, Abraham MB, Davis EA, Jones TW, et al. The Cost of Control: Cost-effectiveness Analysis of Hybrid Closed-Loop Therapy in Youth. Diabetes Care. 2022 Sep 1;45(9):1971–80.
- 34. Rotondi MA, Wong O, Riddell M, Perkins B. Population-Level Impact and Cost-effectiveness of Continuous Glucose Monitoring and Intermittently Scanned Continuous Glucose;45(9):2012–9.