Supplementary Information – Online Resource 6

Evaluating cost-utility of continuous glucose monitoring in individuals with type 1 diabetes: a systematic review of methods and quality of studies using decision models and/or empirical data.

de Jong LA^{1*} (ORCID ID: 0000-0001-8814-0670), Li X^2 (ORCID ID: 0000-0002-0225-6937), Emamipour S³, van der Werf S⁴ (ORCID ID: 0000-0001-5856-7657), Postma MJ^{1,5}, van Dijk PR⁶ (ORCID ID: 0000-0002-9702-6551), Feenstra TL² (ORCID ID: 0000-0002-5788-0454)

¹ Department of Health Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands

² Unit of PharmacoTherapy, -Epidemiology & -Economics, University of Groningen, Groningen Research Institute of Pharmacy (GRIP), Groningen, the Netherlands

³ Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands

⁴ Central Medical Library, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands

⁵ Department of Economics, Econometrics and Finance, Faculty of Economics & Business, University of Groningen, Groningen, the Netherlands

⁶ Department of Endocrinology. University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

*Corresponding author: <u>t.l.feenstra@rug.nl</u>

Tabel 1. Funding information per included study.

Publication (author year, country)	Model- or empirical- data-based?	Funding	Funding type	Employees or shareholder of funder?	Employees of organization that received funding?	Authors received honoraria from the funder/organiz ations with interest in the research?	Authors received materials from funder for free or with discount?	Cost- effective?* *
Emamipour 2022, The Netherlands [1]	Empirical- data-based	European Union's Horizon 2020	Public	_	_	_	_	Yes
Ly 2014, Australia [2]	Empirical- data-based	Medtronic and the Juvenile Diabetes Research Foundation	Industry + public	_	_	✓	-	Yes
Wan 2018, US [3]	Both	Dexcom and the National Institute of Diabetes and Digestive and Kidney Diseases Chicago Center for Diabetes Translation Research	Industry + public	_	_	_	_	Yes
Bilir 2018, Sweden [4]	Model- based	Abbott	Industry	✓	✓	_	_	Yes
Chaugule 2017, Canada [5]	Model- based	Dexcom	Industry	✓	_	_	_	Yes
Conget 2018, Spain [6]	Model- based	Medtronic	Industry	✓	✓	_	_	Yes
Gomez 2016 , Colombia [7]	Model- based	Medtronic	Industry	✓	✓	_	_	Yes
Isitt 2022, Australia	Model- based	Dexcom	Industry	_	_	_	_	Yes
Jendle 2017, Sweden [9]	Model- based	Medtronic	Industry	✓	✓	✓	-	Yes
Jendle 2019, Sweden [10]	Model- based	Medtronic	Industry	✓	✓	✓	-	Yes

Jendle 2021, Sweden [11]	Model- based	Medtronic	Industry	✓	✓	✓	_	Yes
Kamble 2012, US [12]	Model- based	Medtronic	Industry + public	✓	-	_	_	No
Lambadiari 2022, Greece [13]	Model- based	Medtronic	Industry	✓	✓	_	_	Yes
Nicolucci 2018, Italy [14]	Model- based	Medtronic	Industry	✓	✓	_	_	Yes
Riemsma 2016, UK [15]	Model- based	HTA program on behalf of NICE	Public	_		_	_	No
Roze 2015, Sweden [16]	Model- based	Medtronic	Industry	✓	✓	✓	_	Yes
Roze 2016, France [17]	Model- based	Medtronic	Industry	✓	✓	_	_	Yes
Roze 2016, UK [18]	Model- based	Medtronic	Industry	✓	✓	✓	_	Yes
Roze 2017, Denmark [19]	Model- based	Medtronic	Industry	✓	✓	✓	_	Yes
Roze 2019, The Netherlands [20]	Model- based	Medtronic	Industry	✓	✓	✓	_	Yes
Roze 2019, Turkey [21]	Model- based	Medtronic	Industry	✓	✓	✓	_	Yes
Roze 2020, UK [22]	Model- based	Dexcom	Industry	✓	✓	_	_	Yes
Roze 2021, Canada [23]	Model- based	Dexcom	Industry	✓	✓	✓	_	Yes
Roze 2021, UK [24]	Model- based	Dexcom	Industry	✓	✓	_	_	Yes
Roze 2021, France [25]	Model- based	Medtronic	Industry	✓	✓	_	_	Yes
Serné 2022, The Netherlands [26]	Model- based	Medtronic	Industry	✓	✓	_	_	Yes
Zhao 2021, China [27]	Model- based	Abbott	Industry	_	✓	_	_	Yes
Garcia-Lorenzo 2018, Spain [28]	Model- based	Canary Islands Health Research Foundation;	Public	_	-	_	_	No

		Carlos III Health Institute; Spanish Ministry of Health, Social Services, and Equality in Spain.						
Health Quality Ontario 2018, Canada [29]	Model- based	OHTAC (governmental agency)/Health Quality Ontario	Public	_	_	_	_	No
Huang 2010, US [30]	Model- based	Juvenile Diabetes Research Foundation	Public	_	_	✓	✓	Yes
McQueen 2011, US [31]	Model- based	-	NA	_	_	_	_	Yes
Pease 2020, Australia [32]	Model- based	-	NA	_	_	_	_	Yes
Pease 2022, Australia [33]	Model- based	Royal Australasian College of Physicians/Diabetes Australia Research Establishment Fellowship	Public	_	-	√	_	Yes
Rotondi 2022, Canada [34]	Model- based	Juvenile Diabetes Research Foundation	Public	-	_	✓	_	Yes

Abbreviations: NA, not applicable; UK, United Kingdom; US, United States.

References

- 1. Emamipour S, van Dijk PR, Bilo HJG, Edens MA, van der Galiën O, Postma MJ, et al. Personalizing the Use of a Intermittently Scanned Continuous Glucose Monitoring (isCGM)

 Device in Individuals With Type 1 Diabetes: A Cost-Effectiveness Perspective in the Netherlands (FLARE-NL 9). J Diabetes Sci Technol. 2022 Jul 9:19322968221109841.
- 2. Ly TT, Brnabic AJM, Eggleston A, Kolivos A, McBride ME, Schrover R, et al. A cost-effectiveness analysis of sensor-augmented insulin pump therapy and automated insulin suspension versus standard pump therapy for hypoglycemic unaware patients with type 1 diabetes. Value Health. 2014;17(5):561–9.
- 3. Wan W, Skandari MR, Minc A, Nathan AG, Winn A, Zarei P, et al. Cost-effectiveness of Continuous Glucose Monitoring for Adults With Type 1 Diabetes Compared With Self-Monitoring of Blood Glucose: The DIAMOND Randomized Trial. Diabetes Care. 2018 Jun 1;41(6):1227–34.
- 4. Bilir SP, Hellmund R, Wehler B, Li H, Munakata J, Lamotte M. Cost-effectiveness Analysis of a Flash Glucose Monitoring System for Patients with Type 1 Diabetes Receiving Intensive Insulin Treatment in Sweden. Eur Endocrinol. 2018 Sep 1;14(2):73–9.

- 5. Chaugule S, Graham C. Cost-effectiveness of G5 Mobile continuous glucose monitoring device compared to self-monitoring of blood glucose alone for people with type 1 diabetes from the Canadian societal perspective. J Med Econ. 2017 Nov 2;20(11):1128–35.
- 6. Conget I, Martín-Vaquero P, Roze S, Elías I, Pineda C, Álvarez M, et al. Cost-effectiveness analysis of sensor-augmented pump therapy with low glucose-suspend in patients with type 1 diabetes mellitus and high risk of hypoglycemia in Spain. Endocrinol Diabetes Nutr. 2018 Aug 1;65(7):380–6.
- 7. Gomez AM, Alfonso-Cristancho R, Orozco JJ, Lynch PM, Prieto D, Saunders R, et al. Clinical and economic benefits of integrated pump/CGM technology therapy in patients with type 1 diabetes in Colombia. Endocrinol Nutr. 2016 Nov 1;63(9):466–74.
- 8. Isitt JJ, Roze S, Tilden D, Arora N, Palmer AJ, Jones T, Rentoul D, Lynch P. Long-term cost-effectiveness of Dexcom G6 real-time continuous glucose monitoring system in people with type 1 diabetes in Australia. Diabet Med. 2022 Jul;39(7):e14831.
- 9. Jendle J, Smith-Palmer J, Delbaere A, de Portu S, Papo N, Valentine W, et al. Cost-Effectiveness Analysis of Sensor-Augmented Insulin Pump Therapy with Automated Insulin Suspension Versus Standard Insulin Pump Therapy in Patients with Type 1 Diabetes in Sweden. Diabetes Ther. 2017 Oct 1;8(5):1015–30.
- 10. Jendle J, Pöhlmann J, De Portu S, Smith-Palmer J, Roze S. Cost-Effectiveness Analysis of the MiniMed 670G Hybrid Closed-Loop System Versus Continuous Subcutaneous Insulin Infusion for Treatment of Type 1 Diabetes. Diabetes Technol Ther. 2019 Mar 1;21(3):110–8.
- 11. Jendle J, Buompensiere MI, Holm AL, de Portu S, Malkin SJP, Cohen O. The Cost-Effectiveness of an Advanced Hybrid Closed-Loop System in People with Type 1 Diabetes: a Health Economic Analysis in Sweden. Diabetes Ther. 2021 Nov 1;12(11):2977–91.
- 12. Kamble S, Schulman KA, Reed SD. Cost-effectiveness of sensor-augmented pump therapy in adults with type 1 diabetes in the United States. Value Health. 2012 Jul;15(5):632–8.
- 13. Lambadiari V, Ozdemir Saltik AZ, De Portu S, Buompensiere MI, Kountouri A, Korakas E, et al. Cost-Effectiveness Analysis of an Advanced Hybrid Closed-Loop Insulin Delivery System in People with Type 1 Diabetes in Greece. Diabetes Technol Ther. 2022 May 1;24(5):316–23.
- 14. Nicolucci A, Rossi MC, D'Ostilio D, Delbaere A, de Portu S, Roze S. Cost-effectiveness of sensor-augmented pump therapy in two different patient populations with type 1 diabetes in Italy. Nutr Metab Cardiovasc Dis. 2018 Jul 1;28(7):707–15.
- 15. Riemsma R, Ramos IC, Birnie R, Büyükkaramikli N, Armstrong N, Ryder S, et al. Integrated sensor-augmented pump therapy systems [the MiniMed® Paradigm™ Veo system and the Vibe™ and G4® PLATINUM CGM (continuous glucose monitoring) system] for managing blood glucose levels in type 1 diabetes: a systematic review and economic evaluation. Health Technol Assess. 2016 Feb 1;20(17):1–252.
- 16. Roze S, Saunders R, Brandt AS, de Portu S, Papo NL, Jendle J. Health-economic analysis of real-time continuous glucose monitoring in people with Type 1 diabetes. Diabet Med. 2015 May 1;32(5):618–26.
- 17. Roze S, Smith-Palmer J, Valentine W, Payet V, De Portu S, Papo N, et al. Cost-Effectiveness of Sensor-Augmented Pump Therapy with Low Glucose Suspend Versus Standard Insulin Pump Therapy in Two Different Patient Populations with Type 1 Diabetes in France. Diabetes Technol Ther. 2016 Feb 1;18(2):75–84.
- 18. Roze S, Smith-Palmer J, Valentine WJ, Cook M, Jethwa M, De Portu S, et al. Long-term health economic benefits of sensor-augmented pump therapy vs continuous subcutaneous insulin infusion alone in type 1 diabetes: a U.K. perspective. J Med Econ. 2016 Mar 3;19(3):236–42.
- 19. Roze S, de Portu S, Smith-Palmer J, Delbaere A, Valentine W, Ridderstråle M. Cost-effectiveness of sensor-augmented pump therapy versus standard insulin pump therapy in patients with type 1 diabetes in Denmark. Diabetes Res Clin Pract. 2017 Jun 1;128:6–14.
- 20. Roze S, Smith-Palmer J, De Portu S, Delbaere A, De Brouwer B, De Valk HW. Cost-effectiveness of sensor-augmented insulin pump therapy vs continuous subcutaneous insulin infusion in patients with type 1 diabetes in the Netherlands. Clinicoecon Outcomes Res. 2019;11:73–82.

- 21. Roze S, Smith-Palmer J, De Portu S, Özdemir Saltik AZ, Akgül T, Deyneli O. Cost-Effectiveness of Sensor-Augmented Insulin Pump Therapy Versus Continuous Insulin Infusion in Patients with Type 1 Diabetes in Turkey. Diabetes Technol Ther. 2019 Dec 1;21(12):727–35.
- 22. Roze S, Isitt J, Smith-Palmer J, Javanbakht M, Lynch P. Long-term Cost-Effectiveness of Dexcom G6 Real-time Continuous Glucose Monitoring Versus Self-Monitoring of Blood Glucose in Patients With Type 1 Diabetes in the U.K. Diabetes Care. 2020 Oct 1;43(10):2411–7.
- 23. Roze S, Isitt JJ, Smith-Palmer J, Lynch P. Evaluation of the Long-Term Cost-Effectiveness of the Dexcom G6 Continuous Glucose Monitor versus Self-Monitoring of Blood Glucose in People with Type 1 Diabetes in Canada. Clinicoecon Outcomes Res. 2021;13:717–25.
- 24. Roze S, Buompensiere MI, Ozdemir Z, de Portu S, Cohen O. Cost-effectiveness of a novel hybrid closed-loop system compared with continuous subcutaneous insulin infusion in people with type 1 diabetes in the UK. J Med Econ. 2021;24(1):883–90.
- 25. Roze S, Isitt JJ, Smith-Palmer J, Lynch P, Klinkenbijl B, Zammit G, et al. Long-Term Cost-Effectiveness the Dexcom G6 Real-Time Continuous Glucose Monitoring System Compared with Self-Monitoring of Blood Glucose in People with Type 1 Diabetes in France. Diabetes Ther. 2021 Jan 1;12(1):235–46.
- 26. Serné EH, Roze S, Buompensiere MI, Valentine WJ, De Portu S, de Valk HW. Cost-Effectiveness of Hybrid Closed Loop Insulin Pumps Versus Multiple Daily Injections Plus Intermittently Scanned Glucose Monitoring in People With Type 1 Diabetes in The Netherlands. Adv Ther. 2022 Apr 1;39(4):1844–56.
- 27. Zhao X, Ming J, Qu S, Li HJ, Wu J, Ji L, et al. Cost-Effectiveness of Flash Glucose Monitoring for the Management of Patients with Type 1 and Patients with Type 2 Diabetes in China. Diabetes Ther. 2021 Dec 1;12(12):3079–92.
- 28. García-Lorenzo B, Rivero-Santana A, Vallejo-Torres L, Castilla-Rodríguez I, García-Pérez S, García-Pérez L, et al. Cost-effectiveness analysis of real-time continuous monitoring glucose compared to self-monitoring of blood glucose for diabetes mellitus in Spain. J Eval Clin Pract. 2018 Aug 1;24(4):772–81.
- 29. Health Quality Ontario. Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment. Ont Health Technol Assess Ser. 2018 Feb 21;18(2):1-160.
- 30. Huang ES, O'Grady M, Basu A, Winn A, John P, Lee J, et al. The cost-effectiveness of continuous glucose monitoring in type 1 diabetes. Diabetes Care. 2010 Jun;33(6):1269–74.
- 31. McQueen RB, Ellis SL, Campbell JD, Nair K V., Sullivan PW. Cost-effectiveness of continuous glucose monitoring and intensive insulin therapy for type 1 diabetes. Cost Eff Resour Alloc. 2011 Sep 14;9.
- Pease A, Zomer E, Liew D, Earnest A, Soldatos G, Ademi Z, et al. Cost-Effectiveness Analysis of a Hybrid Closed-Loop System Versus Multiple Daily Injections and Capillary Glucose Testing for Adults with Type 1 Diabetes. Diabetes Technol Ther. 2020 Nov 1;22(11):812–21.
- Pease A, Callander E, Zomer E, Abraham MB, Davis EA, Jones TW, et al. The Cost of Control: Cost-effectiveness Analysis of Hybrid Closed-Loop Therapy in Youth. Diabetes Care. 2022 Sep 1;45(9):1971–80.
- 34. Rotondi MA, Wong O, Riddell M, Perkins B. Population-Level Impact and Cost-effectiveness of Continuous Glucose Monitoring and Intermittently Scanned Continuous Glucose Monitoring Technologies for Adults With Type 1 Diabetes in Canada: A Modeling Study. Diabetes Care. 2022 Sep 1;45(9):2012–9.