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S1 Conceptual framework for solving the spectrum-to-molecule
approach

A conceptual framework for solving the three subproblems involved in the spectrum-to-molecule annotation
problem (Fig. S1).

Figure S1: A conceptual framework for solving the three subproblems involved in the spectrum-to-molecule
annotation problem: (1) representation learning of query spectra, (2) molecular attribute prediction from
spectral representation, and (3) ranking of candidate molecular attributes against predicted attributes.
Shown is a prediction of molecular attributes; however, the ranking is still applicable when predicting can-
didate de novo molecular structures.

S2 The Presence of difficult-to-rank molecules

We plot the distribution of the molecules at each rank (Fig. S2). All models do well in predicting the target
molecule correctly for a great number of molecules, and thus the high number of molecules at small rank
values. However, all models are challenged by difficult-to-rank molecules that result in high rank. These
molecules directly impact the average rank.

Our work herein in terms of peak dependency considerations and the learning on rank address this
challenge. Both MLP and GNN models improve in this regard when including peak dependencies (Fig.
S2A,B). The performance of ESP on the difficult-to-rank molecules is also improved when compared to the
ESP-SL and the ESP-RU models (Fig. S2C,D), thus supporting the improvement in average rank for ESP
over these two models.
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Figure S2: Number of test molecules at a particular rank. Our model improvements address the difficult-
to-rank molecules and hence improve the average rank. A) MLP-PD vs MLP model. B)GNN-PD vs GNN
model. C) ESP vs ESP-SL model D) ESP vs ESP-RU model.
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Table S1: Ablation study on the ESP model. See text on ablation studies in this supplement for experimental
details. The evaluation is on [M+H] precursor mode data for 100-molecule average candidate set size under
random data split. Average rank reports on the overall performance on the test set. Rank@k represents the
portion of correct identifications when considering the top k candidates.

Average rank Rank@1 Rank@3 Rank@10

The lower the better The higher the better

MLP 6.935 0.584 0.756 0.879
GNN 8.246 0.472 0.719 0.865

MLP-LDA 6.924 0.589 0.764 0.880
GNN-LDA 7.760 0.499 0.726 0.870

MLP-MixL 7.308 0.585 0.759 0.877
GNN-MixL 8.107 0.482 0.728 0.870

MLP-PD 7.272 0.592 0.756 0.878
GNN-PD 7.817 0.507 0.730 0.870

CONCAT-ENS 7.816 0.506 0.730 0.871

AVG-ENS 8.997 0.465 0.691 0.846

ESP-SL 6.764 0.600 0.763 0.884
ESP-RU 5.491 0.619 0.799 0.911

ESP 5.504 0.620 0.799 0.912

S3 Ablation studies on the ESP Model

To provide further detailed evaluation on the ESP model components, we evaluate the following variations
of the model and report the results in Table S1.

• MLP - Baseline

• GNN - Baseline

• MLP-MixL - MLP + label-mixing layer

• GNN-MixL - GNN + label-mixing layer

• MLP-LDA - MLP + multitasking on spectral motifs

• GNN-LDA - GNN + multitasking on spectral motifs

• MLP-PD - MLP + label-mixing layer + multitasking on spectral motifs

• GNN-PD - GNN + label-mixing layer + multitasking on spectral motifs

• CONCAT-ENS - Ensemble model using the concatenation of MLP and GNN embedding

• AVG-ENS - Ensemble model taking the average of MLP and GNN spectral predictions, thus weighting
each equally of the predicted spectra equally

• ESP-SL - Ensemble classifier is trained using importance weights in proportion to the spectral loss
differences (not rank differences).

• ESP-RU - Ensemble classifier is trained on the GNN/MLP labels generated based on ranking results,
but each training example is weighted uniformly.

Based on these results, the ESP model is the best performing model in every category except average rank,
where the performance is marginally worse than ESP-RU.
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Figure S3: Profiling candidate molecules retrieved from PubChem. A) Histogram of number of candidates (x-
axis) for the test molecules. B) Histogram of pairwise MACCS fingerprint similarity between target molecules
and their respective candidates. C) Scatter plot of candidate sets showing the size of the candidate-set (x-
axis) against similarity between target and candidates in each candidate set.

Figure S4: Comparing rank@k performance for ESP, GNN-PD, MLP-PD models for different candidate set
sizes of: A) 50 molecules, B) 100 molecules, C) 250 molecules, D) 1,000 molecules.

S4 Candidate set distributions

Distributions on the number of candidate sets retrieved from PubChem for each molecule in our test set
show a long tail distribution (Fig. S3A). The average number of candidates was 4,728 with a maximum of
48,292 candidates. The similarity of the candidate sets to the target molecule shows a normal distribution
(Fig. S3B). The sets with high molecular similarities indicate that there are candidates that are difficult to
rank. Our experiments show that ESP (and other models) are more challenged by high similarity candidate
sets. There is weak correlation between the similarity and size of the candidate sets (R2 is -0.63) (Fig. S3C).

S5 ESP, MLP-PD and GNN-PD performance as a function of
candidate set size and similarity

Both MLP-PD and GNN-PD models are more challenged with increasing dataset sizes from 50, to 100 to
250 to 1,000 candidates (Fig. S4). ESP outperforms GNN-PD and MLP-PD on the least similar candidate
sets (Fig. S5A). However, on the most similar candidate set, MLP-PD outperforms ESP on ranks 1-3, but
ESP outperforms MLP-PD on higher ranks (Fig. S5B). See also Table 1(B) in the main text.
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Figure S5: Comparing rank@k performance for ESP, GNN-PD, MLP-PD models for different candidate sets:
A) least similar candidate sets, B) most similar candidate sets.

Figure S6: Analysis for realistic data splits. A) Realistic split t-SNE plot, where grey clusters are. used for
training and red clusters are used for test). B) Comparing rank@k performance for ESP, GNN-PD, MLP-PD
models under realistic split set. C) Comparing rank@k for the full positive ion data set.
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Table S2: Metabolite annotation evaluation on full positive ion mode.

Average rank Rank@1 Rank@3 Rank@10

The lower the better The higher the better

MLP 8.584 0.562 0.728 0.853
GNN 9.536 0.468 0.686 0.844

MLP-PD 8.897 0.547 0.725 0.856
GNN-PD 8.995 0.466 0.692 0.846

ESP-SL 8.507 0.550 0.732 0.861
ESP-RU 8.201 0.553 0.736 0.865

ESP 8.057 0.556 0.741 0.867

S6 MLP-PD and GNN-PD performance on realistic data splits
and full-positive mode

The t-SNE plot shows distinct clusters on the test molecules (Fig. S6A). Under the realistic split, the models
are trained on the larger clusters and tested on the smaller clusters. ESP marginally outperforms GNN-PD
under the realistic split (Fig. S6B). When training on the full positive mode dataset, performance drops for
all models (Table S2, Fig. S6C).

S7 Annotation example

We provide an annotation example to highlight the influence of candidate similarity on candidate ranking
performances across all models. (Fig. S7). While the three baseline models rank the target molecule among
the top 3 candidates, ESP provides the correct ranking for the target molecule. MLP-PD and GNN-PD
provide improved ranking over the baselines, but rank the target molecule in second position.

S8 Peak dependency modeling

A label-mixing layer allows modeling peak dependencies (Fig. S8). The spectra with label-mixing, ŷco, is
computed based on L label-mixing layers. Label-mixing is learned through a lower dimensional matrix D.

S9 Model tuning

For MLP and GNN baseline models, we follow the author’s recommended guidelines on hyperparameter
tuning. Otherwise, the range of hyperparameter search is specified as follows. The dimension of the two
hidden layers of encoding ECFP fingerprint and instrument setting features are selected from {64, 128, 256,
512, 1024}. For all MLP, GNN, and ensemble classifier training, we optimize our models with the Adam
optimizer (Kingma and Ba, 2014) with learning rates selected among {10−2, 5∗10−3, 10−3, 5∗10−4, 10−4, 5∗
10−5, }. We apply dropout at a rate selected from {0.0, 0.3, 0.5, 0.7} and L2 norm at a weight selected from
{10−2, 10−3, . . . , 10−6}. For ensemble weighting strategy, we allow a maximum of 200 epochs.
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Figure S7: Metabolite annotation example for target molecule Propafenone. Shown are the 10 most and
least similar candidates with their respective fingerprint similarity scores.

Figure S8: Using label mixing to capture co-occurring spectral peaks. This mixing is applied based on
previous prediction ŷ, co-occurrence matrix Q, and weight matrix τ . The co-occurrence matrix, Q, is
approximated from the learned lower-dimension matrix D.
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