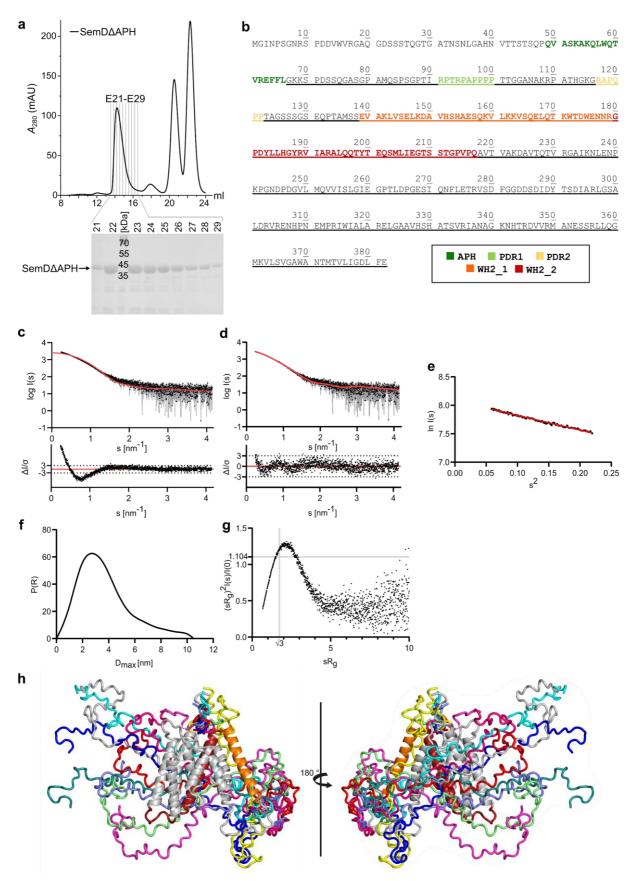
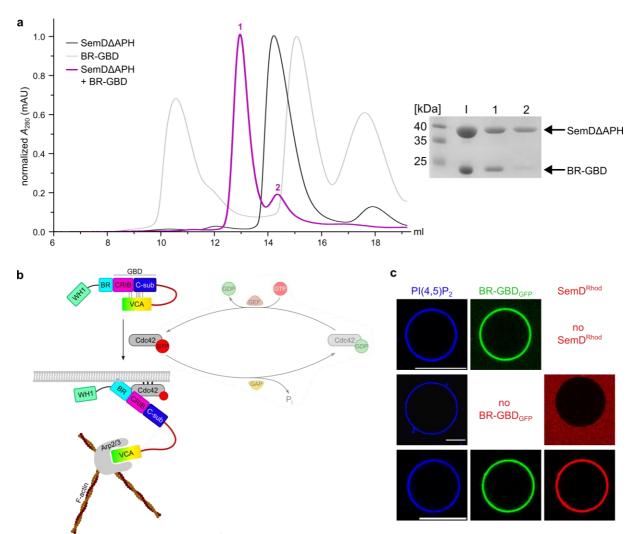
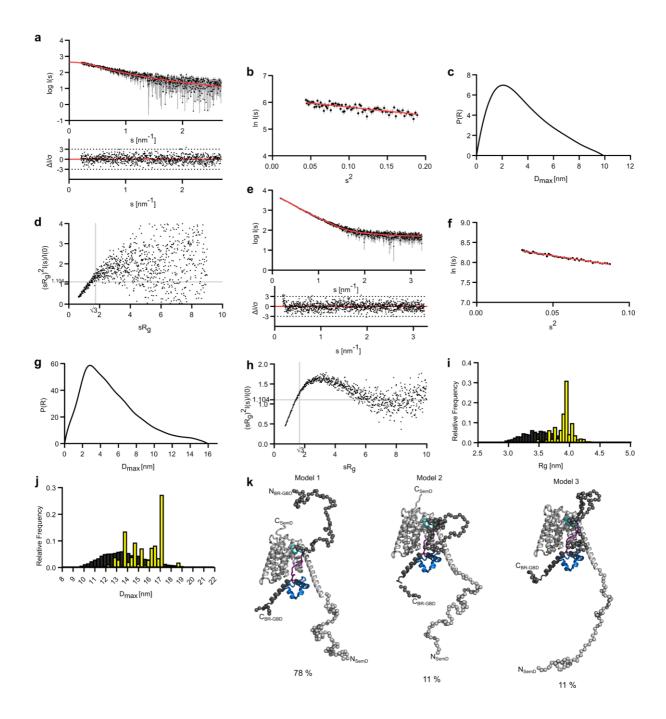
Supplementary Information


The Chlamydia pneumoniae effector SemD exploits its host's endocytic machinery by structural and functional mimicry

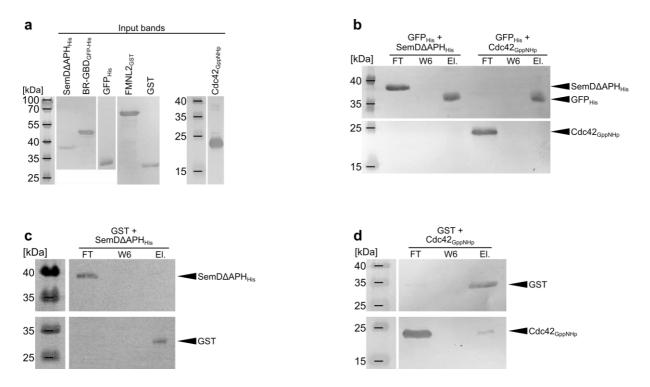
Kocher et al.


Supplementary Content

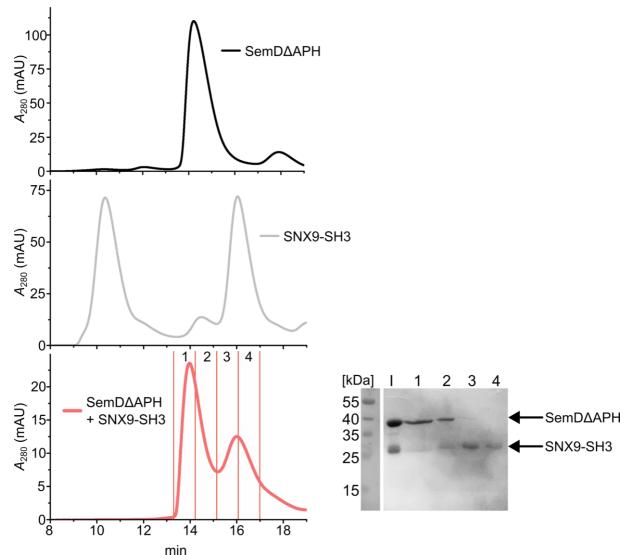
Supplementary Figures	2
Supplementary Tables	13
Supplementary References	19
Uncropped Scans of gels and blots	20


Supplementary Figures

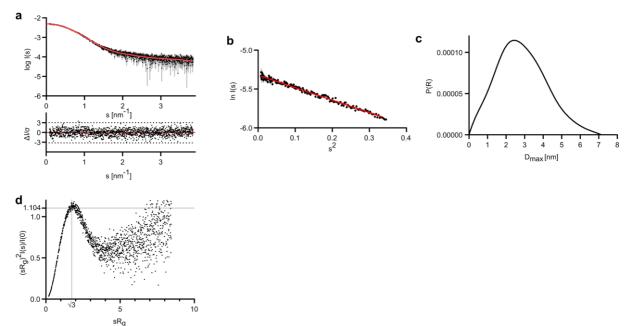
Supplementary Figure 1 SemDAPH purification and SAXS analysis. a SEC of SemDAAPH (top) in PBS, separated on a HiLoad 16/600 Superdex 200 pg column. From elution fractions 21-29, SDS samples were prepared and loaded on an SDS gel, stained with Coomassie brilliant blue (bottom). b Amino acid sequence of full length SemD (residues 1-382). The underlined fragment corresponds to SemDAPH (residues 67-382). Individual domains are marked: amphipathic helix (APH, darkgreen), proline-rich domains (PRD1: bright green, PRD2: yellow), WH2_1 (orange) and WH2 2 (red). c Theoretical scattering data of the SemDAAPH crystal structure. Experimental data are shown in black dots, with grey error bars. The theoretical scattering fit (χ^2 value of 14.63) created with CRYSOL, is shown as red line and below is the residual plot of the data. d Scattering data of SemDAPH. Experimental data are shown in black dots, with grey error bars. The best CORAL model fit (χ^2 value of 1.197) is shown as red line and below is the residual plot of the data. e The Guinier plot of SemDAAPH showed a stable Guinier region with a Rg of 2.78 nm. **f** The p(r) function of SemD Δ APH showed a globular molecule with an elongated part and a D_{max} value of 10.49 nm. g Dimensionless Kratky plot of SemDAAPH showed an elongated particle. Source data for c-g are provided as Source Data file. **h** Overlay of ten independent CORAL models with a χ^2 value ranging from 1.197 - 2.098. The SemD Δ APH crystal structure shown in cartoon representation was used as template and the missing residues were modelled with CORAL and shown as loops. The grey model (χ^2 value of 1.197) is shown in detail in Fig. 1c.

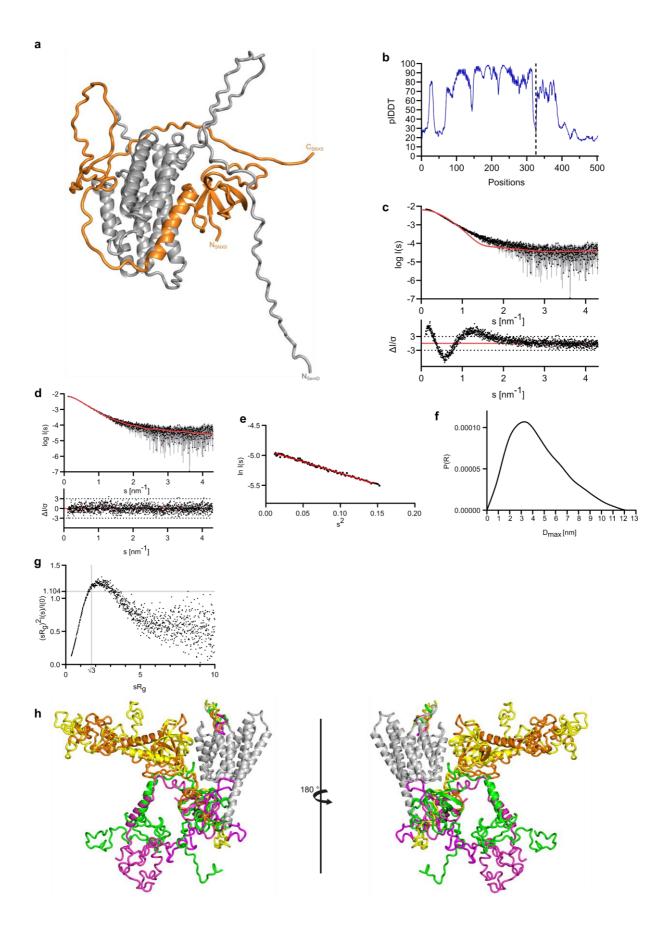


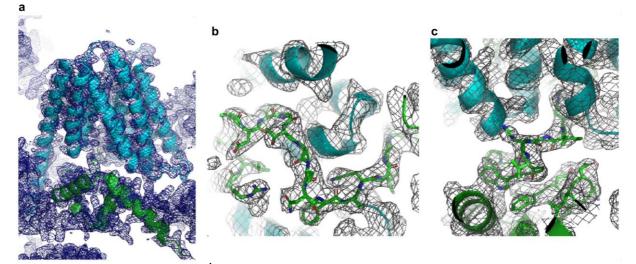
Supplementary Figure 2 | Complex formation of SemD Δ APH and BR-GBD. a SEC (*left*) for SemD Δ APH (black), BR-GBD (grey) and SemD Δ APH + BR-GBD (magenta). Protein composition of peak 1 and 2 were analysed on an SDS gel (*right*), stained with Coomassie brilliant blue. The gel was loaded from left to right with the SEC-input sample (I), Peak 1 (1) and Peak 2 (2). **b** Schematic representation of N-WASP activation by Cdc42_{GTP}. **c** Confocal images of PI(4,5)P₂-GUVs with rhodamine-labelled SemD (SemD^{Rhod}) and BR-GBD_{GFP}. (Scale bars 10 µm).



Supplementary Figure 3 | Small-angle X-ray scattering data from BR-GBD alone and SemD Δ APH in complex with BR-GBD. a Scattering data of BR-GBD. Experimental data are shown in black dots, with grey error bars. The GNOM fit is shown as red line and below is the residual plot of the data. **b** The Guinier plot of BR-GBD showed a stable Guinier region with a R_g of 3.01 nm. **c** The p(r) function of BR-GBD showed a globular molecule with an elongated part and a D_{max} value of 9.90 nm.


d The Dimensionless Kratky plot showed a high degree of flexibility for BR-GBD apo. e Scattering data of SemDAAPH in complex with BR-GBD. Experimental data are shown in black dots, with grey error bars. The EOM ensemble model fit is shown as red line and below is the residual plot of the data. f The Guinier plot of SemDAPH in complex with BR-GBD showed a stable Guinier region with a R_g of 4.19 nm. **g** The p(r)function of SemDAAPH in complex with BR-GBD showed an elongated particle with a D_{max} value of 15.94 nm. h The Dimensionless Kratky plot of SemD Δ APH in complex with BR-GBD showed an elongated particle with a high degree of flexibility. i&j R_g and D_{max} distribution of SemD Δ APH in complex with BR-GBD. Ensemble pool is shown in grey, selected EOM models are shown in yellow. The EOM analysis showed that the assembled complex (in blue) favoured a more extended conformation in comparison to the random pool (in grey). Source data for **a-j** are provided as Source Data File. **k** Selected EOM models from SemDAAPH in complex with N-WASP. The used parts from the crystal structure of SemDAAPH in complex with N-WASP are shown in cartoon representation and the missing termini parts in spheres. On the left site Model 1 with a volume fraction of 78 % is shown, in the middle and on the right are Model 2 and 3 with a volume fraction of 11 % each.


Supplementary Figure 4 Negative controls for pulldown assays from Figure 4. **a** Input bands for the recombinant and tagged proteins used for pulldown experiments from Fig. 4. **b** Negative control for GFP-Trap® pulldown experiments from Fig. 4a. SemDΔAPH_{His} and Cdc42_{GppNHp} were tested against GFP_{His}. flow-through (FT), W6 and Elution (El) were fractionated by SDS/PAGE and probed with anti-His for GFP_{His} and SemDΔAPH_{His} and anti-Cdc42 antibodies for Cdc42_{GppNHp}. **c**,**d** Negative control for GST-pulldown from Fig. 4e. SemDΔAPH_{His} and Cdc42_{GppNHp} were tested against GST. flow-through (FT), W6 and Elution (El) were fractionated by SDS/PAGE and probed with anti-GST for GST, anti-His for SemDΔAPH_{His} and anti-Cdc42 antibodies for Cdc42_{GppNHp}. Uncropped blots are provided as Source Data file.


Supplementary Figure 5 | Size exclusion data for SemD Δ APH and SNX9-SH3 complex purification. SEC for SemD Δ APH (top, black), SNX9-SH3 (middle, grey) and SemD Δ APH + SNX9-SH3 (bottom, red). For the elution fractions 1 to 4, SDS samples were prepared and the protein composition was analysed on an SDS gel (right), stained with Coomassie brilliant blue. The gel was loaded from left to right with the SEC-input sample (I) and elutions 1-4.

Supplementary Figure 6 | Small-angle X-ray scattering data from SNX9-SH3 alone. a Scattering data of SNX9-SH3 alone. Experimental data are shown in black dots, with grey error bars. The GNOM fit is shown as red line and below is the residual plot of the data. b The Guinier plot of SNX9-SH3 showed a stable Guinier region with a R_g of 2.20 nm. c The p(r) function of SNX9-SH3 apo showed a globular molecule with an elongated part and a D_{max} value of 7.14 nm. d The Dimensionless Kratky plot of SNX9-SH3 showed a compact globular molecule containing flexible parts. Source data for **a-d** are provided as Source Data file.

Supplementary Figure 7 | Small-angle X-ray scattering data from SemDAAPH in complex with SNX9-SH3. a An AlphaFold2 prediction of SemDAAPH (grey) in complex with SNX9-SH3 (orange). **b** pLDDT score from the AlphaFold2 prediction. The left part corresponds to SemDAPH and the right part to SNX9-SH3. **c** Theoretical scattering of the SemDAAPH in complex with SNX9-SH3 from AlpfaFold2 prediction. Experimental data are shown in black dots, with grey error bars. The theoretical scattering fit (χ^2 value of 8.49) created with CRYSOL, is shown as red line and below is the residual plot of the data. **d** The experimental Scattering data of SemDAPH in complex with SNX9-SH3 are shown in black dots, with grey error bars. The best CORAL model fit (x2 value of 1.018) is shown as red line and below is the residual plot of the data. e The Guinier plot of SemDAAPH in complex with SNX9-SH3 showed a stable Guinier region with a Rg of 3.39 nm. **f** The p(r) function of SemD Δ APH in complex with SNX9-SH3 showed an elongated molecule and a D_{max} value of 12.16 nm. g The Dimensionless Kratky plot of SemDAAPH in complex with SNX9-SH3 apo showed a compact globular molecule still containing flexible elements. Source data for **a-g** are provided as Source Data file. **h** Overlay of 4 independent CORAL models with a χ^2 value ranging from 1.018 – 1.092. The SemD Δ APH crystal structure (shown in grey) and the AlphaFold2 docking interface from SNX9-SH3 with the N-terminal part of SemDAAPH, shown in cartoon representation were used as templates and the missing residues as well as the orientation were modelled with CORAL. The orange model (χ 2 value of 1.018) is shown in detail in Fig. 5d.

Supplementary Figure 8 | **Electron density of the SemD – BR-GBD interface. a** Shown is the electron density of the overall structure of SemD (highlighted as blue cartoon) and BR-GBD (highlighted as green cartoon). **b,c** Zoom in on the interaction interface. For clarity reasons the SemD structure is shown as cartoon, whereas the BR-GBD protein is shown as sticks. The electron density (2F0-Fc) is shown as grey mesh, contoured at 1.0 sigma. Although the structure is of medium resolution, the side chains of BR-GBD are clearly visible in the electron density.

Supplementary Tables

Supplementary Table 1. Data collection and refinement statistics of the crystal structure of SemD Δ APH and SemD Δ APH - BR-GBD complex

	SemD∆APH	SemD∆APH + BR-GBD
Data collection		
Space group	P1	P 31 2 1
Cell dimensions		
a, b, c (Å)	46.99 51.95 58.62	120.22 120.22 65.24
α, β, γ (°)	88.33 105.89 117.43	90.0 90.0 120.0
Resolution (Å)	45.82 - 2.1 (2.175 - 2.1)*	52.06 - 3.3 (3.418 - 3.3) *
R _{sym} or R _{merge}	0.07588 (0.5214)	0.1328 (0.8603)
//σ/	10.61 (2.56)	17.63 (3.40)
Completeness (%)	97.65 (97.52)	99.66 (99.65)
Redundancy	3.5 (3.6)	20.7 (21.8)
Refinement		
Resolution (Å)	45.82 - 2.1 (2.175 - 2.1)*	52.06 - 3.3 (3.418 - 3.3) *
No. reflections	26816 (2675)	8408 (852)
Rwork / Rfree	0.2195 /0.2745	0.2277 /0.2439
No. atoms		
Protein	3560	2617
Ligand/ion	0	0
Water	216	0
B-factors	(Ask for input)	
Protein	38.76	92.85
Ligand/ion	-	
Water	40.8	-
R.m.s. deviations		
Bond lengths (Å)	0.011	0.012
Bond angles (°)	1.19	1.68

*Data collection resulted in both dataset from a single crystal. *Values in parentheses are for highest-resolution shell.

Supplementary Table 2. Overall SAXS Data of SemDΔAPH, BR-GBD, SNX9-SH3 and the corresponding complexes

Data collection parameters

SAXS Device		P12, PE	ETRA III, DESY Ha	amburg ¹	
Detector		PILATU	S 6 M (423.6 x 434	1.6 mm²)	
Detector distance (m)			3.0		
Beam size			120 μm x 200 μm		
Wavelength (nm)			0.124		
Sample environment		Quart	z glass capillary, 1	mm ø	
Absolute scaling method		Comparison	with scattering fro	m pure H ₂ O	
Normalization		To transmittee	d intensity by beam	n-stop counter	
Scattering intensity scale		Absolute	scale or relative so	cale, cm ⁻¹	
s range (nm ⁻¹) [‡]	0.03 – 7.0				
Sample	SemD∆APH apo	BR-GBD apo	SemD∆APH + BR-GBD	SNX9-SH3 apo	SemD∆APH + SNX9 SH3
Organism		Chlai	nydia pneumoniae	e GiD ²	
UniProt ID (range)	Q9Z7M7 (67-382)	O08816 (142-273)		Q9Y5X1 (1-160)	
Mode of measurement			Online SEC-SAXS	5	
SEC-Column		Superde	ex200 increase 10	/300 GL	
Flowrate (ml/min)			0.6		
Injection volume (µI)			100		
Temperature (°C)			20		
Exposure time (# frames)			0.995 s (2400)		
# frames used for averaging	19	22	17	46	63
Protein buffer	PBS (137 mM	NaCl, 2.7 mM ł	KCl, 10 mM Na₂HF 3% Glycerol	2O4, 1.8 mM KH	₂ PO ₄), pH 8.5,
Protein concentration (mg/ml)	8	10	8	3.3	3.3

Structural parameters

Guinier Analysis (PRIMUS)					
$l(0) \pm \sigma (cm^{-1})$	3224.17 ± 9.92	456.12 ± 13.03	4722.19 ± 35.06	0.0049 ± 0.000014	0.0073 ± 0.00002
$R_{g} \pm \sigma$ (nm)	2.78 ± 0.01	3.01 ± 0.13	4.19 ± 0.04	2.20 ± 0.01	3.39 ± 0.02
s-range (nm ⁻¹)	0.243 - 0.468	0.209 - 0.432	0.173 – 0.295	0.087 – 0.579	0.110 – 0.382
min < sRg < max limit	0.67 – 1.30	0.63 – 1.30	0.74 – 1.24	0.19 – 1.27	0.37 – 1.29
Data point range	1 - 82	1 - 81	1 - 45	1 - 170	1 - 95
Linear fit assessment (R ²)	0.99	0.64	0.98	0.98	0.99
PDDF/P(r) Analysis (GNOM)					
$I(0) \pm \sigma (cm^{-1})$	3279.00 ± 9.82	434.70 ± 8.56	4667.00 ± 34.88	0.0049 ± 0.000012	0.0074 ± 0.00003
$R_{g} \pm \sigma$ (nm)	2.95 ± 0.01	2.91 ± 0.06	4.29 ± 0.05	2.23 ± 0.007	3.53 ± 0.02
D _{max} (nm)	10.49	9.90	15.94	7.14	12.16
Porod volume (nm ³)	67.39	19.49	102.29	41.60	93.81
<i>s-range</i> (nm ⁻¹)	0.243 – 4.142	0.212 – 2.682	0.173 – 3.236	0.087 – 3.845	0.110 – 4.30
χ2 / CorMap P-value	0.925 / 0.081	1.013 / 0.579	1.070 / 0.234	0.972 / 0.076	0.977 / 0.759
Molecular mass (kDa)					
From <i>I</i> (0)	n.d.	n.d.	n.d.	n.d.	n.d.
From Qp ³	38.03	15.69	60.09	16.44	52.51
From MoW2 ⁴	37.53	18.91	48.24	16.79	46.93
From Vc⁵	37.22	16.79	43.03	21.95	49.44
Bayesian Inference ⁶	36.90	18.05	45.68	18.68	49.78
From sequence	35.13	19.74	54.87	18.80	53.90

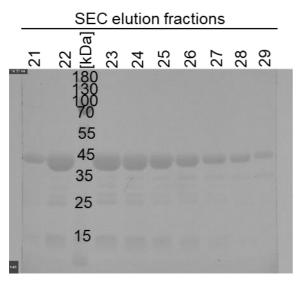
Rigid body modeling	Rigid	body	modeling
---------------------	-------	------	----------

CORAL					
Symmetry	P1				P1
s-range for fit (nm-1)	0.243 – 4.142				0.110 – 4.3
χ^2 , CorMap <i>P</i> -value	1.197 / 0.005				1.018 / 0.50
EOM					
Symmetry			P1		
s-range for fit (nm ⁻¹)			0.173 – 3.236		
χ^2 , CorMap <i>P</i> -value			1.107 / 0.033		
ASBDB accession codes ⁷	SASDTQ5	SASDTR5	SASDTU5	SASDTS5	SASDTT5
oftware					
ATSAS Software Version ⁸			3.0.5		
Primary data reduction		CHI	ROMIXS ⁹ / PRIM	US ¹⁰	
Data processing			GNOM ¹¹		
Rigid body modelling			CORAL ¹²		
Flexibility ensemble modelling			EOM ^{13,14}		
Structure validation			CRYSOL ¹⁵		
Statistic goodness-of-fit test			χ^2 , CorMap ¹⁶		
Model visualization			PyMOL ¹⁷		

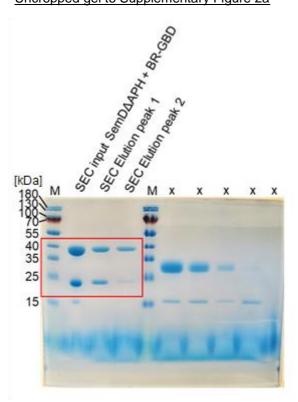
Supplementary Table 3. PCR Primers

Internal number	Name	Sequence (5' -3')
C-4130	Flag-BR_CRIB-TEV Hin	TAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGATTACA AAGACGATGACGATAAGGATTACAAAGACGATGACGATAAGTCTGAAA AAAGACGAGATGCTC
C-4131	Flag-BR_CRIB-TEV Her	CTCAATGGTGATGGTGATGATGGTGGTGATGGTGCTCGAGTCCTTGA AAATACAAGTTTTCTGCTTGCCTTCGGAGTTCAT
C-4214	CPn0677_co 67- 382 in pSL4 hin	AAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGGTAAGAAA AGCCCGGATAG
C-4215	CPn0677_co 67- 382 in pSL4 her	CCGGATCTCAATGGTGATGGTGATGATGGTGGTGATGGTGTTCGAAC AGATCACCAATCAG
C-4364	SNX9_SH3 in pSL4 hin	AAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGCCACCAAG GCTCGGGT
C-4365	SNX9_SH3 in pSL4 her	GATGATGGTGGTGATGGTGCTCGAGTGCGGCCGCAAGCTTACCAGTT GCTGGTCCTTGGTA
C-4428	P1 Dead her	CGTGGGTCGCCGGACGCTTCGCGTTCGCGCCACCGGTGGTCGCAAC CGCAACAGCCGCAACGGTCGCAACAATGGTCGCGCCGCTCGGGCTT TGCATC
C-4429	P2 Dead hin	CGGTGGCGCGAACGCGAAGCGTCCGGCGACCCACGGTAAGGGTGTT GCGGCGCAGGTTGCGACCGCGGGTAGCAGCAG
C-4430	677co in pSL4 hin	AAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGGTATCAAC CCGAGCGGCA
C-4483	pSL4 CRIB short For	TCCAGAAATCACAACAAACAGGTTTTATAGTTCACAAGTCGCAGATATT GGAACACCAAGTA
C-4484	pSL4 CRIB short Rev	GTCCAATGTGCTGGAAATTACTTGGTGTTCCAATATCTGCGACTTGTG AACTATAAAACCTG
C-4489	pKM431/436 sirGFP hin	CCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATATGTCTGAA AAAAGACGAGATGC
C-4490	pKM431/436 sirGFP her	GCACCACCCCGGTGAACAGCTCCTCGCCCTTGCTCACCATTGAACTA CCACTTGATCCCTCGAGTGCGGCCGCAAGCT
C-4581	SH3 in pDS94 hin	CTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGCCACC AAGGCTCGGGT
C-4582	SH3 in pDS94 her	ACCCCGGTGAACAGCTCCTCGCCCTTGCTCACCATTGAACTACCACTT GATCCAAGCTTACCAGTTGCTGGTCC
C-4565	pFK31_BR-Crib siGFP in pDS94 rvs	GCACCACCCCGGTGAACAGCTCCTCGCCCTTGCTCACCATTGAACTA CCACTTGATCCTGCTTGCCTTCGGAGTTC

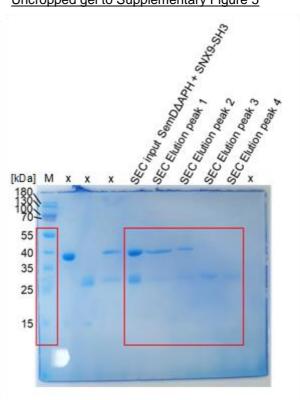
Name	Reference
pSL4	Luczak S. Dissertation ¹⁸
pDS94	This plasmid is based on: pET His6 GFP TEV LIC cloning vector (1GFP), gifted from Scott Gradia (Addgene plasmid # 29663; <u>http://n2t.net/addgene:29663</u> ; RRID:Addgene_29663) and was equipped with a 10x C-terminal His-tag and a CEN/ARS/TRP cassette


Supplementary Table 4. Plasmids

Supplementary References


- 1 Blanchet, C. E. *et al.* Versatile sample environments and automation for biological solution Xray scattering experiments at the P12 beamline (PETRA III, DESY). *J Appl Crystallogr* **48**, 431-443 (2015).
- 2 Jantos, C. A., Heck, S., Roggendorf, R., Sen-Gupta, M. & Hegemann, J. H. Antigenic and molecular analyses of different Chlamydia pneumoniae strains. *J. Clin. Microbiol.* **35**, 620-623 (1997).
- 3 Porod, G. Die Röntgenkleinwinkelstreuung Von Dichtgepackten Kolloiden Systemen 1 Teil. Kolloid-Zeitschrift and Zeitschrift Fur Polymere **124**, 83-114 (1951).
- 4 Fischer, H., de Oliveira Neto, M., Napolitano, H. B., Polikarpov, I. & Craievich, A. F. Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. *Journal of Applied Crystallography* **43**, 101-109 (2010).
- 5 Rambo, R. P. & Tainer, J. A. Accurate assessment of mass, models and resolution by smallangle scattering. *Nature* **496**, 477-481 (2013).
- 6 Hajizadeh, N. R., Franke, D., Jeffries, C. M. & Svergun, D. I. Consensus Bayesian assessment of protein molecular mass from solution X-ray scattering data. *Scientific Reports* **8**, 7204 (2018).
- 7 Kikhney, A. G., Borges, C. R., Molodenskiy, D. S., Jeffries, C. M. & Svergun, D. I. SASBDB: Towards an automatically curated and validated repository for biological scattering data. *Protein Sci* **29**, 66-75 (2020).
- 8 Manalastas-Cantos, K. *et al.* ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. *J Appl Crystallogr* **54**, 343-355 (2021).
- 9 Panjkovich, A. & Svergun, D. I. CHROMIXS: automatic and interactive analysis of chromatography-coupled small angle X-ray scattering data. *Bioinformatics* (2017).
- 10 Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J. & Svergun, D. I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. *Journal of Applied Crystallography* **36**, 1277-1282 (2003).
- 11 Svergun, D. I. Determination of the Regularization Parameter in Indirect-Transform Methods Using Perceptual Criteria. *Journal of Applied Crystallography* **25**, 495-503 (1992).
- 12 Petoukhov, M. V. *et al.* New developments in the ATSAS program package for small-angle scattering data analysis. *J Appl Crystallogr* **45**, 342-350 (2012).
- 13 Bernado, P., Mylonas, E., Petoukhov, M. V., Blackledge, M. & Svergun, D. I. Structural characterization of flexible proteins using small-angle X-ray scattering. *J Am Chem Soc* **129**, 5656-5664 (2007).
- 14 Tria, G., Mertens, H. D., Kachala, M. & Svergun, D. I. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. *IUCrJ* **2**, 207-217 (2015).
- 15 Svergun, D., Barberato, C. & Koch, M. H. J. CRYSOL– a Program to Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic Coordinates. *Journal of Applied Crystallography* **28**, 768-773 (1995).
- 16 Franke, D., Jeffries, C. M. & Svergun, D. I. Correlation Map, a goodness-of-fit test for onedimensional X-ray scattering spectra. *Nat Methods* **12**, 419-422 (2015).
- 17 PyMOL. The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC. (2015).
- 18 Luczak, S. *Biochemical and Biophysical Characterization of the Adhesin and Invasin Pmp21 from Chlamydia pneumoniae* PhD thesis, Heinrich Heine University, Düsseldorf, (2017).

Uncropped Scans of gels and blots


Uncropped gel to Supplementary Figure 1a

Uncropped gel to Supplementary Figure 2a

Uncropped gel to Supplementary Figure 5

