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Reviewer #1 (Remarks to the Author):

The manuscript by Kazba et al. focuses on transcript isoform discovery and quantitation in single
cells.

I think this is a timely contribution to the fast-growing field of long-read sequencing analysis
software.

Isosceles focuses on reference-guided de novo detection, accurate quantification, and downstream
analysis of

full-length isoforms at either single-cell, pseudo-bulk, or bulk resolution levels.

IMHO, the main competitors of Isosceles for transcriptome isoform and discovery and quantitation
are
IsoQuant (PMID: 36593406) and Bambu (PMID: 37308696).

While I appreciate the addition of Isosceles to the toolkit, I would like to see a few points being
adressed in a revised version of this manuscript.

(1) I think the manuscript would benefit from an independent benchmark data set as outlined in:
PMID: 37783886
Data set selection is not an issue then.

(2) You are probably aware of the Irgasp preprint:
https://www.biorxiv.org/content/10.1101/2023.07.25.550582v1

Could you please update your manuscript and Figure 2 to include the same information (if
applicable) as in

Figure 2: Overview of evaluation for Challenge 1: transcript identification with a reference
annotation (from the preprint).

e.g. F1 score is missing.

(3) Since you feature the single cell "level" in your title,

I was a bit dissapointed to see that you "only" use Sicelore

for CBC assignment and UMI detection.

The authors from Sicelore and others (PMID: 33906975) have pointed out some limitations
Maybe, I missed it, but a clear advantage and edge over other solution would be to improve on
CBC and UMI detection performance.

While the latter could help with quantitation, the first could is highly relevant for reducing noise in
cell type discovery.

(4) Lastly, would your software also work for PacBio data as demonstarted for the competitors.

Reviewer #2 (Remarks to the Author):

Please, see the PDF attached.

Reviewer #2 Attachment on the following page



General comments

The paper entitled “Accurate long-read transcript discovery and quantification at single-cell
resolution with Isosceles” describes a new tool for transcriptome reconstruction and
quantification of long-read transcriptomic data, of both bulk and single-cell origin. In the view of
rapid expansion of RNA sequencing using PacBio and Oxford Nanopore technologies, this tool
is a useful instrument and a valuable addition to the scientific community.

| would like to emphasize the quality of Isosceles documentation and its convenient installation.
Although | personally do not use R that often, it was still quite easy to install and test Isosceles
on the provided toy dataset. Moreover, R implementation might be a benefit for researchers
performing further downstream analysis using other R packages. Isosceles has both the short
tutorial and the complete user manual. Since software is the main outcome of the project,
usability and user-friendliness is a very important aspect. Data used in the paper as well as all
the commands used during the benchmarking are provided.

Isosceles yields decent transcript models and superior expression estimations based on
simulated data. The authors also provide a nice example of Isosceles being applied in realistic
study using mouse brain single-cell data.

Overall, the manuscript is well-structured and easy to follow. Below | summarize a few concerns
and suggestions, addressing which, in my opinion, may improve the quality of the current
manuscript.

Major comments

e My main concerns are related to Figure 3 (and the following Figure S4), which is one of
the key figures supporting conclusions about Isosceles superior quantification accuracy.

o Itis not entirely clear how exactly the 4000 transcripts were selected. The
authors state “4000 top highly variable genes/transcripts”. Was the same set
used for each tool? Was the selection based on the expression estimates from
some particular tool?

o The authors also provide a similar Supplementary Figure S4b,c, where all
expressed transcripts are considered for the analysis (which sounds more
relevant than selecting a subset of transcripts). The absolute difference in
Spearman correlation (matched vs decoy) for different tools seems to be almost
identical when using all transcripts, which does not support the conclusion about
Isosceles quantification superiority.

o One way to support the conclusions made by these plots, would be, for example,
to apply the same methodology and to create similar plots using simulated data.
This could be useful to understand how these plots (Fig. 3b,c) correlate with
actual quantification accuracy measured using ground truth. Simulated data also
allows to create reference plots similar to 3b,c using ground truth expression and



compute the actual Spearman correlation difference between matched and decoy
comparisons.

o Another way to support this would be to repeat the experiment by using
completely different cell lines (possibly not cancer lines), so that the difference
between matched and decoy comparisons is extreme.

o In Fig. 3c,d the authors use specific intervals for the Y axis, i.e. not starting with
0. This provides a somewhat misleading impression on the difference between
tools. | suggest using a 0-based Y axis to clearly depict relative differences
between bars.

o Isosceles does have the best median relative difference, Spearman correlation
for matched samples and highest difference between matched and decoy
comparisons. However, it also shows the most similar expression profiles in
decoy comparisons (e.g. the lowest median relative difference). Providing some
comments/insights on that matter could be informative.

o The results provided in Fig. 3d. show FLAMES and Scielore being far worse than
Isosceles on simulated data, while the difference seems to be far less dramatic
according to real-data experiments (Fig.3c). On the contrary, IsoQuant shows
decent performance on simulated data, but the worst mean relative difference for
matched samples. | realize that finding the reason for these inconsistencies might
be challenging, if not impossible, it would be interesting to hear whether authors
have any comments regarding this observation.

Minor comments

| suggest adding a short caption to Figure 2 stating what kind of data was used to make
the figure self-explanatory.

In Fig.2 (and following supplementary figures) the authors provide FDR only for all
detected transcripts. | recommend inserting the same separated plots (annotated and
withheld) as for TPR.

Some plots in Fig.2 look slightly overloaded due to each tool being launched alone and
coupled with StringTie. While | appreciate such a fulfilling approach, the authors might
want to consider keeping only a few best-performing tools, or only stand-alone
performance and move complete benchmarks to the supplementary material (since they
are still informative).

While the authors use both simulated and real data to benchmark Isosceles, it could be
also informative to provide some benchmarks using synthetic molecules sequenced on
real sequencers, e.g. SIRVs. SIRVs ONT data is publicly available e.g. at
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/RNA.md, or in some
recent studies, such as LRGASP tool comparison
(https://www.biorxiv.org/content/10.1101/2023.07.25.550582v1) or IsoQuant. For
benchmarking purposes, in addition to complete SIRV annotation, Lexogen also




provides an annotation with withheld transcripts and an annotation with decoy
transcripts.

It could be informative for users to provide computational performance (CPU time, wall
clock time, RAM peak) in the supplementary material.

Since the authors trained NanoSim models themselves, providing the exact error rates
for simulated data in the respective supplementary section might be informative.

Technical comments

| have tried running Isosceles on some of my SIRV data but encountered an error in the
prepare_transcripts function:

Joining with “by = join_by(transcript_id)’

Error: length(tx_df$hash_id) not equal to length(unique(tx_df$hash_id))
| will submit a bug report in the near future.
According to command lines used for benchmarking, the authors state that they ran
IsoQuant twice. | think IsoQuant is capable of outputting both expression values for all
reference transcripts and expression values for all discovered transcripts (known and
novel) during the same run. | don’t know whether it makes a big difference, but the
provided benchmarks seem to be reasonable anyway.



REVIEWER COMMENTS
Reviewer #1 (Remarks to the Author):

The manuscript by Kazba et al. focuses on transcript isoform discovery and quantitation in
single cells.

| think this is a timely contribution to the fast-growing field of long-read sequencing analysis
software.

Isosceles focuses on reference-guided de novo detection, accurate quantification, and
downstream analysis of

full-length isoforms at either single-cell, pseudo-bulk, or bulk resolution levels.

IMHO, the main competitors of Isosceles for transcriptome isoform and discovery and
quantitation are
IsoQuant (PMID: 36593406) and Bambu (PMID: 37308696).

While | appreciate the addition of Isosceles to the toolkit, | would like to see a few points being
adressed in a revised version of this manuscript.

We would like to thank both reviewers for reading and commenting on our manuscript, and are
glad this reviewer found our work to be a ‘timely contribution to the fast-growing field of
long-read sequencing analysis software’. We appreciate the reviewer’s helpful comments and
suggestions, addressing which has improved the manuscript. Please find our responses and
revisions to each point provided below.

(1) I think the manuscript would benefit from an independent benchmark data set as outlined in:
PMID: 37783886
Data set selection is not an issue then.

We appreciate the great suggestion. We now include an accuracy benchmark using this
dataset (Mixtures A and B from PMID: 37783886). The results display roughly identical
Spearman correlation for the top programs Isosceles, IsoQuant, and Bambu when compared to
ground-truth (all 0.97 on Mix A and 0.98 on Mix B), with Isosceles performing better on one of
the mixture sets with mean relative difference (0.71 vs. 0.74 on Mix A and equal at 0.78 on Mix
B). We have added this data to Fig. S3, and to the text on Page 4 (lines 125-130).

(2) You are probably aware of the Irgasp preprint:
https://www.biorxiv.org/content/10.1101/2023.07.25.550582v1

Could you please update your manuscript and Figure 2 to include the same information (if
applicable) as in

Figure 2: Overview of evaluation for Challenge 1: transcript identification with a reference
annotation (from the preprint).

e.g. F1 score is missing.




We thank the reviewer for this suggestion. In the revised manuscript, we now cite the LRGASP
preprint in the introduction and include the F1-score in Fig. 2 and S2 panels. We also updated
the main text to reflect these changes (Page 4, lines 116-118).

(3) Since you feature the single cell "level" in your title,

| was a bit dissapointed to see that you "only" use Sicelore

for CBC assignment and UMI detection.

The authors from Sicelore and others (PMID: 33906975) have pointed out some limitations
Maybe, | missed it, but a clear advantage and edge over other solution would be to improve on
CBC and UMI detection performance.

While the latter could help with quantitation, the first could is highly relevant for reducing noise in
cell type discovery.

The reviewer makes an important point here: the accuracy of quantification and downstream
analysis is reliant on performant upstream processing, including CBC assignment & UMI
detection. As mentioned, this is a significant remaining gap in the field— one that is sufficiently
large in scope to warrant several entire papers and software suites dedicated to it, as the
reviewer points out (PMID: 33906975).

In our manuscript, we used Sicelore for this because it is one of the most conservative methods,
but acknowledge that it is not without limitations. Therefore, we have designed Isosceles to be
agnostic to the upstream choice of CBC or UMI detection/assignment software, enabling
compatibility with future progress in this area. For example, Oxford Nanopore is also developing
a CBC/UMI detection suite for single-cell nanopore data (see wf-single-cell,
https://github.com/epi2me-labs/wf-single-cell) which is also compatible with downstream
analysis using Isosceles. In response to this comment, we have updated Isosceles
documentation on GitHub to include instructions for running wf-single-cell, or other CBC/UMI
detector, and have added a benchmark of Isosceles quantifications starting from either Sicelore
or wf-single-cell CBC/UMI calls in the revised manuscript (Fig. S5d). Performing the matched vs
decoy cell line benchmark (from Fig. 3), we find that Sicelore barcode calls perform significantly
better. Therefore, we provide the Sicelore CBC/UMIs to all programs in the manuscript.

As for featuring the “single-cell level” in the title, in our manuscript we focused on another
equally important and major gap in long-read single-cell analysis, which is the flexible
applicability of EM for quantification at single-cell and pseudo-bulk resolutions. This is one of
the main innovations of Isosceles, which we believe does provide a clear advantage over other
methods that do not support such capability. We illustrate this advance in outperformance for
benchmarks shown in Figures 2 & 3, as well as in practice, illustrating that these capabilities are
enabling for flexible experimental design and biological discovery in our single-cell case study
(Figure 4). In the revised manuscript we add “pseudo-bulk, and bulk” resolutions to the title, so
as to more clearly highlight this capability across multiple resolution levels.

(4) Lastly, would your software also work for PacBio data as demonstarted for the competitors.



We thank the reviewer for the helpful suggestion which we address in the revised manuscript by
adding a benchmark to compare Isosceles, IsoQuant, and Bambu across long-read sequencing
platforms for the same cell line (GM12878). We compare nanopore reads from the Nanopore
WGS Consortium (cDNA Pass basecalls from:
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/RNA.md, PMID: 31740818)
with PacBio reads from the ENCODE Consortium (ENCFF450VAU). As an independent
pseudo-'ground-truth’, we compare each long-read quantification to the short-read lllumina
qualifications downloaded from the ENCODE Consortium for that cell line (ENCFF4850UK).
We find that all three programs perform well in ONT vs. Illumina comparisons, however
Isosceles does display slightly higher Spearman correlation for PacBio vs. lllumina and PacBio
vs. ONT (Fig. S4a). These data suggest that Isosceles is also able to perform well using PacBio
data.




Reviewer #2 (Remarks to the Author):
General comments

The paper entitled “Accurate long-read transcript discovery and quantification at single-cell
resolution with Isosceles” describes a new tool for transcriptome reconstruction and
quantification of long-read transcriptomic data, of both bulk and single-cell origin. In the view of
rapid expansion of RNA sequencing using PacBio and Oxford Nanopore technologies, this tool
is a useful instrument and a valuable addition to the scientific community.

I would like to emphasize the quality of Isosceles documentation and its convenient installation.
Although | personally do not use R that often, it was still quite easy to install and test Isosceles
on the provided toy dataset. Moreover, R implementation might be a benefit for researchers
performing further downstream analysis using other R packages. Isosceles has both the short
tutorial and the complete user manual. Since software is the main outcome of the project,
usability and user-friendliness is a very important aspect. Data used in the paper as well as all
the commands used during the benchmarking are provided.

Isosceles yields decent transcript models and superior expression estimations based on
simulated data. The authors also provide a nice example of Isosceles being applied in realistic
study using mouse brain single-cell data.

Overall, the manuscript is well-structured and easy to follow. Below | summarize a few concerns
and suggestions, addressing which, in my opinion, may improve the quality of the current
Manuscript.

We thank the reviewer for testing our software and reading our manuscript, and are glad they
found our manuscript to be “well-structured and easy to follow”, and Isosceles to be well
documented, convenient to install, and a “useful instrument and a valuable addition to the
scientific community.” We appreciate the reviewer’s insightful and constructive feedback,
addressing which has significantly improved the quality of the revised manuscript. Please find
our response and description of revisions to address each specific point below:

Major comments
e My main concerns are related to Figure 3 (and the following Figure S4), which is one of
the key figures supporting conclusions about Isosceles superior quantification accuracy.

We acknowledge the initial lack of clarity in describing the experimental design and parameter
choices for Figure 3 and the accompanying Figure S5 (formerly S4).

In this benchmark we put forth a realistic challenge for cell type discovery, testing whether the
methods can correctly differentiate identical samples from similar but different decoy samples.
We designed the experiment to give each program an equal and fair chance, opting for



parameter choices with this intent. We have expanded our discussion and rationale for
parameter selection, addressing these concerns with significant revisions in the analysis based
on this valuable feedback.

o It is not entirely clear how exactly the 4000 transcripts were selected. The
authors state “4000 top highly variable genes/transcripts”. Was the same set
used for each tool? Was the selection based on the expression estimates from
some particular tool?

We apologize for the lack of clarity on this point, and have improved this section of the results
(Page 6, lines 175-176) and methods text (Page 17, lines 536-539) in response.

Each program is used independently from start to finish in the benchmark. So, the highly
variable transcripts (HVT) are determined from each program’s expression estimates and those
HVTs are subsequently utilized to differentiate matched and decoy cell lines.

Specific code describing how the HVTs were selected using the ‘getTopHVGs’ function from the
scran package, is documented in Isosceles_Paper repository here:
https://timbitz.github.io/Isosceles Paper/reports/nanopore_bulk_sc_benchmarks hvts 4000.ht
ml

o The authors also provide a similar Supplementary Figure S4b,c, where all
expressed transcripts are considered for the analysis (which sounds more
relevant than selecting a subset of transcripts). The absolute difference in
Spearman correlation (matched vs decoy) for different tools seems to be almost
identical when using all transcripts, which does not support the conclusion about
Isosceles quantification superiority.

The rationale for selecting highly variable transcripts (HVT) for cell type discrimination follows
the standard in the field for single-cell workflows (eg. PMID: 31217225) and the popular
packages scran, seurat, and scanpy all suggest subsetting only ~2k highly variable genes
[HVG] for this purpose. We acknowledge that any single choice of HVT number is fairly
arbitrary, and as a result, in the revised manuscript we investigate a range of 500, 1k, 2k, 4k, 6k,
and 10k HVTs. Here, we observe significantly greater performance for all programs with fewer
HVTs utilized, supporting that this approach is also the most effective (Fig. 3c). In the expanded
benchmark, Isosceles provides a significant and robust improvement over other methods across
the range of HVTs chosen.

Regarding all expressed transcripts, we note that each program actually quantifies and outputs
different numbers of total transcripts (with mean pseudobulk expression >= 1 TPM). For
example, FLAMES reported 11,765, Sicelore 12,446, IsoQuant 15,478, and Isosceles reported
21,760. As a result, utilizing all transcripts for each program results in less directly comparable
metrics between programs. Therefore, in the revised manuscript we use 10,000 HVTs as the



maximum when comparing across programs, which is still sufficient to recapitulate the similarity
of results from using all transcripts.

o One way to support the conclusions made by these plots, would be, for example,
to apply the same methodology and to create similar plots using simulated data.
This could be useful to understand how these plots (Fig. 3b,c) correlate with

actual quantification accuracy measured using ground truth. Simulated data also
allows to create reference plots similar to 3b,c using ground truth expression and
compute the actual Spearman correlation difference between matched and decoy
Comparisons.

We thank the reviewer for this insightful and intriguing idea, addressing which has improved the
manuscript. In revision, we implemented this and observed comparable results in the simulated
benchmark, with Isosceles consistently outperforming other methods compared to ground-truth.
However, one notable discrepancy exists, where IsoQuant performs at equally high accuracy to
Isosceles specifically in simulated data between 500-4000 HVTs for Spearman correlation only

(with no statistically significant difference between them). This benchmark is now added to Fig.
Shc.

o Another way to support this would be to repeat the experiment by using
completely different cell lines (possibly not cancer lines), so that the difference
between matched and decoy comparisons is extreme.

We appreciate the suggestion to use extremely different cell lines, which could effectively
showcase all software in a clear-cut scenario. However, our experiment was specifically
designed to capture the nuances of single-cell analyses, where technical noise and data
sparsity often obscure biological signals. In this context, the ability to differentiate subtle
variations, which are often as biologically relevant as more pronounced differences, presents a
greater analytical challenge.

In response to earlier feedback on Figure 3, we have expanded our benchmark to more
precisely evaluate detection of such subtle differences using a range of highly variable
transcripts (HVTs). These changes have significantly improved the robustness and
reproducibility of our results, which we believe strongly support the conclusions presented in our
manuscript.

o In Fig. 3c,d the authors use specific intervals for the Y axis, i.e. not starting with
0. This provides a somewhat misleading impression on the difference between
tools. | suggest using a 0-based Y axis to clearly depict relative differences
between bars.

We apologize for the oversight. In the revised manuscript, these bar charts have been replaced
with line graphs (with standard error shaded) in order to enable visualization of the difference in



matched and decoy metrics as a function of 500-10k HVTs (Fig. 3c and Fig. S5¢). The original
bar plots are still available on the individual reports in the ‘Isosceles_Paper’ repository for each
HVT number and both the bar plots and their line graph replacements use a 0-based Y-axis as
suggested.

o Isosceles does have the best median relative difference, Spearman correlation
for matched samples and highest difference between matched and decoy
comparisons. However, it also shows the most similar expression profiles in
decoy comparisons (e.g. the lowest median relative difference). Providing some
comments/insights on that matter could be informative.

We thank the reviewer for pointing out this observation. We speculate that the greater
correlation overall (in both matched and decoys) could be due to the handling of ambiguous
reads by the EM algorithm. Here, reads that might be discarded by other methods are still
optimally apportioned by Isosceles, providing slightly higher apparent read-depths, and more
consistent quantifications for genes with transcript-level ambiguity as a result. We now mention
this in our rationale for matched vs. decoy comparisons in the results section relating to Fig. 3c
(on Pages 5-6, lines 170-173).

o The results provided in Fig. 3d. show FLAMES and Scielore being far worse than
Isosceles on simulated data, while the difference seems to be far less dramatic
according to real-data experiments (Fig.3c). On the contrary, IsoQuant shows
decent performance on simulated data, but the worst mean relative difference for
matched samples. | realize that finding the reason for these inconsistencies might
be challenging, if not impossible, it would be interesting to hear whether authors
have any comments regarding this observation.

This is a fair observation. Indeed, we also observe this trend in the revised manuscript’s
matched vs. decoy comparisons using simulated data (as suggested in the reviewer’s earlier
comment). Here, IsoQuant also performs better on simulated data than in the exact same
benchmark using biological data. That said, as the reviewer correctly points out, it may be very
difficult if not impossible to identify the cause of this discrepancy, which is likely related to
inherent differences between simulated vs. true biological data. We now mention this
observation in the discussion section on Page 8 (lines 261-264).

Minor comments
e | suggest adding a short caption to Figure 2 stating what kind of data was used to make
the figure self-explanatory.

We now add a short caption to the Figure 2 legend as suggested.
e In Fig.2 (and following supplementary figures) the authors provide FDR only for all

detected transcripts. | recommend inserting the same separated plots (annotated and
withheld) as for TPR.



While we appreciate the reviewer's suggestion to separate FDR plots for annotated and
withheld transcripts, it isn't feasible due to the experimental design. In our process, we simulate
reads from a full transcript annotation file and provide a downsampled annotation file to each
program. For TPR (sensitivity analysis), we differentiate between given and withheld transcripts
to show disparities between programs. However, for FDR, the result is based on program
outputs not aligning with either given or withheld transcripts, resulting in a single FDR for all
detected transcripts, rather than segregated ones for given and withheld categories.

In the updated manuscript, we have also introduced the F1-score, encompassing the FDR and
therefore also present only this total F1-score for all transcripts (Fig. 2, and Fig. S2).

e Some plots in Fig.2 look slightly overloaded due to each tool being launched alone and
coupled with StringTie. While | appreciate such a fulfilling approach, the authors might
want to consider keeping only a few best-performing tools, or only stand-alone
performance and move complete benchmarks to the supplementary material (since they
are still informative).

In the revised manuscript, we keep only the best performing value for each benchmark tool in
the main figure (combination or stand-alone), except for Isosceles, which we show with all
combinations since it is the focus of the paper. Fig. S2 still retains the full results as suggested.

e While the authors use both simulated and real data to benchmark Isosceles, it could be
also informative to provide some benchmarks using synthetic molecules sequenced on
real sequencers, e.g. SIRVs. SIRVs ONT data is publicly available e.g. at
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/RNA.md, or in some
recent studies, such as LRGASP tool comparison
(https://www.biorxiv.org/content/10.1101/2023.07.25.550582v1) or IsoQuant. For
benchmarking purposes, in addition to complete SIRV annotation, Lexogen also
provides an annotation with withheld transcripts and an annotation with decoy
Transcripts.

We thank both reviewers for their helpful suggestions to include benchmarks using synthetic
molecules sequenced on real sequencers. In response, we have included two additional
benchmarks in our revised manuscript (Fig. S3), focusing on comparisons between Isosceles,
Bambu, and IsoQuant.

The first benchmark utilizes Sequins, comparing all program quantifications to the ground truths
derived from two distinct Sequin mixes. As detailed in our response to Reviewer #1's first
comment, Isosceles demonstrated favorable performance across all evaluated metrics.

The second benchmark leverages SIRVs, utilizing annotated, withheld, and decoy transcript
annotations to evaluate transcript detection. Across the three methods, fairly comparable
performance was observed for transcript detection overall (eg. F1-scores ranging from 0.76 to



0.78). Despite identifying fewer withheld transcripts, Isosceles, with zero false positives, slightly
outperformed IsoQuant, which had four false positives and missed five annotated structures
(Fig. S3c-d).

We updated the text with these results (on Pages 4-5, lines 125-139) and the discussion (on
Page 8, lines 264-268) to reflect these additions.

e It could be informative for users to provide computational performance (CPU time, wall
clock time, RAM peak) in the supplementary material.

We now add benchmarks of computational performance (both CPU time and RAM peak) as
Figure S4b.

e Since the authors trained NanoSim models themselves, providing the exact error rates
for simulated data in the respective supplementary section might be informative.

We now include the following exact error rates for simulated data in the methods section on
Page 14 (lines 432-433) and can also be found in the read_models directories in
Isosceles Paper: https://github.com/timbitz/Isosceles Paper/tree/devel/input_data/read _models

Technical comments

e | have tried running Isosceles on some of my SIRV data but encountered an error in the
prepare_transcripts function:

Joining with “by = join_by(transcript_id)’

Error: length(tx_df$hash_id) not equal to length(unique(tx_df$hash_id))

| will submit a bug report in the near future.

We appreciate the reviewer running our code and reporting this error. We have now fixed this
with pull request #4 (https://github.com/timbitz/Isosceles/pull/4) and linked to the fix in the

related issue #2 (https://qithub.com/timbitz/Isosceles/issues/2).

e According to command lines used for benchmarking, the authors state that they ran
IsoQuant twice. | think IsoQuant is capable of outputting both expression values for all
reference transcripts and expression values for all discovered transcripts (known and
novel) during the same run. | don’t know whether it makes a big difference, but the
provided benchmarks seem to be reasonable anyway.

This is a reasonable point. In the original submission, we ran IsoQuant twice to maintain
consistency with the other programs which were also receiving an IsoQuant-produced GTF file
(for Figure 1). However, to respond to this, we went back and compared IsoQuant’s
performance in de novo mode in either (a) one single run or (b) consecutively, with the first run
producing the GTF-file that is provided to the second run for quantification. What we found was
interesting— IsoQuant performs significantly better overall with the two-run process than it does



in single-run mode (F1-score 84.8% vs. 74.5%; Sensitivity 74.2% vs. 59.9%; FDR 0.9% vs.
1.3% respectively). Therefore we present these two-run quantifications in the paper rather than
the single-run results, and mention this in the methods section on Page 13 (lines 415-422).

While we didn’t include the single-run results in our main or supplemental figures, we provide a
link to this report in the Isosceles_Paper repository in the methods and for the reviewers here:
https://qgithub.com/timbitz/Isosceles_Paper/blob/devel/reports_static/simulated bulk_benchmark
s_isoquant.ipynb

Lastly, all the changes we have made to Isosceles software and paper repositories are listed in
the most recent releases for both:

Isosceles_Paper: https://github.com/timbitz/Isosceles Paper/releases/tag/0.2.0
Isosceles: htips://qgithub.com/timbitz/Isosceles/releases/tag/0.2.0




Reviewer #1 (Remarks to the Author):

I would like to congratulate the authors to this felicitous revision.
The authors have adressed all of my concerns and the manuscript can be IMHO published as is.

Reviewer #2 (Remarks to the Author):

The authors have successfully addressed my main concern regarding the key figure of this
manuscript, and patiently clarified all points regarding performed experiments. I sincerely thank
the authors for this work. The authors also resolved all minor issues and provided sufficient
technical details. Overall, it feels like the revised version has improved in terms of clarity and
justification of Isosceles performance.

I have no further questions and wish the authors the best of luck in their further research.
Kind regards

Andrey Prjibelski

Reviewer #2 (Remarks on code availability):

I downloaded and installed Isosceles. I also tested it on my own data and it seems to be working
without issues.



