Supplementary information for

Computational design of pore-forming peptides with potent antimicrobial and anticancer activities

Rahul Deb^{1,2}, Marcelo D. T. Torres^{3,4,5,6}, Miroslav Boudný^{1,7}, Markéta Koběrská⁸, Floriana Cappiello⁹, Miroslav Popper¹⁰, Kateřina Dvořáková Bendová¹⁰, Martina Drabinová¹, Adelheid Hanáčková¹, Katy Jeannot^{11,12*}, Miloš Petřík^{10,13*}, Maria Luisa Mangoni^{9*}, Gabriela Balíková Novotná^{8*}, Marek Mráz^{1,7*}, Cesar de la Fuente-Nunez^{3,4,5,6*}, and Robert Vácha^{1,2,14*}

¹CEITEC – Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic;

²National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic;

³Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;

⁴Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;

⁵Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;

⁶Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;

⁷Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic;

⁸Institute of Microbiology, Czech Academy of Sciences, BIOCEV, Vestec 252 50, Czech Republic; ⁹Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome 00185, Italy;

¹⁰Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic;

¹¹University of Franche-Comté, CNRS, Chrono-environment, Besançon 25030, France;

¹²National Reference Centre for Antibiotic Resistance, Besançon 25030, France;

¹³Czech Advanced Technology and Research Institute, Palacký University, Olomouc 779 00, Czech Republic;

¹⁴Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic.

*Corresponding author emails -

Robert Vácha: robert.vacha@muni.cz

Cesar de la Fuente-Nunez: cfuente@upenn.edu

Marek Mráz: marek.mraz@email.cz

Gabriela Balíková Novotná: gnovotna@biomed.cas.cz

Maria Luisa Mangoni: marialuisa.mangoni@uniroma1.it

Miloš Petřík: milos.petrik@upol.cz

Katy Jeannot: katy.jeannot@univ-fcomte.fr

Table of contents

Supplementary Tables

	Table S1	. In vitro	activity	against 22	different	human	cell lines		S3
--	----------	------------	----------	------------	-----------	-------	------------	--	----

Supplementary Figures

Figure S1. Water channels through the stabilized pores in 'scaled' Martini simulations
Figure S2. Intramolecular salt bridge formation at the transmembrane peptide ends in poresS5
Figure S3. In vitro antimicrobial activity
Figure S4. In vitro toxicity against human red blood cells
Figure S5. <i>In vitro</i> stability in human serum
Figure S6. In vivo antimicrobial and wound-healing activity in miceS10
Figure S7. In vitro dye leakage activity
Figure S8. In vitro anticancer activity
Figure S9. Effect of media on anticancer activity
Figure S10. Effect of pH and media on anticancer activity
Figure S11. Flow cytometric analysis of whole blood
Figure S12. Correlations between pore stability, <i>in vitro</i> activity, and peptide net chargeS21
Figure S13. Comparison of antimicrobial activity against Gram-positive and Gram-negative bacteria

Supplementary Materials

HPLC and MS certificate	es of the synthesized per	otides	
-------------------------	---------------------------	--------	--

Supplementary Tables

Sr.	Call line	Cancer	Culture medium	Activity (in M)				
no.	Cell line	type	Culture medium	LP1	LP40	Bortezomib		
1	A498	Kidney	DMEM + 10% FCS	3.6E-06	2.0E-05	9.1E-09		
2	A549	Lung	DMEM + 10% FCS	8.4E-06	9.7E-05	2.5E-08		
3	Caki-1	Kidney	DMEM + 10% FCS	6.6E-06	2.3E-05	1.2E-08		
4	DU-145	Prostate	DMEM + 10% FCS	5.9E-06	6.0E-05	1.6E-08		
5	H460	Lung	DMEM + 10% FCS	3.7E-06	> 2.0E-04	2.6E-08		
6	HCT116	Colorectal	DMEM + 10% FCS	7.1E-06	7.9E-05	6.9E-09		
7	HCT-15	Colorectal	RPMI-1640 +10% FCS	4.7E-06	7.1E-06	9.8E-09		
8	HL-60	Leukemia	RPMI-1640 + 10% FCS	6.5E-06	7.2E-06	4.1E-09		
9	K562	Leukemia	RPMI-1640 + 10% FCS	6.4E-06	6.4E-06	9.1E-09		
10	MCF-7	Breast	DMEM + 10% FCS	8.3E-06	7.0E-05	2.1E-08		
11	MDA MB 231	Breast	DMEM + 10% FCS	6.7E-06	6.1E-05	1.2E-08		
12	MDA MB 435	Melanoma	RPMI-1640 +10% FCS	1.4E-06	1.9E-04	4.3E-09		
13	MOLT-4	Leukemia	DMEM + 10% FCS	1.6E-05	> 2.0E-04	4.0E-09		
14	MSC_UC	Non- cancerous	Promocell MSC-Medium C-28010 + Sup. C39810	2.0E-06	1.4E-04	4.7E-09		
15	NHDF	Non- cancerous	Promocell NHDF-Medium C-23010 + Sup. C39315	7.2E-06	> 2.0E-04	1.4E-08		
16	OVCAR-3	Ovarian	RPMI-1640 +10% FCS	4.9E-06	9.0E-06	4.0E-09		
17	PC3	Prostate	DMEM + 10% FCS	1.6E-05	9.1E-05	1.6E-08		
18	RPMI 8226	Myeloma	RPMI-1640 +10% FCS	4.4E-06	5.6E-06	3.2E-09		
19	SK-OV3	Ovarian	DMEM + 10% FCS	1.3E-05	1.1E-04	1.9E-08		
20	SW620	Colorectal	DMEM + 10% FCS	2.9E-05	1.4E-04	1.0E-08		
21	T-47D	Breast	RPMI-1640 +10% FCS + 0,2U/mL Insulin	3.2E-06	4.6E-06	8.6E-09		
22	U251MG	Brain	DMEM + 10% FCS	2.0E-05	> 2.0E-04	1.9E-08		

Table S1. In vitro activity against 22 different human cancer cell lines.

The effect of investigated compounds on the proliferation of 22 different human cell lines is reported as the half maximal inhibitory concentration, i.e., IC50 value, after 72 hours of incubation. Twenty of these 22 cell lines represent specific cancer types and 2 were non-cancerous. Peptide sequences are provided in Table 1 in the main text. Anticancer drug bortezomib was used as the reference.

Supplementary Figures

Figure S1. Water channels through the stabilized pores in 'scaled' Martini simulations. Water density profiles were calculated as the average number of CG water beads passing through the transmembrane barrel pores (TBPs) stabilized by the peptides over 51 µs long MD simulations using 'scaled' Martini force field (see Table 1 in the main text).

Figure S2. Intramolecular salt bridge formation at the transmembrane peptide ends in pores. Schematic illustrations of the formation of intramolecular salt bridges at the peptide ends and the strength of such interactions in the transmembrane barrel pores. Illustrations depict three antiparallel neighboring transmembrane peptides showing two representative peptide-peptide interfaces from an octameric transmembrane barrel pore (in the side view). The stability of these interactions was calculated as the percentage of designed interaction contacts averaged over 51 μ s simulation run using the standard and 'scaled' Martini force fields. Color coding: peptide hydrophilic and hydrophobic residues in green and white, respectively; basic and acidic in residues blue and red, respectively; aromatic residues in grey; yellow horizontal lines demarcate the position of lipid phosphates; and grey panel represents the lipid tails. Peptide sequences are provided in Table 1 in the main text.

Species	Strain	Antibiotic resistance / strain details	LP1	LP18	LP28	AMC	POL	LEV	Prot.
E. faecalis	JH2-2	WT	>32	>32	>32	0.7	>25	1.4	b
E. faecalis	UCN41	VAN	>32	>32	>32	1.4	>25	1.4	b
E. faecalis	ATCC 700802	VAN	>60	>60	>60		>60	0.8	d
E. faecium	ATCC 19434T	WT	>32	15	28	1.4	>25	6	b
E. faecium	BM4147	AMX, VAN	16	4	7	>23	>25		b
E. faecium	Z906	VAN, TEI, LNZ	>32	16	4	>360			С
E. faecium	ATCC 700221	VAN, TEI	12.5	>60	0.8		>60	50	d
S. aureus	ATCC 25923	WT	>8	>8	>8	1.4	>25	3	b
S. aureus	NRS1	MRSA or VISA	>16	>16	>16	46			а
S. aureus	ATCC 29213	Clinical	>32	>32	>32	46			С
S. aureus	ATCC 12600	MSSA	50	50	25		50	1.6	d
S. aureus	ATCC BAA-1556	MET	>60	>60	12.5		>60	3.1	d
K. pneumoniae	ATCC 700603	ESBL	4	4	7	>180			а
K. pneumoniae	E1120	GEN	8	8	2	>360			С
K. pneumoniae	4371	GEN, AMI, IMI, MER	16	8	8	>360			С
K. pneumoniae	E1267	GEN, AMI	>32	>32	>32	>360			С
K. pneumoniae	ATCC 13883		0.2	0.8	0.8		0.1	0.4	d
A. baumannii	CIP 7010	WT	2	0.5	2	>92	1.5	0.3	b
A. baumannii	GSAB 164	COL, MER	1	1	2	>183			а
A. baumannii	Z13	GEN, AMI, IMI, MER	4	8	1	>360			С
A. baumannii	ATCC 19606		0.8	0.8	0.8		0.1	0.8	d
P. aeruginosa	NCTC 13437	ESBL	>16	11	11	>180			а
P. aeruginosa	K12	AMI, IMI, MER, CTZ, PIT	>32	>32	8	>360			С
P. aeruginosa	K11	IMI, MER, CTZ, PIT	>32	16	8	>360			С
P. aeruginosa	PA01	WT	3.1	3.1	0.8		0.1	6.3	d
P. aeruginosa	PA14	WT	3.1	3.1	0.8		0.4	0.8	d
E. coli	ATCC 25922	WT	1	1	3	23			а
E. coli	E1098	GEN, AMI, IMI, MER	1	2	4	>360			С
E. coli	ATCC 11775		1.6	1.6	0.8		0.1	0.2	d
E. coli	AIC221		0.8	1.6	0.8		0.2	0.4	d
E. coli	AIC222	COL	1.6	1.6	1.6		0.2	0.4	d

Figure S3. In vitro antimicrobial activity.

(a) Minimum inhibitory concentrations (MICs in µM) of selected peptides and reference antibiotics (AMC, ampicillin; POL, polymyxin B; LEV, levofloxacin) against different ESKAPEE pathogens. The third column indicates either antibiotic resistance or strain details as follows: WT, wild type; VAN, vancomycin; AMX, amoxicillin; TEI, teicoplanin; =LNZ, linezolid; MET, methicillin; GEN, gentamicin; COL, colistin (polymyxin E); MER, meropenem; AMI, amikacin; IMI, imipenem; CTZ, chloramphenicol-tetracycline-zinc eugenol oxide; PIT, piperacillin; CTL, ceftezole; MSSA, methicillin-susceptible Staphylococcus aureus; MRSA, methicillin-resistant Staphylococcus aureus; VISA, vancomycin-Intermediate Staphylococcus aureus; ESBL, extended-spectrum beta-lactamases. The MICs were obtained using four slightly different protocols, labelled a-d (see Experimental Section in the main text). (b) Antimicrobial activity against S. aureus null mutant strains. The plots depict growth of protease single mutants NE163 (USA300 JE2 aur::Tn::Erm), NE 1506 (USA300 JE2 sspA::Tn::Erm), NE934 (USA300 JE2 sspB::Tn::Erm), NE1740 (USA300 JE2 scpA::Tn::Erm) and protease null mutant strain AH1919 (LAC* *\Deltaur \DeltasspAB \DeltascpA* spl::erm) together with control strains ANG1263 (ANG1575) and S. aureus USA300 (after the peptide treatment relative to the bacterial growth without peptides) as a function of peptide concentrations. The highest tested peptide concentration of 128 μ g/mL corresponds to ~ 30 μ M and that of the reference antibiotic ampicillin corresponds to $\sim 366 \mu$ M. Peptide sequences are provided in Table 1 in the main text.

(Left) Dilution series demonstrating peptide toxicity against the human red blood cells as a function of peptide concentration. Grades of hemolysis are as follows: red (100% hemolysis), orange to yellow (intermediate hemolysis), and green (0% hemolysis). Solid circles represent averages over triplicate measurements and dashed circles represent standard deviations. (**Right**) The normalized hemolysis plot, indicating the toxic peptide concentration that caused 50% lysis of human cells, i.e., IC50 values. Peptide sequences are provided in Table 1 in the main text. Hemolytic peptide melittin was used as the reference.

Figure S5. In vitro stability in human serum.

Peptide resistance to proteolytic degradation was assessed in 25% human serum and reported as the percentage of peptides remaining at various intervals over 6 hours. Peptide sequences are provided in Table 1 in the main text.

Group 1: LP1-treated

	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Day 0	(SA)				3	(2)				
Day 3		13							(A)	Sacrificed for CFU estimation
Day 7				13	Ö		Sacrificed for CFU estimation	C	Sacrificed for CFU estimation	
Day 10										
Day 13	1		-	C				0		
Day 15			13							
Day 17	-		The state	- AP		-		1		
Day 20		5		ALC: NO		-		A.		
Day 22			-	The second	-			- Art		
Day 24	-	A REAL	A			TR		15		
Day 27		THE	The	-	199	The		The		
Day 30	-	The	The	A		X				

				Gro	up 2: LP1	8-treated				
	#11	#12	#13	#14	#15	#16	#17	#18	#19	#20
Day 0			3							
Day 3										Sacrificed for CFU estimation
Day 7	Roll	23		Ø	Ø		Sacrificed for CFU estimation		Sacrificed for CFU estimation	
Day 10		8								
Day 13		19		0	10			1.3		
Day 15			P	Ø	10			16		
Day 17	173	-35	-	br	3	-		1.00		
Day 20	-	-	-	· PK	B			-		
Day 22		X	-	-	No.	-				
Day 24	A		-	T		A A				
Day 27	TA	A		The	ALL	The		X		
Day 30		The	T	X	A.	A.A.		The		

Group 3: PBS-treated

	#21	#22	#23	#24	#25	#26	#27	#28	#29	#30
Day 0					0	0			3	0
Day 3				(A)				6		Sacrificed for CFU estimation
Day 7					0		Sacrificed for CFU estimation		Sacrificed for CFU estimation	
Day 10						0		1000		
Day 13								100		
Day 15	8	Ø		03		-		-		
Day 17		B	Q	Ø.	-0			to		
Day 20		*		54	*	*		-		
Day 22	T	*	-47	-	-	The		*		
Day 24	The second secon	E	1			1		*		
Day 27	The		*		A CONTRACTOR	N.K.K		A		
Day 30	The	The	The second second	3.	-	TR		T		

Group 4: No treatment control

	#31	#32	#33	#34	#35	#36	#37	#38	#39	#40
Day 0	2	(C	0
Day 3	Tre	Death			(CAL)				16	Sacrificed for CFU estimation
Day 7				Death			Sacrificed for CFU estimation		Sacrificed for CFU estimation	
Day 10					0			(
Day 13	9		G		0					
Day 15					0			-		
Day 17					A Cast			-		
Day 20	AN COLOR		-		*	-		*		
Day 22					- At			1		
Day 24	14 Maria		-		-	10 million		Alt -		
Day 26	- AR		M			-		- AN		
Day 30	THE		1		This	X		In		

Figure S6. In vivo antimicrobial and wound-healing activity in mice.

(a) Excisional dorsal wounds were photographed with a 5-megapixel camera from the day of wounding (i.e., day 0) and on subsequent days until a complete wound closure was observed. (b) Wound size was measured using calipers based on the height and width of the wounds. (c) Box-and-whisker plots show the CFU tissue load, normalized to mouse weight, recovered from the wound beds on days 1, 3, and 7 postinfection. Boxes show medians and interquartile ranges, and whiskers show the lowest and highest values not classified as outliers. (d) Survival rate and (e) the relative change in body weight over the course of the experiment. Peptides were applied directly to the wound by puncturing the dressing with a sterile Hamilton syringe at 10000-fold MICs (i.e., 2.43 mM for LP1, and 0.95 mM for LP18). Peptide sequences are provided in Table 1 in the main text.

Figure S7. In vitro dye leakage activity.

Peptide-induced leakage (efflux) of the self-quenched fluorescent dye calcein from the large unilamellar vesicles composed of POPC:POPG (1:1 mol/mol) lipids, shown as the normalized fluorescent intensity as a function of the investigated peptide:lipid ratios over the time. Surfactant triton was used as the control, causing 100% leakage in the end.

After 72 h treatment

Figure S8. In vitro anticancer activity.

Activity of peptides against the leukemia and lymphoma cancer cell lines is reported as the percentage of cell viability (measured in quadruplicates) as a function of peptide concentration. Values are normalized to the control (set to 100%). Peptide sequences are provided in Table 1 in the main text.

(a) Comparison of the activity (reported as the half maximal inhibitory concentration, IC50 value) of the peptides against the viability of 22 different human cell lines cultured in either RPMI or DMEM media for 72 hours (the main text Figure 6a). (b) Comparison of the activity (reported as the percentage cell viability measured in quadruplicates) of the peptides against three cancer cell lines, HL-60, K-562 and MCF-7, cultured in RPMI and DMEM media for 4 hours. (c) Comparison of pH between RPMI and DMEM medium, measured in five repetitions. (d) Images showing the rapid effect of the peptides against cancer cell lines after 30 (LP1) or 60 (LP40) minutes of treatment. PBS buffer was used as the control. Peptide sequences are provided in Table 1 in the main text. (a and c) The effect of media was compared using t-test or a two-way ANOVA followed by the Tukey post hoc test. **p < 0.01 and ***p < 0.001.

S19

Figure S10. Effect of pH and media on anticancer activity.

(a) Statistical evaluation of peptide anticancer activity at 10 μ M concentration for 1 hour against four different cancer cell lines cultured in three different media, RPMI, DMEM and PBS, adjusted to different pH values (measured in duplicates; the main text Figure 6c). The analysis was done using a three-way ANOVA followed by the Tukey post hoc test. The values indicate the p-value of statistical significance, which is marked in red when less than 0.05. (b) Relative changes in the percentage cell viability with the change in pH from 7 to 6 in HL-60, K-562, HCT-166, and MCF-7 cells. Values are calculated as viability at pH 7 minus viability at pH 6. PBS buffer was used as the control. The overall effect of peptides across the cell lines was compared using four-way ANOVA followed by Tukey post hoc test which showed LP40 activity as more dependent on pH compared to LP1 (p = 0.002). *p < 0.05; **p < 0.01; ***p < 0.001; not indicated = not significant. (c) Western blot showing that the ongoing apoptosis of MCF-7 cells treated with LP1 (5 μ M) and LP40 (10 μ M) peptides is dependent on the pH of the DMEM medium. Peptide sequences are provided in Table 1 in the main text.

Figure S11. Flow cytometric analysis of whole blood.

The effect of peptides on the healthy primary cells in whole blood from a healthy donor was measured in duplicates. Peptide melittin and PBS buffer were used as controls.

Figure S12. Correlations between pore stability, *in vitro* activity, and peptide net charge.

Linear regression analysis was performed - (a) between the number of transmembrane peptides after 51 µs simulation run (denoted as TMP) using the standard and 'scaled' Martini force fields; (b-c) between the TMP using the 'scaled' Martini force field and (b) dye leakage and (c) antimicrobial activity; (d) between dye leakage and antimicrobial activity; and (e-f) between peptide net charge and (e) antimicrobial activity and (f) dye leakage. GraphPad Prism software was used for analysis and 95% confidence intervals are shown. Note that TMP indicates the stability of transmembrane barrel pores (TBPs). The pore was considered a 'stable' TBP if it consisted of at least six TMPs, i.e., hexamer; in the case of pentamer and tetramer, the pore was considered 'deformed'; and finally, if there were less than four TMPs, the pore was considered 'closed'. The percentage leakage of the fluorescent dye calcein at a peptide-to-lipid molecular ratio of 1:100 from the POPC:POPG (1:1 mol/mol) large unilamellar vesicles (see Table 2 in the main text) was used for analysis. Antimicrobial activity was used as the inverse of the MIC values (see Table 2 in the main text) for the analysis.

Gram-positive versus Gram-negative

Figure S13. Comparison of antimicrobial activity against Gram-positive and Gram-negative bacteria. Box-whisker plots, showing the median, upper quartile, lower quartile, and whiskers from minimum to maximum, indicate the difference in antimicrobial activity of three peptides, LP1, LP18 and LP28, against Gram-positive and Gram-negative bacteria. The comparison was made considering all MIC values against a panel of 33 ESKAPEE pathogens tested in this study (see Figure 3a-d in the main text) using GraphPad Prism software. Note that the MIC value of the inactive cases, i.e., where the peptides remained inactive up to the highest concentrations tested, was uniformly considered to be 60 μ M (the highest concentration tested in Figure 3a-d in the main text). Peptide sequences are given in Table 1 in the main text.

Supplementary Materials

Peptide LP1 = KKKKLKKILKKLFQFINQLDNQLQDIKQNK-NH2

HPL	C (Cer	tifi	cate

HPLC Column	(250×4.6mm I.D.) C18
Detection wavelength	220 nm
Gradient	20-50%B in 30 min
Buffer A	0.05%TFA +2%CH ₃ CN
Buffer B	0.05%TFA +90%CH ₃ CN

	Retention	Area	% Area	Height	
	Time				
1	20.092	106399	0.46	4330	
2	20.919	22791833	98.97	1032662	
3	21.773	131817	0.57	7096	

Mass Spectrometry Certificate

Lot No.: P111019-01-01 Method: MALDI-TOF Main Peak: 3711.93 MW $[M+H^+]$: 3711.93 MW: 3710.93 Theoretical MW: 3711.58 Match: Approved Z=1

Peptide LP2 = KKKKLKKILKKLIQLINQLDNQLQDIKQNK-NH2

HPLC Certificate

HPLC Column	(250×4.6mm I.D.) C18
Detection wavelength	220 nm
Gradient	20-50%B in 30 min
Buffer A	0.05%TFA +2%CH ₃ CN
Buffer B	0.05%TFA +90%CH ₃ CN

Peak Results				
Rank	Time	Quantity	Area	Height
1 2 3 4	17.642 18.257 18.802 26.040	0.788 95.23 3.636 0.3421	261152 31564531 1205236 113367	26323 1553152 119613 14184
Total		100	33144286	1713272

S25

Lot No.: P061021-02-06 Method: MALDI-TOF Main Peak: 3666.00 MW [M+Na⁺]: 3666.00 MW: 3643.00 Theoretical MW: 3643.54 Match: Approved Z=1

Peptide LP3 = KKKKLKKILKKLWQWINQLDNQLQDIKQNK-NH2

HPLC Certificate

HPLC Column	(250×4.6mm I.D.) C18
Detection wavelength	220 nm
Gradient	30-60%B in 30 min
Buffer A	0.05%TFA +2%CH ₃ CN
Buffer B	0.05%TFA +90%CH ₃ CN

		C		
1	10.800	1.187	173204	8539
2	11.642	97.73	14257872	463926
3	12.361	1.078	157240	13178
Total		100	14588316	485643

S27

Mass Spectrometry Certificate

Lot No.: P300720-01-01 Method: MALDI-TOF Main Peak: 3811.56 MW [M+Na⁺]: 3811.56 MW: 3788.56 Theoretical MW: 3789.65 Match: Approved Z=1

Peptide LP8 = KKKKLKKILKKLFQFINQLENQLQEIKQNK-NH2

HPLC Certificate

HPLC Column	(250×4.6mm I.D.) C18
Detection wavelength	220 nm
Gradient	30-60%B in 30 min
Buffer A	0.05%TFA +2%CH ₃ CN
Buffer B	0.05%TFA +90%CH ₃ CN

Peak Results

Rank	Time	Quantity	Area	Height
1 2 3 4 5 6	10.928 11.342 11.817 12.332 13.547 25.378	0.3776 0.6806 1.138 95.52 1.599 0.2992	106910 192716 322298 27047110 452735 84724	3671 11808 28013 2003854 28526 7332
7	25.935	0.3831	108463	6016
Total		100	28314956	2089220

Mass Spectrometry Certificate

Lot No.: P300720-01-08 Method: MALDI-TOF Main Peak: 3740.34 MW [M+H⁺]: 3740.34 MW: 3739.34 Theoretical MW: 3739.63 Match: Approved Z=1

Peptide LP18 = KKKKLKKILKKLFQFINQLDNQLQDIKKKK-NH2

HPLC	Certificate

HPLC Column	(250×4.6mm I.D.) C18
Detection wavelength	220 nm
Gradient	30-60%B in 30 min
Buffer A	0.05%TFA +2%CH ₃ CN
Buffer B	0.05%TFA +90%CH ₃ CN

Peak Results

Rank	Time	Conc.	Area	Height
1 2	11.463 11.893	99.72 0.281	9898025 27888	844758 4755
Total		100	9925913	849513

Mass Spectrometry Certificate

Lot No.: P300720-01-04 Method: MALDI-TOF Main Peak: 3727.29 MW [M+H⁺]: 3727.29 MW: 3726.29 Theoretical MW: 3725.69 Match: Approved Z=1

Peptide LP20 = KKKKLKKILKKLFQFIDQLINDLQNIKKKK-NH2

HPLC Certificate

HPLC Column	(250×4.6mm I.D.) C18
Detection wavelength	220 nm
Gradient	28-58%B in 30 min
Buffer A	0.05%TFA+2%CH ₃ CN
Buffer B	0.05%TFA +90%CH ₃ CN

	Retention	Area	% Area	Height
	Time			
1	18.005	25976	0.61	2365
2	19.145	4181772	97.43	168064
3	20.296	64828	1.51	5563
4	20.623	4426	0.10	740
5	21.000	14874	0.35	1755

Mass Spectrometry Certificate

Lot No.: P300720-01-05 Method: MALDI-TOF Main Peak: 3711.31 MW [M+H⁺]: 3711.31 MW: 3710.31 Theoretical MW: 3710.72 Match: Approved Z=1

Peptide LP22 = KKKKLKKILKKLFQFINQLDNQLQDIKQNK

HPLC Column	(250×4.6mm I.D.) C18
Detection wavelength	220 nm
Gradient	15-45%B in 30 min
Buffer A	0.05%TFA +2%CH ₃ CN
Buffer B	0.05%TFA +90%CH ₃ CN

Peak Results

Rank	Time	Conc.	Area	Height
1 2 3 4 5 6	7.225 9.936 11.902 13.300 14.135 15.349	2.139 0.3553 1.716 0.5271 95.06 0.1988	67938 11285 54493 16742 3019533 6313	8225 1279 4952 1240 223829 508
Total		100	3176304	240033

Lot No.: P300720-01-02 Method: MALDI-TOF Main Peak: 3736.02 MW [M+ Na⁺]: 3736.02 MW: 3713.02 Theoretical MW: 3712.56 Match: Approved Z=1

Peptide LP23 = Ac-KKKKLKKILKKLFQFINQLDNQLQDIKQNK-NH2

HPLC Certificate

Lot No.: P061021-02-05 Method: MALDI-TOF Main Peak: 3754.74 MW [M+H⁺]: 3754.74 MW: 3753.74 Theoretical MW: 3753.61 Match: Approved Z=1

Peptide LP26 = KKKKLKKILKKLFQFINQLDNQLQDFKQNK

HPLC Certificate

HPLC Column	(250×4.6mm I.D.) C18
Detection wavelength	220 nm
Gradient	15-45%B in 30 min
Buffer A	0.05%TFA +2%CH ₃ CN
Buffer B	0.05%TFA +90%CH3CN

Peak Results

Rank	Time	Quantity	Area	Height
1 2 3 4 5	10.788 19.028 19.567 19.898 24.128	0.3634 0.04833 0.4885 96.63 2.474	20656 2747 27764 5491806 140617	2173 392 3042 420109 13378
Total		100	5683590	439094

_mV 540

Lot No.: P071220-01-11 Method: MALDI-TOF Main Peak: 3747.02 MW [M+H⁺]: 3747.02 MW: 3746.02 Theoretical MW: 3746.58 Match: Approved Z=1

Peptide LP28 = KKKKKLKKILKKLFQFINQLDNQLQDIKKKKKK

HPLC Certificate

HPLC Column	(250×4.6mm I.D.) C18
Detection wavelength	220 nm
Gradient	20-50%B in 30 min
Buffer A	0.05%TFA +2%CH ₃ CN
Buffer B	0.05%TFA +90%CH3CN

	Retention Time	Area	% Area	Height
1	15.394	36389	0.41	3069
2	16.117	15557	0.18	1673
3	16.517	71712	0.81	4311
4	16.972	8695304	98.60	700056

Mass Spectrometry Certificate

Lot No.: P071220-01-12 Method: MALDI-TOF Main Peak: 3983.92 MW [M+H⁺]: 3983.92 MW: 3982.92 Theoretical MW: 3983.03 Match: Approved Z=1

Peptide LP29 = KKKKAKKAAKKAFQFANQADNQAQDAKQNK-NH2

HPLC Certificate

HPLC Column	(250×4.6mm I.D.) C18
Detection wavelength	220 nm
Gradient	0-30%B in 30 min
Buffer A	0.05%TFA +2%CH ₃ CN
Buffer B	0.05%TFA +90%CH ₃ CN

mV

Peak Results

Rank	Time	Quantity	Area	Height
1 2 3 4	16.598 16.968 17.515 18.040	0.1139 0.1953 98.66 1.032	3026 5188 2620577 27420	306 317 204732 3387
Total		100	2656211	208742

Lot No.: P170521-01-03 Method: MALDI-TOF Main Peak: 3376.28 MW [M+H⁺]: 3376.28 MW: 3375.28 Theoretical MW: 3374.93 Match: Approved Z=1

Peptide LP30 = KKKKMKKMMKKMFQFMNQM**D**NQMQ**D**MKQNK-NH2

HPLC Certificate

Peak Results

Rank	Time	Conc.	Area	Height
1 2 3 4 5 6	14.455 14.940 15.535 20.320 21.653 22.718	0.08827 0.07097 99.11 0.4043 0.2333 0.09402	2398 1928 2692266 10984 6338 2554	319 290 142301 1235 700 365
Total		100	2716468	145210

Mass Spectrometry Certificate

Lot No.: P170521-01-05 Method: MALDI-TOF Main Peak: 3856.37 MW [M+H⁺]: 3856.37 MW: 3855.37 Theoretical MW: 3855.87 Match: Approved Z=1

Peptide LP31 = KKKKVKKVVKKVFQFVNQVDNQVQDVKQNK-NH2

HPLC Certificate

Mass Spectrometry Certificate

Lot No.: P170521-01-04 Method: MALDI-TOF Main Peak: 3601.17 MW [M+H⁺]: 3601.17 MW: 3600.17 Theoretical MW: 3599.36 Match: Approved Z=1

Peptide LP32 = KKKKLKKLLKKLFQFLNQLDNQLQDLKQNK-NH2

HPLC Certificate

Mass Spectrometry Certificate

Lot No.: P170521-01-07 Method: MALDI-TOF Main Peak: 3712.25 MW [M+H⁺]: 3712.25 MW: 3711.25 Theoretical MW: 3711.58 Match: Approved Z=1

Peptide LP33 = KKKKIKKIIKKIFQFINQIDNQIQDIKQNK-NH2

	HPLC Column	(250×4.6mm I.D.) C18
	Detection wavelength	220 nm
	Gradient	25-55%B in 30 min
	Buffer A	0.05%TFA +2%CH3CN
	Buffer B	0.05%TFA +90%CH3CN
mV		
810		
720		16.112'
630		
540		
450		
360		

12.217

_Δ

12

270

180

90

-90

э

6

9

HPLC Certificate

Rank Time Quantity Height Area 1.009 79496 1 12.217 11083 2 3 95.97 7557696 665694 16.112 2.502 197023 20544 16.977 4 25.153 0.5177 40772 3664 Total 100 7874987 700985

16.977

18

Peak Results

21

Λ

15

25.153

27

min

24

Mass Spectrometry Certificate

Lot No.: P170521-01-06 Method: MALDI-TOF Main Peak: 3713.08 MW [M+H⁺]: 3713.08 MW: 3712.08 Theoretical MW: 3711.58 Match: Approved Z=1

Peptide LP34 = KKKKLKKILKKLFTFITTLDTTLTDIKTTK-NH2

	HPLC Column	(250×4.6mm I.D.) C18
	Detection wavelength	220 nm
	Gradient	28-58%B in 30 min
	Buffer A	0.05%TFA+2%CH ₃ CN
	Buffer B	0.05%TFA +90%CH3CN
mV		
1200		
1100		14.685
1000		
900		
800		
700		
600		
500		
400		
300		
100		
0		2.783* 12.381* 13.93# 54*
-100	v v	
-200	a 9 a	15 18 24 24 27 min

HPLC Certificate

P170521-01-08

Lot No.

Peak Results

Rank	Time	Quantity	Area	Height
1 2 3 4 5	9.783 12.381 13.931 14.548 14.685	0.07631 0.04537 0.3482 0.3739 99.16	16802 9990 76675 82326 21831341	2228 1415 5647 6588 1072853
Total		100	22017134	1088731

Mass Spectrometry Certificate

Lot No.: P170521-01-08 Method: MALDI-TOF Main Peak: 3538.12 MW [M+H⁺]: 3538.12 MW: 3537.12 Theoretical MW: 3537.45 Match: Approved Z=1

Peptide LP35 = KKKKLKKILKKLFQFIQQLDQLQDIKQQK-NH2

HPLC Certificate

HPLC Column	(250×4.6mm I.D.) C18
Detection wavelength	220 nm
Gradient	20-50%B in 30 min
Buffer A	0.05%TFA +2%CH ₃ CN
Buffer B	0.05%TFA +90%CH ₃ CN

тV

Rank	Time	Conc.	Area	Height
1 2 3	20.268 21.296 22.330	0.3373 99.37 0.2875	41225 12145670 35142	5315 714712 5714
Total		100	12222037	725741

Mass Spectrometry Certificate

Lot No.: P170521-01-10 Method: MALDI-TOF Main Peak: 3753.94 MW [M+H⁺]: 3753.94 MW: 3752.94 Theoretical MW: 3753.66 Match: Approved Z=1

Peptide LP36 = KKKKLKKILKKLFSFISSLDSSLSDIKSSK-NH2

HPLC Certificate

HPLC Column	(250×4.6mm I.D.) C18
Detection wavelength	220 nm
Gradient	20-50%B in 30 min
Buffer A	0.05%TFA +2%CH ₃ CN
Buffer B	0.05%TFA +90%CH3CN

Peak Results

Rank	Time	Quantity	Area	Height
1	12.489	0.02091	7372	967
2	15.230	0.08147	28719	1900
3	16.845	0.2572	90663	8688
4	17.778	0.4167	146880	10146
5	18.183	0.5708	201204	27388
6	18.332	97.83	34486470	1398540
7	19.442	0.5819	205146	13246
8	22.288	0.04685	16516	1385
9	26.178	0.03691	13012	1600
10	27.133	0.1577	55609	5305
Total		100	35251591	1469165

Mass Spectrometry Certificate

Lot No.: P170521-01-09 Method: MALDI-TOF Main Peak: 3427.09 MW [M+H⁺]: 3427.09 MW: 3426.09 Theoretical MW: 3425.23 Match: Approved Z=1

Peptide LP37 = KKKKLKKILKKLFNFINNLDNNLNDIKNNK-NH2

HPLC Certificate

HPLC Column	(250×4.6mm I.D.) C18
Detection wavelength	220 nm
Gradient	20-50%B in 30 min
Buffer A	0.05%TFA +2%CH3CN
Buffer B	0.05%TFA +90%CH3CN

Peak Results

Rank	Time	Quantity	Area	Height
1	14.861	0.1074	3964	537
3	17.192	97.39	3594154	256822
4 5	17.714 19.233	0.9335 0.6383	34447 23556	2951 2258
6 7	20.427 23.536	0.2717 0.2546	10027 9396	1041 1042
Total		100	3690323	265724

Mass Spectrometry Certificate

Lot No.: P170521-01-11 Method: MALDI-TOF Main Peak: 3664.21 MW [M+Na⁺]: 3664.21 MW: 3641.21 Theoretical MW: 3641.44 Match: Approved Z=1

Peptide LP38 = KKKKLRRILRRLFQFINQLDNQLQDIKQNK-NH2

HPLC Column	(250×4.6mm I.D.) C18
Detection wavelength	220 nm
Gradient	30-60%B in 30 min
Buffer A	0.05%TFA +2%CH ₃ CN
Buffer B	0.05%TFA +90%CH ₃ CN

Peak Results

Rank	Time	Conc.	Area	Height
1	10.908	97.92	3970979	196425
2	11.768	0.1393	5649	728
3	12.545	0.05034	2042	334
4	13.230	0.4941	20036	2249
5	13.568	0.5128	20795	2241
6	26.034	0.8817	35753	1602
Total		100	4055254	203579

Mass Spectrometry Certificate

Lot No.: P300720-01-06 Method: MALDI-TOF Main Peak: 3823.84 MW [M+H⁺]: 3823.84 MW: 3822.84 Theoretical MW: 3823.63 Match: Approved Z=1

Peptide LP39 = **RRR**LKKILKKLFQFINQLDNQLQDIRQNR-NH2

HPLC Certificate

HPLC Column	(250×4.6mm I.D.) C18
Detection wavelength	220 nm
Gradient	22-52%B in 30 min
Buffer A	0.05%TFA +2%CH ₃ CN
Buffer B	0.05%TFA +90%CH ₃ CN

Peak Results

Rank	Time	Quantity	Area	Height
1 2 3	17.577 18.164 19.088	2.222 0.1141 97.66	130904 6721 5752715	12313 757 425024
Total		100	5890340	438094

Lot No.: P300720-01-07 Method: MALDI-TOF Main Peak: 3879.73 MW [M+H⁺]: 3879.73 MW: 3878.73 Theoretical MW: 3879.66 Match: Approved Z=1

$Peptide \ LP40 = \texttt{HHHHLKK} \texttt{ILKK} \texttt{LFQFINQLD} \texttt{NQLQD} \texttt{IHHHH}$

HPLC Column	(250×4.6mm I.D.) C18
Detection wavelength	220 nm
Gradient	30-60%B in 30 min
Buffer A	0.05%TFA +2%CH3CN
Buffer B	0.05%TFA +90%CH3CN

Peak Results

Rank	Time	Conc.	Area	Height
1 2 3	11.822 12.990 13.838	95.21 3.883 0.9108	58034144 2366751 555207	1126757 132323 33077
Total		100	60956102	1292157

Lot No.: P071220-01-09 Method: MALDI-TOF Main Peak: 3798.65 MW [M+H⁺]: 3798.65 MW: 3797.65 Theoretical MW: 3798.41 Match: Approved Z=1

Peptide LP43 = KNQNLDDILNQLFQFINQLKNQLQKIKKKK-NH2

UDI C Calana	(250×4 (mm LD)) (110
HPLC Column	(250×4.6mm I.D.) C18
Detection wavelength	220 nm
Gradient	8-38%B in 30 min
Buffer A	0.05%TFA+2%CH ₃ CN
Buffer B	0.05%TFA +90%CH3CN

Peak Results

Rank	Time	Quantity	Area	Height
1 2 3 4 5	10.507 11.963 17.822 24.997 25.430	98.37 1.511 0.03916 0.03865 0.03843	98711642 1516068 39295 38780 38565	1741216 87484 5295 6517 14819
Total		100	100344350	1855331

Mass Spectrometry Certificate

Lot No.: P061021-02-07 Method: MALDI-TOF Main Peak: 3684.94 MW [M+H⁺]: 3684.94 MW: 3683.94 Theoretical MW: 3683.39 Match: Approved Z=1

Peptide Melittin = GIGAVLKVLTTGLPALISWIKRKRQQ-NH2

HPLC	Certificate

HPLC Column	(250×4.6mm I.D.) C18
Detection wavelength	220 nm
Gradient	28-58%B in 30 min
Buffer A	0.05%TFA +2%CH ₃ CN
Buffer B	0.05%TFA +90%CH ₃ CN

Peak Results

Rank	Time	Conc.	Area	Height
1	19.126	0.09264	17118	1252
3	20.037	99.46	18376733	735029
4	22.957	0.08532	15766	1323
Total		100	18477323	741902

Mass Spectrometry Certificate

Lot No.: P300720-02-01 Method: MALDI-TOF Main Peak: 2847.65 MW [M+H⁺]: 2847.65 MW: 2846.65 Theoretical MW: 2846.53 Match: Approved Z=1