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Stereoselectivity of Ins(1,3,4,5)P, recognition sites: implications for the
mechanism of the Ins(1,3,4,5)P;-induced Ca2* mobilization
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Ins(1,3,4,5)P, was able to mobilize the entire Ins(1,4,5)F,-
sensitive intracellular Ca?* store in saponin-permeabilized SH-
SY5Y human neuroblastoma cells in a concentration-dependent
manner, yielding an EC;, value of 2.05+0.45 uM, compared
with 0.14+0.03 4uM for Ins(1,4,5)P,. However, L-Ins(1,3,4,5)P,
[= p-Ins(1,3,5,6)P] failed to cause mobilization of intracellular
Ca?* at concentrations up to 100 xuM. Binding studies using
pig cerebellar membranes as a source of both Ins(1,4,5)P,/
Ins(1,3,4,5)P,-specific binding sites have revealed a marked
contrast in their stereospecificity requirements. Ins(1,4,5)F;-
receptors from pig cerebella exhibited stringent stereospecificity,
L-Ins(1,4,5)P, and L-Ins(1,3,4,5)P, were > 1000-fold weaker,
whereas Ins(1,3,4,5)F, (IC;, 762 + 15 nM) was only about 40-fold
weaker than D-Ins(1,4,5)P, (IC,, 20.74+9.7 nM) at displacing
specific [*H]Ins(1,4,5)P, binding from an apparently homo-
geneous Ins(1,4,5)P, receptor population. In contrast, the

Ins(1,3,4,5)P,-binding site exhibited poor stereoselectivity.
Ins(1,3,4,5)P, produced a biphasic displacement of specific
[**P]Ins(1,3,4,5)P, binding, with two-site analysis revealing K,
values for high- and low-affinity sites of 2.1+0.5nM and
918+ 161 nM respectively. L-Ins(1,3,4,5)P, also produced a bi-
phasic displacement of specific [**P]Ins(1,3,4,5)P, binding which
was less than 10-fold weaker than with D-Ins(1,3,4,5)P, (IC,,
values for the high- and low-affinity sites of 17.2+3.7 nM and
3010+ 542 nM respectively). Therefore, although L-Ins(1,3,4,5)P,
appears to be a high-affinity Ins(1,3,4,5) P,-binding-site ligand in
pig cerebellum, it is a very weak agonist at the Ca?*-mobilizing
receptors of permeabilized SH-SY5Y cells. We suggest that the
ability of D-Ins(1,3,4,5)P, to access intracellular Ca** stores may
derive from specific interaction with the Ins(1,4,5) P,- and not the
Ins(1,3,4,5)P,-receptor population.

INTRODUCTION

Many cell-surface receptors activate phosphoinositide-specific
phospholipase C via G-proteins, to catalyse the hydrolysis of
phosphatidylinositol 4,5-bisphosphate and produce the second
messengers Ins(1,4,5)P, and diacylglycerol [1]. Ins(1,4,5)P,
specifically interacts with a family of Ins(1,4,5) P,-receptor-gated
channels to mobilize non-mitochondrial intracellular Ca?* stores
[1,2]. In animal cells Ins(1,4,5)P, is rapidly metabolized by 5-
phosphatase and 3-kinase activities, to form Ins(1,4)P, and
Ins(1,3,4,5)P, respectively [1]. Although controversy exists as
to whether Ins(1,3,4,5)P, also plays a role in cell signalling,
evidence has accumulated suggesting it may have a role in Ca*
entry across the plasma membrane (reviewed in [3-5)).
Ins(1,3,4,5)P,-activated Ca®* channels have been recently
identified in the plasma membrane of endothelial cells [6],
and Ins(1,3,4,5)P,-activated Ca?* mobilization has been observed
using crude microsomes and enriched vesicular plasma
membranes prepared from T-lymphocyte and monocyte cell lines
[7]. Furthermore, Ins(1,3,4,5) P, has also been reported to induce
a heparin-insensitive Ca** sequestration into intracellular pools
of the 261B rat liver epithelial cell line [8,9].

In some cell types, Ins(1,3,4,5)P, apparently fails to mobilize
intracellular Ca®** stores or to modulate Ins(1,4,5)P,-induced
Ca?* mobilization [10-13]. However, several studies have
reported either Ins(1,4,5)P,-independent or Ins(1,4,5)P,-syner-
gistic effects of Ins(1,3,4,5)P, on intracellular Ca?* mobilization,
although the problems of Ins(1,4,5)P, contamination of the
Ins(1,3,4,5)P, used [14,15], back-conversion into Ins(1,4,5)P, by

endogenous 3-phosphatase activity in the cells [16,17] or indirect
effects of Ins(1,3,4,5)P, by protection of Ins(1,4,5)P, from 5-
phosphatase metabolism [18], have not always been convincingly
addressed. Ins(1,3,4,5)P, has been shown directly to mobilize the
Ca* stores in cerebellar [19] and adrenal [20] microsomes,
permeabilized SH-SY5Y neuroblastoma cells [15,21] and micro-
injected Xenopus oocytes [22]. In all these studies the maximal
concentrations of Ins(1,3,4,5)P, (20-30 uM) used mobilized
significantly less intracellular Ca?* than could be achieved with
Ins(1,4,5)P,.

At present it is not clear how, or indeed if, the different
physiological effects of Ins(1,3,4,5)P, (i.e. stimulation of Ca*
entry and intracellular Ca?" mobilization and sequestration), are
mediated via the specific high-affinity Ins(1,3,4,5)P,-binding sites
detected in certain tissues. Here we have assessed where
Ins(1,3,4,5) P,-binding sites might be linked to Ca?* mobilization
from intracellular stores. Ins(1,3,4,5)P, and L-Ins(1,3,4,5)P, were
used to characterize the stereospecific requirements of ligand
binding in pig cerebellar membranes and Ca?* mobilization in
permeabilized SH-SY5Y neuroblastoma cells.

MATERIALS AND METHODS

Materlals

4CaCl, (approx. 1000 Ci/mmol; Amersham International),
[FHJIns(1,4,5)P, (17 Ci/mmol) and [**P]Ins(1,3,4,5)P, (116-
162 Ci/mmol) were generously given by NEN DuPont.

Heparin (M, 4000-5000), disodium ATP, fura-2 and EGTA were
from Sigma; all other reagents were of the highest purity

Abbreviation used: CLB, ‘cytosol-like’ buffer.
§ To whom correspondence should be addressed.
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available. L-Ins(1,4,5)P, [23] and L-Ins(1,3,4,5)P, [24] were
synthesized as previously described.

Chemically synthesized Ins(1,4,5)P, [25] and Ins(1,3,4,5)F, [26]
were obtained from the University of Rhode Island Foundation
Chemistry Group, U.S.A., and were used for all the **Ca*-
release assays. Both compounds were extensively characterized
by 2!P- and 'H-n.m.r., and were found to be > 999, pure, with
no other detectable inositol polyphosphates, reflecting that the
respective synthetic pathways effectively exclude the possibility
of Ins(1,4,5)P,/Ins(1,3,4,5)P, cross-contamination [26].

Radioligand-binding studies using pig cerebellar membranes
Preparation of cerebellar ‘P,” membrane fraction

Pig cerebella were obtained from a local abattoir. Portions of
cerebellum were either used immediately or frozen in liquid
nitrogen and stored at —70 °C. Cerebellum was chopped with
scissors at 4°C and homogenized in 20 vol. of 20 mM
NaHCO,/1 mM dithiothreitol, pH 8.0, with a Polytron (setting
5, 2x155s). The homogenate was centrifuged (4000 g, 10 min,
4 °C) and the supernatant kept. The pellet was re-homogenized
and centrifuged as above. The pooled supernatants from the low-
speed centrifugation steps were then centrifuged (35000 g,
20 min, 4 °C). The resulting pellets were then homogenized and
the high-speed centrifugation step was repeated twice. The final
pellet was resuspended in homogenization buffer at 6-8 mg of
protein/ml, ‘snap’-frozen in liquid nitrogen and stored at —20 °C
until required.

Characterization of Ins(1,4,5)R- and Ins(1,3,4,5)R-binding sites

Increasing concentrations (0.5-1000 nM) of Ins(1,4,5)P, were
incubated in a total assay volume of 120 xl with 2-3 nM
[*H]Ins(1,4,5)P, in a buffer containing 25 mM Tris/HCl, 5 mM
NaHCO,, 1 mM EDTA and 0.25 mM dithiothreitol, pH 8.0.
Incubations were initiated by addition of 50-70 ug of cerebellar
membrane protein and continued for 30 min at 4 °C. Bound and
free ligand were separated by centrifugation (12000 g, 4 min).
Pellets were dissolved in 2 %, SDS. Residual bound radioactivity
in the presence of 10 4uM D-Ins(1,4,5)F, (Research Biochemicals
Inc., St. Albans, Herts., U.K.), ] mM InsF;, 100 x#g/ml heparin
or 3mM 2,3-bisphosphoglycerate was similar (< 5% of total
binding) and was defined as non-specific binding.

Increasing concentrations (0.1-10000 nM) of Ins(1,3,4,5)F,
were incubated in a total assay volume of 120 xl with 0.2-0.4 nM
[**P]Ins(1,3,4,5)F, in a buffer containing 25 mM sodium acetate,
25 mM KH,PO,, 5mM NaHCO,, 1 mM EDTA and 0.25 mM
dithiothreitol, pH 5.0. Incubations were initiated by addition of
200-250 ug of cerebellar membrane protein and continued for
30 min at 4 °C. Bound and free ligand were separated by rapid
vacuum filtration over GF/B filters, with 3 x 3 ml washes with
25mM sodium acetate/25mM KH,PO,/5mM NaHCO,,
pH 5.0. Residual bound radioactivity in the presence of 100 uM
pL-Ins(1,3,4,5)P, (generously given by Dr. D. C. Billington,
Merck Sharp and Dohme Research, Harlow, Essex, U.K.),
1 mM InsF,, 100 xg/ml heparin or 3mM 2,3-bisphospho-
glycerate was similar (10-15 % of total binding) and was defined
as non-specific binding. Where indicated, competition curves
were constructed for other inositol polyphosphates, by using the
assays described above.

Cell culture

SH-SYSY human neuroblastoma cell monolayers (passage
70-90), initially a gift from Dr. J. L. Biedler (Sloane—Kettering

Institute, New York, NY, U.S.A.), were subcultured and main-
tained as described [27].

Ca*-mobllization assays

SH-SYS5Y cell monolayers were harvested in 25 ml of Hepes-
buffered saline, consisting of 10 mM Hepes, 15 mM NaCl and
0.02% (w/v) EDTA (pH 7.2). The cell suspension was centri-
fuged at 500 g for 2 min, and the resulting pellet resuspended in
a ‘cytosol-like’ buffer (CLB), consisting of 120 mM KCl, 2 mM
Na,ATP, 2.4 mM MgCl,,6H,0, 2 mM KH,PO,, 5 mM sodium
succinate and 20 mM Hepes (pH 7.2). The free Ca®** concen-
tration of the CLB was buffered between 80 and 150 nM by
addition of 1-3 uM EGTA; this was confirmed fluorimetrically
in 2 ml samples by using fura-2 (250 nM) as described [28]. The
cells were washed twice in CLB, by spinning at 500 g for 1 min,
and then resuspended in CLB containing 100 xg/ml saponin and
a cell protein concentration of 1.5-2 mg/ml. After exactly 1 min
the cells were centrifuged (500 g, 1 min) and the pellet was
resuspended to 0.3-0.4 mg/ml in CLB containing 1xCi of
5Ca?*/ml.

Ins(1,3,4,5)P,-induced **Ca®* mobilization was performed at
4 °C to preclude the possibility of 3-phosphatase activity causing
Ins(1,4,5)P, formation in the permeabilized SH-SYSY cells [21].
Cells were preincubated for 20 min at 25°C to allow ATP-
dependent loading of intracellular Ca?* stores, cooled to 4 °C in
ice/water, and then 50 ul of cell suspension was added to 50 pl of
CLB containing the inositol polyphosphates or other agents in
1.5 ml microcentrifuge tubes. After 3 min incubation at 4 °C,
cells were pelleted by centrifugation (16000 g, 2 min); then 250 xl
of a silicone oil mixture (Dow—Corning 556/550; 1:1, v/v) was
added and the tubes were re-centrifuged (16000 g, 1 min). Buffer
and oil were removed by aspiration, and the tubes allowed to
drain for 20 min. The resultant cell pellets were solubilized in
1 ml of Optiphase X scintillation fluid for 6-8 h at 4 °C, and the
radioactivity was then counted. All experiments were performed
in duplicate; 20 uM ionomycin (free acid ; Calbiochem) was used
to define the total releasable **Ca®** pool and 20-30 xuM
Ins(1,4,5)P, to define the Ins(1,4,5)P,-sensitive **Ca®* pool.

Data analysis

EC,,, IC;,, K, and slope values were estimated by computer-
assisted curve fitting by using GraphPad INPLOT version 3.1
(GraphPad Software, U.S.A.) and Allfit [29]. Where slope factors
were significantly less than unity, computer-assisted one- and
two-site analyses were compared [30]. Where data were best
fitted by two-site analysis, the concentrations of agents required
to cause 50 %, displacement from high (Ky)- and low (X, )-affinity
populations are given. Combined data from the independent
experiments were expressed as means +S.E.M., where n > 3.

RESULTS
Inositol polyphosphate binding to pig cerebellar membranes

Ins(1,4,5)P, displaced specific [*H]Ins(1,4,5)P, binding from an
apparently homogeneous single site (slope 0.97 +0.03). Scatchard
transformation of isotope-dilution data yielded K, 17.5+ 1.8 nM
and B,,, 20.8+2.4 pmol/mg of protein (n =S5). As reported
previously for rat cerebellar membranes prepared in an identical
fashion, L-Ins(1,4,5)F, was > 1000-fold weaker in its displacing
activity [30], as was L-Ins(1,3,4,5)P, in pig cerebellum, in this
study. The other inositol polyphosphates tested exhibited similar
IC,, values to those reported previously for rat cerebellar
membranes [30] (Table 1).

Displacement ‘of specific [*?P]Ins(1,3,4,5)P, binding by
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Table 1 Inhibition of specific [*H]Ins(1,4,5)R, and [**P}Ins(1,3,4,5)F, binding
to pig cerebellar membranes

Results are shown as means+S.EM. (7> 3) for ICs, (M) and slope factors (h) where
appropriate. Abbreviation: ND, not determined.

Displacing [PH]Ins(1 45R [2P)ins(1,3,45)R

ligand 1Cso (M)/ 1 ICo (M)/h

Ins(1,4.5)R 2.07 (£0.21) x 107%/0.97 +0.03  1.40 (£0.25) x 10°/0.96 +0.02
Cins(145)8 224 (£0.39)x 107°/0.90+£005  ND

Ins(134,58 762 (£0.15)x107/0.954+0.04 K, 210 (£0.50) x 107°

K. 918 (+£1.62) x 1077
K, 1.72 (£037)x 107
K, 3.01 (£054) x 10~
1.03 (+0.09) x 107%/0.88 +0.08

vins(1,345)f 238 (+0.84) x 1075/0.89 +0.07

Ins(1346)F  8.31 (£0.38) x 1077/0.90+0.09
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Figure 1 Inhibition of specific [*H]ins(1,4,5)7 and [*P]ins(1,3,4,5)A,
binding to pig cerebellar membranes by increasing concentrations o‘

Results are shown as means + S.EM. for 7 > 3 independent experiments.
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Figure 2 Inositol polyphosphate-induced *Ca2* mobilization in saponin-
permeabilized SH-SY5Y cells

Results are shown as means + S.EM. for 7 = 4 independent experiments using Ins(1,4,5)4
(A, Ins(1,3,4,5F (M) and -Ins(1,3,4.5)R (O). The respective mean EC, and slope values
are reported in the Results section.

Ins(1,3,4,5)P, yielded curves with slope factors significantly less
than unity [0.5340.04 (n = 3)]. These were poorly fitted by
single-site analysis, but could be accurately modelled by using a

two-site analysis. Such analysis yielded K, values for high- and
low-affinity binding sites of 2.1+0.5nM and 918 +161 nM
respectively (n = 3): at the concentration of [*2P]Ins(1,3,4,5)P,
used, the high-affinity site accounted for 75.4+2.5% of
total binding and corresponded to a density of sites of
212430 fmol/mg of protein (Figure 1). In contrast with the
stereospecificity exhibited by the Ins(1,4,5)P,-binding site, L-
Ins(1,3,4,5)P, [= Ins(1,3,5,6)P,] also caused a biphasic displace-
ment of specific [*2P]Ins(1,3,4,5)P, binding and was < 10-fold
weaker in its displacing activity relative to the p-isomer (IC;, for
high-affinity site 17.2+3.7nM; IC,, for low-affinity site
30101+ 542 nM). The proportional distribution of high- and low-
affinity sites observed in the L-Ins(1,3,4,5)P,-displacement studies
(high-affinity 72.4+3.19%,) was similar to that estimated from
Ins(1,3,4,5)P, isotherms. Comparison of the ability of other
inositol polyphosphates to displace specific [*2P]Ins(1,3,4,5)P,
binding from pig cerebellar membranes was entirely consistent
with the rank-order of potency previously determined by using
rat cerebellar membranes [30] (Table 1; Figure 1).

Ca** mobllization by inositol polyphosphates

Ins(1,4,5) P, mobilized 56.4 + 1.4 % (n = 20) of pre-loaded **Ca?*
from saponin-permeabilized SH-SYSY cells at 4 °C, with a
mean EC,, (and slope) value of 141+27nM (0.9110.03).
Ins(1,3,4,5)P, (100 uM) was able to mobilize the entire
Ins(1,4,5)P-sensitive  intracellular Ca®* store of saponin-
permeabilized SH-SY5Y with a mean EC,, (and slope) value
of 2.05+0.45 uM (1.03+0.09), which was only about 15-fold
weaker than Ins(1,4,5)P, (Figure 2).

However, L-Ins(1,3,4,5)P, did not significantly mobilize intra-
cellular Ca?* even at concentrations up to 100 uM (Figure 2).
Also, co-incubation of the SH-SYS5Y cells with 10 4M L-
Ins(1,3,4,5)P, failed to produce a significant shift of either the
Ins(1,4,5)P;- or Ins(1,3,4,5)P,-induced Ca**-release concentra-
tion—response curves. These were superimposable, with their
control curves yielding mean EC,, values for the Ins(1,4,5)F;-
or Ins(1,3,4,5)P-induced Ca®*-release concentration-response
curves of 170453 nM and 1.70+0.58 M respectively. These
results suggest that L-Ins(1,3,4,5)P, fails to interact functionally
with any Ca®*-mobilizing inositol polyphosphate receptor(s) in
SH-SYS5Y cells.

DISCUSSION

In previous studies we have demonstrated that the binding of
Ins(1,4,5)P, to its receptor(s) [31] and its ability to mobilize
intracellular Ca?* [32] are highly stereospecific, with the D-isomer
greater than 300-fold more potent than L-Ins(1,4,5)P,. The value
of comparing stereoisomers is also emphasized in the present
study, where we have been able to dissociate clearly the ability of
Ins(1,3,4,5) P, to mobilize Ca?* in SH-SYSY cells from its activity
at specific binding sites in pig cerebellum. Thus the marked
stereospecificity of D- over L-Ins(1,3,4,5)P, to mobilize Ca**
mirrors its activity at Ins(1,4,5)FP,- but not Ins(1,3,4,5)P,-binding
sites. Although it remains possible that SH-SYSY cells contain
specific Ins(1,3,4,5)P, sites with totally distinct properties from
those in pig cerebellum, they were not detectable by using
[®?P]Ins(1,3,4,5)P,. Indeed, although we have previously detected
Ins(1,4,5)P;-receptor binding sites in membranes prepared from
SH-SYS5Y cells [33], we have not been able to detect any specific
binding sites for [*?P]Ins(1,3,4,5)P, under conditions identical
with those used in cerebellum studies. We believe that the most
parsimonious interpretation of the data at present is that
Ins(1,3,4,5)P, releases Ca** by interacting with Ins(1,4,5)FP,
receptors, at least in SH-SYSY cells.
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Here we have demonstrated that Ins(1,3,4,5)P, can mobilize
the entire Ins(1,4,5)P,-sensitive Ca?* store in SH-SY5Y cells,
using highly pure synthetic D-isomer and under conditions that
we have previously shown preclude the possibility of enzymic
conversion into Ins(1,4,5)P, [21]. We had previously reported
that chemically synthesized DL-Ins(1,3,4,5)P, mobilizes intra-
cellular Ca?t in SH-SYSY cells [15,21], but that the presumed
maximal concentration of pL-Ins(1,3,4,5)P, (10-30 xM) utilized
in these studies mobilized at best only 629 of the intra-
cellular Ins(1,4,5)P;-sensitive store. Additionally, 10 uM DL-
Ins(1,3,4,5)P, failed to affect significantly the Ins(1,4,5)P,-induced
Ca®** mobilization [15]. These previous data led us to speculate
that Ins(1,3,4,5)P, might therefore be mobilizing Ca®* via a
receptor distinct from the Ins(1,4,5)F, receptor. In contrast, the
present study indicates that maximal concentrations of synthetic
D-Ins(1,3,4,5) P, between 30 and 100 M are required to mobilize
fully the Ins(1,4,5)P,-sensitive intracellular Ca®* store. Since we
now know L-Ins(1,3,4,5)P, to be a very weak Ins(1,4,5) P,-receptor
ligand and Ca®*-mobilizing agent, the affects that we previously
observed with DL-Ins(1,3,4,5)P, are probably mediated exclus-
ively by the D-isomer, suggesting that 515 4uM was the maximal
effective concentration present in our earlier studies [15,21]. This
may at least partially explain why we only observed 60 %, release
of the Ca®* stores, since Ins(1,3,4,5) P, concentrations of 3-30 M
span the 50-909% Ca*'-release range on the Ins(1,3,4,5)P,-
concentration/response relationship. We now also suggest that
the inability of DL-Ins(1,3,4,5)F, (10 xuM) to shift the Ins(1,4,5)P,
concentration/response curve [21] is consistent with Ins(1,3,4,5) P,
being a weak but full agonist at the Ins(1,4,5)P, receptor. Clearly
Ins(1,3,4,5)P, shares key structural motifs with Ins(1,4,5)F,
including the 6-OH group, the 1-phosphate and the crucial p-
vicinal 4,5-phosphate grouping that are apparently requisite for
receptor binding and Ca?*-mobilizing activity [34-36]. Analysis
of our Ins(1,4,5)P,-binding and Ins(1,3,4,5)P,-induced Ca?*-
mobilization data show that Ins(1,3,4,5)F, is a 40-fold weaker
ligand, and 20-fold weaker agonist than Ins(1,4,5)P, (Table 1).
We have also observed a similar Ca%*-mobilizing profile in
1321N1 human astrocytoma cells, at 4 °C (R. A. Wilcox, un-
published work), and Parker and Ivorra [22] have estimated a
similar potency in microinjected Xenopus oocytes. Collectively,
these data in conjunction with the critical behaviour of the
stereoisomers of Ins(1,3,4,5)P, indicate that Ins(1,3,4,5)P,-
induced Ca*' mobilization may occur via the Ins(1,4,5)FP,-
receptor population, at least in some cell types. We are cur-
rently utilizing 3-position-modified Ins(1,4,5)P,/Ins(1,3,4,5)P,
analogues and Ins(1,4,5)P,-receptor partial agonist(s) to test the
validity of our hypothesized interaction of Ins(1,3,4,5)P, with the
Ins(1,4,5) P, receptor.
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