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The kinetics of slow-binding and slow, tight-binding inhibition: the effects of
substrate depletion
Stephen G. WALEY
University of Oxford, New Chemistry Laboratory, Oxford Centre for Molecular Sciences and Laboratory for Molecular Biophysics, South Parks Road,
Oxford OX1 3QT, U.K.

Inhibitors with dissociation constants in the micromolar to
nanomolar range are important, but hard to characterize kinetic-
ally, especially when the substrate concentration in the assay is
less than Km. When inhibition increases during the course of the
assay (slow-binding inhibition) the concentration of substrate
may decrease appreciably. Methods that take substrate depletion
into account are described for analysing experiments in which
the initial substrate concentration is below Km. Fitting progress
curves gives the rate constants for the second (slow) step in a

INTRODUCTION
Powerful enzyme inhibitors are increasingly important, both for
the information they provide about enzyme mechanisms and for
their medical importance. However, the characterization of such
inhibitors is often less than straightforward. The inhibition
characteristically sets in during the course of the assay; the initial
rate is not easy to measure: this is slow-binding inhibition.
Moreover, powerful inhibitors are effective at low concentrations.
Thus it may be necessary to use concentrations of the inhibitor
that are comparable with the concentration of enzyme. Then it is
no longer possible to ignore the depletion of the concentration of
unbound inhibitor: the enzyme-inhibitor complex is present at
concentrations comparable with that of the unbound enzyme.
This is tight-binding inhibition. The two features mentioned
often occur together: this is slow, tight-binding inhibition (Mor-
rison, 1982; Morrison and Walsh, 1988). The present paper starts
by discussing the problems posed by substrate depletion in slow-
binding inhibition, in the absence of tight-binding inhibition.
The usual standby in characterizing enzymic reactions,

measurement of initial rates, cannot be accurately implemented
by the customary method of measuring the slope of a progress
curve near the origin because the slope is changing too rapidly
(see, e.g., Figure la). Instead, the main procedure for character-
izing slow-binding inhibition consists of fitting progress curves to
eqn. (1), here called the 'burst equation':

p = VS t+ (vo-v ) (1 -e-kt)/k (1)
Here p is the concentration of product at time t, vo and v. are the
initial and steady-state rates, and k is the rate constant character-
izing the transient. This distinction between the initial and
steady-state rates is the hallmark of slow-binding inhibition. It is
assumed that the slow-binding inhibitor brings about reversible,
competitive inhibition (Morrison, 1982). An important assump-
tion in the deduction of eqn. (1) is that the concentration of
substrate does not change significantly. Now eqn. (1) is only
applicable for as long as the reaction in the absence of inhibitor
appears zero-order in time, i.e. when non-linearity ofthe progress
curve is not detectable in the control reaction. Substrate depletion
can only be neglected for a limited extent of reaction. The first
part of the present work describes a method that takes into
account substrate depletion in slow-binding inhibition.

two-step mechanism. An approximate value for the overall
dissociation constant may be determined from measurements of
rates when the reaction is treated as a first-order process. When
the concentrations of inhibitor and enzyme are comparable
numerical methods are required. Procedures, suitable for
implementation on a microcomputer, for the solution of the
differential equations and the fitting of progress curves are
described.

When there is also tight-binding inhibition (i.e. slow, tight-
binding inhibition) new problems arise, owing to depletion of the
inhibitor by combination with comparable concentrations of
the enzyme (Morrison, 1969; Sculley and Morrison, 1986).
Indeed, this is commonly a more serious problem than depletion
of the substrate, which may often be circumvented by raising the
concentration of substrate; however, there may be practical
limitations, such as the solubility of the substrate, or (in
spectrophotometric assays) the absorbance of the substrate.
Moreover, if the concentration of substrate is too high, the extent
of inhibition will be too low. Thus it is worthwhile considering
the situation in which substrate depletion, as well as inhibitor
depletion, has to be taken into account. Here numerical methods
are required, and these are described in the second part of the
present paper and in the Appendix.

SUBSTRATE DEPLETION IN SLOW-BINDING INHIBITION
The kinetic mechanism for slow-binding inhibition that is most
widely discussed (Morrison and Walsh, 1988) describes the
binding of inhibitor (I) as a two-step process (Scheme 1): there
is a fast formation of a non-covalent enzyme-inhibitor complex
(El), followed by a slower step in which El is transformed into
a more stable (sometimes covalently bound) complex, EI*. The
equilibrium constant for the first step is Ki, the overall dissociation
constant is K*, and the rate constants for the interconversion of
El and EI* are k+2 and k-2. The reaction of the single substrate
(S) is considered effectively irreversible, either innately or because
a coupled reaction removes the product; as usual, there may be
a second substrate present at a high enough concentration for its
concentration not to change; the inhibitor is assumed to bind
only to free enzyme. The rate of disappearance of substrate is:

dyJ/dt = -C e*y1
where y1 is the concentration of substrate (initially so), C stands
for kcat./Km, and e is the concentration of free enzyme (total
concentration eo). It is more convenient here to express rates in
terms of the free, not the total, enzyme concentration. The
stoicheiometry for the enzyme is:

e+ei+ei*+es = eO
where lower-case symbols denote the concentrations of the
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tight-binding inhibition is considered. The overall dissociation
constant is then given by:

./~~~~~~~~~~~K*=Ki1~~~~~~~~~~~~~~~~~+ +2
, ~~~~~~~~~~~~~~~k-2

Analytical solutions
It is customary to estimate the initial rate from the slope near the
origin of a progress curve. In slow-binding inhibition this may be

(a), hard. Thus in Figure 1(a) there is no initial linear phase. Hence
0.5 1.0 1.5 2.0 2.5 3.0 an equation is required to fit the progress curve. There are two

procedures for simplifying the equations, so that analytical
solutions for progress curves can be obtained. The concentration
of substrate can either be regarded as constant throughout the
experiment, or it can be regarded as small, as explained below.

Constant substrate concentration
The usual treatment (Morrison and Walsh, 1988) treats the
concentration of substrate as constant, an approximation that is
valid near the start of the reaction and when the concentration of
enzyme is much less than that of the substrate. In practice, an

(b)
upper limit of 10% for the extent of reaction is often used; the

I(b) control reaction will be linear if the substrate concentration is
2.0 2.5 3.0 several times the Km. The use of extrapolation in the context of

this approximation is discussed below.

Figure 1 Progress curve for slow-binding Inhibition fltted by the 'low-so Low substrate concentration
_ s&-.muiwuu

The initial concentrations of substrate, enzyme and inhibitor were 50 uM, 5 #M and 500 ,M
respectively, and k = 50 min-', Km = 50 FM, k.2 = 60 min-, k.2 = 3.57 min-' and
K; = 1700 FM. (The unit of time is taken as minutes rather than seconds here, so that the
simulated experiment matches usual times.) (a) The points show the simulated experimental
data and the curve shows the fit obtained by the low-s method described in the text. (b)
Logarithm of the concentration of substrate, fitted by linear regression.

E + I EIrtEI*
kTb2

Scheme Two-step binding mechanism

species concerned. Hence the usual equilibrium assumptions
(Cha, 1968) lead to:

e = (eO-y2)/(l +Y1/K +i/14) (2)

Here Y2 replaces ei*. Then the second differential equation is:

dy2/dt = (k+2 * i* e/14,)-k.2 *Y2

Thus there are three parameters to be found: k+2, k 2and K;
values of kcat/Km are presumed to be known from experiments
in the absence of inhibitor. It can be a help that it is kcat./Km that
is required, because it is sometimes easier to determine kcat/Km
than kcat and Km individually. The concentration of inhibitor (i)
is here assumed to be constant; this assumption is relaxed when

When a larger extent of reaction is measured in an experiment in
which the concentration of substrate is below K., then a useful
approximation is to drop the term y1/Km in eqn. (2) so that the
concentration of free enzyme is given by:

eO-Y2
e =

1+-

Now we can substitute this value for e in the equation for dy2/dt,
and solve the equation for y2, and then substitute in the equation
for dyl/dt to obtain an analytical solution for Fprod, the fraction
of product formed. This leads to a simple method for estimating
the overall dissociation constant, described below [eqn. (3)].

Y2 =-(1-e-A)

k+2 ieo
14+i

fl= + i+k-2

Thus Fprod is given by:

Fprod = 1 -

kcat (eO-a/
KJ1( + i/Ki)

_ kcat. c/l6
KJ(1 + i/i)

a= C/M
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Table 1 KInetc parameters In simulated slow-binding and slow tight-
binding inhibition
The first data set had initial concentrations of substrate, enzyme and inhibitor of 50 1uM, 5 PuM
and 500 PuM respectively, and k1 = 50 s-1, Km = 80 PM; the theoretical values were
k+2 = 60 s-1, k 2 = 3.57 s- and K; = 1700 #M. The second data set had initial
concentrations of substrate, enzyme and inhibitor of 2 PM, 30 nM and 30 nM respectively, and
km1 = 80 s-1, Km = 15 ,uM; the theoretical values were k+2 = 2.6 s-1, k 2 = 0.08 s-1 and
K; = 11 nM. Random errors from a normal distribution with mean zero and S.D. 0.1 were
added to the second data set. S.D. values are given below the corresponding values. The terms
SBI and STBI stand for slow-binding inhibition and slow tight-binding inhibition. The third row
of values gives the results obtained when three data sets were fitted together: one was the
second data set defined above, and the two others had initial concentrations of enzyme and
inhibitor of 120 nM and 30 nM respectively, and of 120 nM and 120 nM respectively. The 'low-
s' approximation method and the 'burst equation' methods are described in the text. The
column 'Dist' is 100 times the Euclidean distance of the found parameters from the theoretical
parameters, both as their logarithms. The overall inhibition constant is K;* (theoretical values:
95.5 FcM and 0.328 nM for the first and second data sets; the units in the Table are PM or
nM for the first or second set).

Kj*
Data (,M or

Method set k+2 (S-1) k-2 (s-1) kj (1sM) Dist(%) nM)

SBI
STBI

STBI

1st
2nd

2nd

Low-s 2nd
Burst 1 st
Low-s 1 st

60.55
2.62
(0.02)
2.65
(0.2)
1.40

44.0
40.9

3.57
0.0833
(0.012)
0.0803
(0.0056)
0.249
2.80
4.33

1714
0.0109
(0.001)
0.0112
(0.001 2)
0.0206

1170
948

1.2 95.4
4.2 0.336

2.65 0.329

144 0.313
54.3 70.1
72.9 90.7

The kinetic parameters can then be found from the following
equations by non-linear regression (see the Appendix):

(t eO)/(A +) -1

k -
Kk+2-=

i+&+k-2

numerical value of the slope (slope) from:

c kcat.eO
Km

K*= i

C-1
slope

This arises because, at times much greater than 1 /,, the term e-#t
is small, and the slope of the plot gives y, which may be written,
in terms of K*, as:

C
+=-

+K*
Ki

(3)

The line drawn in Figure 1(b) gave a value for K* of 93.2 ,M,
where the theoretical value was 95.5 ,M. Here the initial con-
centration of substrate was equal to (rather than much less than)
Km. For many practical purposes a convenient way to obtain K*
accurate to about 20 % is all that is required. When a lower
concentration of substrate (5/8 of K.; data set 1 in Table 1) was
used, a value for K* of 93.7,FM was obtained. The extent of
reaction was about 70% in these simulations, and the lines were
least-square fits. Values of K* accurate to about 20% were
obtained under a variety of conditions. The procedures given do
not allow for depletion of the concentration of inhibitor, and so
are strictly not applicable to tight-binding inhibition. Indeed, the
values found by the non-linear regression method for most of the
parameters in the last, and antepenultimate, rows ofTable 1 were
in error. Nevertheless, satisfactory values of K* were obtained
(perhaps owing to a cancellation of errors) even when the
concentration of inhibitor was equal to that of the enzyme (Table
1). The linear-log-plot procedure for K* was not satisfactory for
the second data set ofTable 1 when the concentrations ofenzyme
and inhibitor were equal.
The above analysis refers to experiments in which the con-

centration of substrate is less than Km. As mentioned in the
Introduction, this situation is probably less usual than the
alternative one in which the substrate concentration is greater
than Km.

k+2 (e( (i+

The use of the 'low-substrate' approximation has been tested
on several simulated data sets. Although accurate values for k+2,
k-2 and K' were obtained only when the initial concentration of
substrate, s,, was considerably below Km (e.g. one-tenth), values
of K* accurate to better than 10% were returned when so < Km
(Table 1). Incidentally, the so/Km term is compared with 1+ i/1I,
so that the larger i/1K is, the better the 'low-s' approximation.
Although the procedure of fitting progress curves has the
potential for determining all three kinetic parameters, only K*
may be required. The approximate 'low s' treatment provides a
simple and satisfactory method for estimating K'*. When the
logarithm of the concentration of substrate remaining (or, in a
spectrophotometric assay, the logarithm of IA -A.I) is plotted
against the time, the curve soon approximates closely to a
straight line (Figure lb). Then K'* can be found from the

Numerical solufton of the differential equations for slow-binding
inhibiflon
The differential equations for y1 and y2 have been given; the
values at zero time are so (initial substrate concentration) and 0
respectively. Zero time refers to the time before product or ei*
have been formed. It is assumed, as usual, that the concentration
of substrate is much greater than the concentration of enzyme,
and so es will be small compared with so at zero time. Before
considering finding the parameters, it is essential to test how
sensitive the solution is to the values of the parameters. The
example in Figure 2 shows that variation of the parameters had
a marked effect on the goodness-of-fit, as measured by the sum-
of-squares criterion; e.g. a 20% increase in k+2, k.2 or K1 gave a
sum of squares of residuals of 61, 39 or 66 respectively and, as the
Figure shows, there are even larger changes for a 20% decrease.
The harder part is coupling the solution of the equations with

a least-squares procedure to determine the parameters; the lack
of symmetry referred to above implies that convergence may be
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Figure 2 Dependence of lack-o-fit on values of parameters In slow-
binding inhlbfflon

The value of each parameter in turn was varied by a factor (F) and the sum of the squares of
the residuals was determined. The parameters were: (a) Kj, (b) k 2 and (c) k+2, and the data
were the first set given in Table 1.

difficult unless good starting values are used; this is a common
feature in fitting differential equations. The approximate pro-
cedures given above are useful for providing good starting values
for the kinetic parameters. The numerical procedures are outlined
in the Appendix. Although this procedure is satisfactory (see
Table 1), it is limited in that the concentration of inhibitor is
assumed constant, so further testing was carried out with the
more general method in which depletion of inhibitor is allowed
for.

TIGHT-BINDING INHIBITION

The kinetics of tight-binding inhibition has been much studied
and procedures for estimating K* have been described (Morrison,
1969; Cha, 1975, 1980; Greco and Hakala, 1979; Morrison and
Walsh, 1988). Although the usual procedure is to fit experi-
mentally determined rates, it may be preferable instead to fit
the progress curve to the solution of the differential equation,

essentially as is done below. In either case, the rate equation
(with s replacing y1) is:

ds _ kcatS ffK( s>~+i 0
dt 2(Km +s) {K[ ( Km) )

+4K*(1 +-t)eo] -[K*(1++g ,+io-eo]
Whether it is better to use rates than progress curves seems
unclear; a detailed comparison of methods (Greco and Hakala,
1979) assumed that the rates were determined without bias; if
there is a (perhaps undetected) slow-binding component, this
assumption will not hold. When there is also slow-binding
inhibition the situation is more complex, and this is now
discussed.

Substrate and Inhibitor depletion in slow tight-binding Inhibition
The depletion of inhibitor is important when the concentrations
of enzyme are comparable (Morrison, 1969; Morrison and
Walsh, 1988). When the depletion of inhibitor by the formation
of El is taken into account, the concentration of free enzyme (e)
is given by:

H = 1+Yl/Km
D = eO-Y2
G= io-eO
B= H1K4+G

Q = -[B-A/(B2-+4H D*Kj]/2
e = Q/H

and the concentration of free inhibitor is given by:

lo-Y2
+e1+-

The procedure is robust: one set of data with added random,
normally distributed errors (mean zero, S.D. 0.01) was fitted 50
times. Here the concentrations of enzyme and inhibitor were
equal and the final concentration of product was 0.77 ,uM. The
parameters were obtained with adequate accuracy (Table 1).
Fitting several sets of data simultaneously did not lead to
an appreciable improvement in the overall fit (Table 1). A
similar procedure was used by Williams et al. (1979). The
present procedure, suitable for microcomputers, complements
methods described for main-frame computers (Barshop et al.,
1983; Zimmerle and Frieden, 1989).

USE OF EXTRAPOLATION
There is a quite different way to overcome the difficulty of
substrate depletion in slow-binding inhibition. This is to carry
out a series of experiments and to extrapolate. Thus a series of
simulated experiments with the conditions specified in Table 1
(first data set), except that the enzyme concentration was varied,
have been reported (Crompton and Waley, 1989). When the
values of the parameters found by use of the 'burst equation'
were plotted against the concentration of enzyme, accurate
values were obtained by extrapolation. This procedure has the
advantage that familiar equations can be used. The obvious
disadvantage is that more experiments have to be undertaken,
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and also it is not always convenient to use a low enough
concentration of enzyme. The use of extrapolation in the context
of slow, tight-binding inhibition does not appear to have been
reported.

CONCLUSIONS
An important feature of experiments with slow-binding, and
slow, tight-binding inhibitors is that the concentration ofenzyme
can alter the kinetics appreciably. Thus, in slow-binding in-
hibition, if there is a problem due to substrate depletion, this will
be lessened at low concentrations of substrate (Crompton and
Waley, 1989). Similarly, tight-binding inhibition will be less
marked the lower the enzyme concentration. Moreover, for a
fixed enzyme concentration, an increase in the concentrations
of both substrate and inhibitor may eliminate the tight-
binding component of what would otherwise be slow,
tight-binding inhibition. The slow-binding component may be
eliminated if the enzyme and inhibitor are preincubated and the
reaction started by addition of substrate (see, e.g., Frieden et al.,
1980). Thus the investigator may be able to simplify the kinetics
by altering the conditions.
When a discontinuous assay has to be used, slow-binding

inhibition may not be detected. Then the rate, estimated from the
concentration of product formed after (say) 10% reaction, may
not be the steady-state rate. Nevertheless, Lineweaver-Burk or
Hanes plots may still appear linear, but will yield misleading
values for the kinetic parameters (Frere et al., 1983). In practice,
the concentration of product must be measured at enough
different times to tell whether there is slow-binding inhibition.
The analysis of slow-binding inhibition depends on whether

there is substrate depletion. If the uninhibited (control) reaction
is linear, then the 'burst' equation (eqn. 1) can be used; if not,
then the 'low-substrate-concentration' procedure is applicable.

APPENDIX
Non-linear regression

For non-linear regression, the DNRPEASY program has been
found very satisfactory (obtainable from R. G. Duggleby,
Department of Biochemistry, University of Queensland,
Brisbane, Queensland 4072, Australia). This program was derived
from the DNRP53 program (Duggleby, 1984), which utilizes
the well-established Marquardt (1963) procedure (see, e.g.

Bevington, 1969). However, one of the more commonly used
similar programs (see, e.g., Leatherbarrow, 1990) would be
perfectly adequate.

Numerical solution of differential equations
For the numerical solution of the differential equations the
NAG (Phillips, 1986, and see the main paper) programs D02EBF
or D02BBF, or the ODEINT program (Press et al., 1986)
were used on a Viglen II (PC, AT type) micromputer. The
difference between theNAG programs is that D02EBF should be
used if the rate constants differ very greatly in magnitude. For
the least-square minimizations, the NAG program E04FDF was

less successful with the data sets used than the simplex method
(Nelder and Mead, 1965) in the AMOEBA program (Press et al.,
1986). The difference between these approaches is that the
E04FDF program uses a Gauss-Newton method for minimiza-
tion [see, e.g., Bevington, 1969), whereas the simplex method is
a direct-search algorithm for finding the minimum of a function,

At first sight, it seems that the first equation could be corrected
for substrate depletion by writing Vmax/(Km+s) for the steady-
state rate, v.. This manoeuvre was tried in the present work, and
was used previously (De Meester et al., 1987), but the correct
parameters were not returned accurately in simulated experi-
ments. Then I realized that the deduction of the 'burst equation'
depended on the assumption that the substrate concentration
was not changing, and so the 'burst equation' cannot be simply
corrected.

Slow-binding inhibitors may demand a time-consuming con-
formation change of the enzyme, but it is far from obvious why
this change should take longer than any step in normal turnover
(Crompton et al., 1988). Causes of slow binding have been
discussed; the slow release of water molecules bound tightly in
the active site is one possibility (Rich and Northrop, 1989).
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