Supporting Information

Exploring 2-Sulfonylpyrimidine Warheads as Acrylamide Surrogates for Targeted Covalent Inhibition: a BTK Story

Ruxandra Moraru^a, Beatriz Valle-Argos^b, Annabel Minton^b, Lara Buermann^b, Suyin Pan^a, Thomas E. Wales^c, Raji E. Joseph^d, Amy H. Andreotti^d, Jonathan C. Strefford^b, Graham Packham^{b*}, Matthias G. J. Baud^{a*}

^aSchool of Chemistry and Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom

^bCancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom.

^cDepartment of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.

^dRoy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.

> *To whom correspondence should be addressed: <u>m.baud@soton.ac.uk</u>, <u>G.K.Packham@soton.ac.uk</u>

Table of Content

BTK Mass spectrometry experiments
Summary of the BCR pathway6
Compound induced Ca ²⁺ response7
Western blot quantifications7
Compound induced Ca ²⁺ response (dose dependent)8
Cell viability analysed using annexin V/PI staining9
Gene set enrichment analysis10
Comparison of DTT and TCEP on the activity of BTK and its inhibition by compounds11
Inhibition of poly-Glu:Tyr <i>in vitro</i> phosphorylation by wild type BTK by 2-SP functionalised Ibrutinib analogues
Inhibition of poly-Glu:Tyr <i>in vitro</i> phosphorylation by BTK C481S by Ibrutinib and compounds 8a-d
Characterisation of compounds 8a-d14-21

Figure S1. Modification of intact FL WT BTK (top) by **8a (A)**, **8b (B)**, **8c (C)**, **8d (D)**, and Ibrutinib (**E**, control). All experiments show evidence of single modification, although at varying rates. The same experiments with FL C481S BTK mutant (bottom) show no sign of covalent modification. (**F**) Summary of calculated protein mass shifts for each covalent modifier.

Figure S2. Activation of BTK and PLC γ 2 downstream of the BCR. The BCR comprises an antigen-binding immunoglobulin coupled to CD79A and CD79B signal transduction molecules. BCR engagement leads to activation of proximal kinases, such as LYN and SYK. BTK is activated by SYK-mediated phosphorylation and autophosphorylation and, with the scaffold protein BLNK, mediates activation of PLC γ 2. Once activated, PLC γ 2 cleaves phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) to generate inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), leading to increased intracellular Ca²⁺ (iCa²⁺) and activation of PKC isoforms. Key downstream effects include activation of MAP kinases and Ca²⁺ dependent transcription factors, such as nuclear factor- κ B (NF- κ B) and, *via* calmodulin (CaM) and calcineurin, nuclear factor of activated T-cells (NFAT), resulting in increased transcription of genes involved in control of survival, migration and proliferation. Note that not all pathways activated downstream of the BCR are shown.

Figure S3. (A) Quantification of effects of compounds on anti-IgM-induced signalling in OCI-LY7 cells (relates to Figure 3 of the article main text). **Top:** Relative Ca²⁺ response (AUC; mean ±SD) with values for DMSO-treated cells set to 100%. Data are derived from 3-7 separate determinations. **Middle:** Relative phosphorylation for BTK Y²²³, BTK Y⁵⁵¹ and BLNK Y⁹⁶ (mean ±SD derived from 3 independent experiments) **Bottom:** and PLCγ2 Y¹¹⁹⁷ and Y¹²¹⁷ (mean ±range derived from 2 independent experiments) with values for anti-IgM/DMSO treated cells set to 1.0. Where shown, P-values give the significance of the effects of compounds compared to DMSO (one sample t-tests). **(B)** Effect of Ibrutinib (left), **8a** (middle) and **8d** (right) on anti-IgM-induced Ca²⁺ fluxes in OCI-LY7 cells. Cells were treated with indicated concentrations of the compounds or DMSO for 1 hour before analysis of anti-IgMinduced Ca²⁺ responses. Arrows show time of addition of anti-IgM and then ionomycin. X-axis: time in seconds.

S8

Figure S4. TMD8 cells were treated with the indicated concentrations of compounds for 72 hours before cell viability was analysed using annexin V/PI staining. Graph shows relative viability (i.e., annexin V⁻/PI⁻ cells) with results for DMSO-treated cells set to 100% (derived from duplicate determinations).

Figure S5. Gene set enrichment analysis. Figure shows results of comparisons between the gene expression signatures induce by the indicated compounds and the set of 125 genes that were downregulated by Ibrutinib (top row) and the set of 76 genes that were upregulated by Ibrutinib (bottom row).

Figure S6. Left: activity of WT BTK in the presence of DTT (2 mM) or TCEP (1 mM) (mean±range of duplicate determinations). Right: effect of compounds on wild type BTK activity in the presence of TCEP or DTT. Compounds (100 nM) were pre-incubated with BTK in the presence of TCEP or DTT for 10 min before initiating the reaction by addition of ATP. Graphs show relative BTK kinase activity (mean±range from 2-4 determinations) relative to DMSO control (i.e. no compound, set to 100%).

Table S1A. Inhibition of poly-Glu:Tyr *in vitro* phosphorylation by wild type BTK by 2-SP functionalised lbrutinib analogues. Relative BTK activity (%, mean \pm range, 2-12 replicates) in the presence of compounds (single concentration, 100 nM) normalised against DMSO control. The colour coding is the same as used in Figure 2A, blue = thioether intermediates, orange = sulfonyl derivatives.

	Compound	Structure	Remaining BTK activity (%)	Compound	Structure	Remaining BTK activity (%)
trols	DMSO (control)		100 ± 2			
Cont	Ibrutinib		2.1 ± 0.8			
nt	10	and the second s	100 ± 0.2			
n-covale controls	12b	N N N N N	83 ± 7			
N	12a	production of the second secon	53 ± 2			
nino				9b	N S O	103 ± 5
5-an	7e	S S S S S S S S S S S S S S S S S S S	69 ± 2	9a	N N N N N N N N N N N N N N N N N N N	80 ± 3
	4b	s ^{s^s} N N S [−] nBu	82 ± 1	5b	N NBu S ² N SSO	58 ± 3
Amide linked	4c	S ^{ot} N O O	98 ± 5	5c	N Ph N S ² O O	40 ± 1
	4f	s ^{s^t} − N − S − nBu O	84 ± 5	5f	N N NBU S ² N NBU	38 ± 2
	4g	S ² O O	100 ± 6	5g	N S Ph	35 ± 1
	4a	S ² N O N S ^{-Me}	84 ± 8	5a	N S ² O O O	17 ± 1
	4d	Cl N S ^{-Me}	100 ± 6	5d	CI N Me s ² , s ² , N S O	17 ± 2
	4e	s ^{s^c, ^N, S`Me O}	83 ± 9	5e	N N N N N N	9 ± 2
				8e	N S H	48 ± 0.3
	7a	N S Me	40 ± 0.3	8a	N N N	4 ± 1
amino	7b	MeO ₂ C	76 ± 2	8b	MeO ₂ C	2 ± 1
4-a	7с	EtO ₂ C	105 ± 4	8c	$r_{s}^{s} \sim N \sim S \sim 0$ EtO ₂ C $N \sim N \sim S \sim 0$	3 ± 0.4
	7d	₂ ,5 ²³ N S MeHN(O)C N	78 ± 2	8d	y y ^y MeHN(O)C ↓ N ↓ S ↓ N ↓ S ↓	2.0 ± 0.5

Table S1B. Inhibition of poly-Glu:Tyr *in vitro* phosphorylation by BTK C481S by Ibrutinib and compounds **8a-d**. Relative BTK activity (%, mean ± range, 2 replicates) in the presence of compounds (100 nM) normalised against DMSO control.

Compound	Structure	Remaining BTK activity (%)								
DMSO (control)		100 ± 6	2	120	Ŧ					
Ibrutinib		50 ± 1	Ictivit	100-			Т			-
8a	Me N	87 ± 11	C481S a	80- 60-		_				
8b	MeO ₂ C	94 ± 1	% ВТК (40- 20-		I.				
8c	EtO ₂ C	83 ± 0.1		0T	ontrol-	utinib-	8a-	-98	8c-	-b8
8d	MeHN(O)C	81 ± 4			ŏ	ibn				

COPY OF REPRESENTATIVE SPECTRAL DATA

Chemistry - maXis HPLC-ESI Accurate Mass Report

Analysis Info		Acquisition Date	26/11/2021 14:28:40			
Analysis Name Method Sample Name Comment	D:\Data\Chemistry\2021\Nov\RSM 301_RA6_01_42966.d soton lcms pos 120 to 1500.m RSM 301 Analyst: RB			Operator Instrument / Ser#	MSWEB@ maXis	SOTON.AC.UK 17
Acquisition Par	ameter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	r 4.	0 Bar
Focus	Not active	Set Capillary	4000 V	Set Dry Heat	er 23	30 °C
Scan Begin	120 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.	0 l/min
Scan End	1500 m/z	Set Collision Cell RF	300.0 Vpp	Set Divert Va	lve W	/aste

Cmpd 1, 2.6 min

Chemistry - maXis HPLC-ESI Accurate Mass Report

Analysis Info		Acquisition Date	26/11/2021 14:41:17		
Analysis Name D:\Data\Chemistry\2021\Nov\RSM 212_RA8_01_42968.d Method soton lcms pos 120 to 1500.m Sample Name RSM 212 Comment Analyst: RB				Operator Instrument / Ser#	MSWEB@SOTON.AC.UK maXis 17
Acquisition Par	ameter				
Source Type Focus Scan Begin Scan End	ESI Not active 120 m/z 1500 m/z	Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4000 V -500 V 300.0 Vpp	Set Nebulizer Set Dry Heat Set Dry Gas Set Divert Va	er 230 °C 6.0 l/min Ive Waste

Cmpd 1, 2.4 min

Acquisition Parameter									
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	4.0 Bar				
Focus	Not active	Set Capillary	4500 V	Set Dry Heater	230 °C				
Scan Begin	150 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min				
Scan End	1500 m/z	Set Collision Cell RF	300.0 Vpp	Set Divert Valve	Waste				

Cmpd 1, 2.5 min

 H_2N_1

Ν

HN

C

Chemistry - maXis HPLC-ESI Accurate Mass Report

Analysis Info Analysis Name Method	D:\Data\Chemistry\2022\Nov\RSM 400_RA4_01_44731.d soton lcms pos 120 to 1500.m			Acquisition Date Operator	17/11/2022 09:34:57 MSWEB@SOTON.AC.UK	
Comment	instrument/Ser#	maxis	5 17			
Acquisition Par	rameter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	r	4.0 Bar
Focus Scan Begin	Not active 120 m/z	Set Capillary Set End Plate Offset	4500 V -500 V	Set Dry Heater 230 °C Set Dry Gas 6.0 l/min		230 °C 6.0 l/min
Scan End	1500 m/z	Set Collision Cell RF	300.0 Vpp	Set Divert Va	ve	Waste

Cmpd 1, 2.2 min

