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1 Multiple sequence alignment 

Previous studies on P. falciparum, E. coli, and M. tuberculosis showed that the DXR enzyme 

is the biological target of the reverse thia and oxa analogues employed in this study (1-3). The 

DXR enzymes of these species have been extensively studied (1, 4-6), but very less is known 

for T. gondii DXR (7). TgDXR shares a high degree of sequence similarity with DXRs from 

other species (7), resulting in an highly conserved catalytic domain among all species in com-

parison (Figure S1). The TgDXR sequence is composed of 632 residues. The initial 186 amino 

acids from the N-terminal region (1 – 186) represent the bipartite apicoplast targeting peptide, 

since this extension in only present in the apicomplexan parasites T. gondii and P. falciparum  

(7, 8). The NADPH binding domain including amino acids 187 – 342 and the metal/substrate 

binding domain (405 – 632) proved to be highly conserved. Special feature of the TgDXR is 

the linker region ranging from amino acids (343 – 404). Apart of this region, the amino acids 

involved in direct contact with the NADPH ligand and substrate are strictly conserved (Figure 

S1). 

 

Supplementary Figure S1. Multiple sequence alignment of the amino acids sequence of 

the putative T. gondii DXR  

TgDXR, T. gondii (NCBI Reference Sequence: XP_018635719.1); PfDXR, P. falciparum  

(NCBI Reference Sequence: AAD03739.1); MtDXR, M. tuberculosis (NCBI Reference Se-

quence: OHO19719.1) and EcDXR, E. coli (NCBI Reference Sequence: WP_302347400.1). 

Identical amino acids are shaded in dark blue, similar amino acids in lighter shades. TgDXR 



residues are highlighted according to their function: residues interacting with the NADPH co-

factor are highlighted in green, those binding the inhibitor 1 are highlighted in orange. Align-

ment coloured using Jalview 2.11.2.7.  



2 Enzyme production 

Supplementary Table S1. List of the primers used in this work and their parameters 

 

 

Supplementary Table S2. List of the primers used for the production of the E231A, H280A 

and N298A mutants of His10 TgDXR and their parameters 

 

  

Primer name Sequence CG % Tm 

TgDXR-del181AA_For TCCACGCGTGTGAAGAGACTTGTGG 56 75.1 

TgDXR-del181AA_Rev CATATGACGACCTTCGATATGGCCGCTG 53.5 76.6 

T7 promoter primer (5') TAATACGACTCACTATAGGG 40 53.2 

T7 terminator primer (3') GCTAGTTATTGCTCAGCGG 47 54.5 

  

Primer name Sequence CG % Tm 

E231A_for TGTCGACTCCGCGCACTCGGCAA 65.2 75.1 

E231A_rev GGAAGAAGGAGGCCGCATTTCTGCC 60 72.4 

H280A_for TGCTCTCAAAGCGCCCAAGTGGAGC 60 73.9 

H280A_rev CTTTCAAGAGTTACTTGCTCCAGTTCGTCTCGC 48.4 72.3 

N298A_for AAGTCATTGAAGCTCACTTCGCCTTCGGG 51.7 72.9 

N298A_rev CCAGGCCCTTCGCCATCAACGTC 65.2 72.5 

  



3 Crystal structure parameters and refinement 

Supplementary Table S3. Data collection and refinement statistics. 

 TgDXR 

Wavelength 
0.91677 

Resolution range 
54.97  - 2.56 (2.651  - 2.56) 

Space group 
P 65 

Unit cell 
159.524 159.524 75.873 90 90 120 

Total reflections 
67947 (6688) 

Unique reflections 
35325 (3503) 

Multiplicity 
1.9 (1.9) 

Completeness (%) 
99.04 (99.54) 

Mean I/sigma(I) 
11.53 (1.17) 

Wilson B-factor 
65.83 

R-merge 
0.03397 (0.4448) 

R-meas 
0.04804 (0.629) 

R-pim 
0.03397 (0.4448) 

CC1/2 
0.999 (0.76) 

CC* 
1 (0.929) 

Reflections used in refinement 
35299 (3500) 

Reflections used for R-free 
1999 (197) 

R-work 
0.1941 (0.3214) 

R-free 
0.2260 (0.3795) 

CC(work) 
0.966 (0.837) 

CC(free) 
0.960 (0.804) 

Number of non-hydrogen atoms 
6416 

macromolecules 
6283 

ligands 
124 

solvent 
9 



Protein residues 
821 

RMS(bonds) 
0.022 

RMS(angles) 
2.03 

Ramachandran favored (%) 
96.43 

Ramachandran allowed (%) 
2.95 

Ramachandran outliers (%) 
0.62 

Rotamer outliers (%) 
0.31 

Clashscore 
18.58 

Average B-factor 
81.21 

macromolecules 
81.05 

ligands 
90.29 

solvent 
66.19 

Statistics for the highest-resolution shell are shown in parentheses. 



4 TgDXR SEC-SAXS data 

 
Supplementary Figure S2. Small-angle X-ray scattering data from TgDXR apo.  

A: CHROMIXS SEC SAXS elution profile. Each frame corresponds to 2 sec exposer time. B: 

Scattering data of TgDXR. Experimental data are shown in black dots, with grey error bars. 

The EOM ensemble model fit is shown as red line and below is the residual plot of the data. 

The Guinier plot of TgDXR is added in the right corner. C: p(r) function of TgDXR apo offers 

a Dmax values of 10.44 nm. D: Dimensionless Kratky plot of TgDXR apo showed a compact 

practical. E & F: Rg and Dmax distribution of TgDXR apo. Ensemble pool is shown in grey, 

selected EOM models are shown in blue.  



4.1 EOM: Ensemble Optimisation Method  

Protein sequence (monomer) used for EOM.  

Black parts are solved in the crystal and were extracted and used as rigid body. Missing amino 

acids are shown in green. These were added and orientated from EOM until the models de-

scribes the scattering data. 

 

MGHHHHHHHHHHSSGHIEGRHMSTRVKRLVVLGSTGSIGKSTLEIARE-

FPDIFQIVGLAAGGSNLALLAQVAAFRPQYVYLGDSSKVAELQERLNDHERSAAFPRP

RLLLGDEGLAELACVPNYDILVSAIVGFKGVLPTLKALEAGKDVA-

LANKEALVAAGPVFR-

CLLSTRGLLYGDQERQDRHERSHRSGDQEGDREEDTDGDRREECDKRRAKAGQKCG

LLLPVDSEHSAIFQALQGVPASCYPPRKLLLTASGG-

PFRGRTRDELEQVTLESALKHPKWS-

MGAKITIDSATLMNKGLEVIEAHFAFGCPYSSIEVLVHPQAVIHSAVELRDGATLAQL

GLPDMKLPIAYALTWPHRLAAPWSAGVDLTREGNLTFEK-

PDLNTFGCLGLAYEAGERGGVAPACLNAANEVAVERFRNKEIGFVDIEDTVRHVMA

LQERERDNFSDVSLQDVFDADHWARTAARAFKPR 

  



Supplementary Table S4. Overall SAXS Data  

Data collection parameters  

SAXS Device BM29, ESRF Grenoble (9, 10) 

Detector PILATUS 2 M 

Detector distance (m) 2.827 

Beam size 200 µm  x 200 µm 

Wavelength (nm) 0.099 

Sample environment Quartz glass capillary, 1 mm ø 

Absolute scaling method Comparison with scattering from pure H2O 

Normalization To transmitted intensity by beam-stop counter 

Scattering intensity scale Absolute scale, cm-1 

s range (nm-1), (s = 4πsin(θ)/λ) 0.025–5.5 

Sample 
1-Deoxy-D-xylulose-5-phosphate reductoisomerase 

(TgDXR) 

Organism Toxoplasma gondii (ME49) 

UniProt ID V5B5Y5 

Mode of measurement SEC-SAXS 

SEC-Column Superdex 200 increase 10/300 

Flowrate (ml/min) 0.5 

Injection volume (µl) 300 

Temperature (°C) 10 

Exposure time (# frames) 2 s (1500 frames) 

# frames used for averaging 35 

Protein buffer 
20 mM Tris/HCl, 150 mM NaCl, 40 mM MgCl2, 2% glyc-

erol, pH 7.5 

Protein concentration (mg/ml) 8.00 

Structural parameters  

Guinier Analysis (PRIMUS)  

I(0) ±  (cm-1)  54.11 ± 0.033 

Rg  ±  (nm)  3.33 ± 0.0032 

s-range (nm-1) 0.140 – 0.387 

min < sRg < max limit 0.47 – 1.29 

Data point range  1 - 49 

Linear fit assessment (R2) 0.9996 

PDDF/P(r) Analysis (GNOM 5)  

I(0) ±  (cm-1) 53.99 ± 0.032 

Rg  ±  (nm) 3.31 ± 0.0025 



Dmax (nm) 10.44 

Porod volume (nm3) 176.01 

s-range (nm-1) 0.140 – 5.029 

χ2 / CorMap P-value 1.207 / 0.108 

Molecular mass (kDa)  

From I(0) not determined 

From Qp (11) 105.53 

From MoW2 (12) 108.24 

From Vc (13) 101.69 

Bayesian Inference (14) 104.90 

From sequence 51.81 (monomer), 103.62 (dimer) 

Modelling  

EOM (Ensemble Optimisation 

Method)  

Constant subtraction 0.007 

 s-range for fit (smin – smax; 

nm-1) 0.140 – 4.988 

No. of representative struc-

tures 3 

χ 2, CorMap P-value 1.259 / 0.108 

SASBDB accession codes  SASDS47 

Software  

ATSAS Software Version (15) 3.0.5 

Primary data reduction CHROMIXS (16)/ PRIMUS (17) 

Data processing GNOM (18) 

Ensemble modelling EOM (19, 20) 

Model visualization PyMOL (21) 

  



 

 

 



Supplementary Figure S4. Overlay view from the three EOM calculated models. 

The rigid body protomers of TgDXR from the crystal are shown in green and cyan cartoon 

representation. The loop region of each protomer is shown in spheres representation. The upper 

model corresponds to a volume fraction of 12 %, the middle on to a volume fraction of 25 % 

and the lower one to a volume fraction of 62 %.  



5 Biological Data 

 



Supplementary Figure S5. In vitro enzymatic inhibition of TgDXR of investigated com-

pounds. 

The enzymatic inhibitory activity of 1 (A), 2 (B), 3 (C), 4 (D), 5 (E), 6 (F), 7 (G), 8 (H), 9 (J) 

and 10 (K) were determined by enzymatic assays in vitro. Experiments were conducted in 96 

well plates at 30 °C containing 100 nM of purified TgDXR protein in dimeric state, 100 µM of 

NADPH and 4 mM of MgCl2 as cofactors, 100 µM of DXP as substrate in 50 mM HEPES 

buffer (pH 7.5) containing 50 µg/mL of bovine serum albumin (BSA). The investigated com-

pounds were tested in serial dilution 1:2. Data shown are from the means of three independent 

experiments each performed in duplicate (n = 6) ± S.D. IC50 of each compound are shown.  



 



 



 

Supplementary Figure S6. Anti-toxoplasma activity and cytotoxicity on human Hs27 fi-

broblasts of the investigated compounds. 

The inhibitory activities of 1 (A), 2 (C), 3 (E), 4 (G), 5 (J), 6 (L), 7 (N), 8 (P), 9 (R), 10 (T) 

and PYR (V) were determined by the T. gondii in vitro inhibition assay via the [3H]-uracil 

incorporation into the RNA of the parasite. Cytotoxicity of 1 (B), 2 (D), 3 (F), 4 (H), 5 (K), 6 

(M), 7 (O), 8 (Q), 9 (S), 10 (U) and PYR (W) were measured by MTT assays on human Hs27 

fibroblasts. Data shown are from the means of three independent experiments each performed 

in duplicate (n = 6) ± SEM. IC50  ± S.D. and CC50 values of each compound are shown.  
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