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Structure prediction of alternative protein conformations



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

This paper focuses on the prediction of alternate protein conformations via machine learning. A 

number of previous efforts have addressed the challenge by modifying input to the AlphaFold2 

pipeline, with sampling of multiple sequence alignments being a promising strategy. Here, a new 

AlphaFold2-like model is trained and applied in a similar manner by either sampling sequence 

alignments or applying dropout functions to obtain conformationally varying structures for a given 

sequence.

The main motivation for retraining a new network is to obtain a larger number of independent test 

cases on which AF2 has not been trained before and, as in previous studies based on AF2, there is 

success in obtaining structural models of alternative states. The analysis is interesting, but at the end 

it seems to only confirm that sampling multiple sequence alignment space, e.g. via clustering, is 

indeed a useful strategy to sample conformational states via AF2.

The manuscript is difficult to understand at many places and it was often not quite clear to me what 

exactly was done and how the results should be interpreted. Some specific questions I have are given 

below:

1) For which systems were alternate conformations generated and evaluated and what was present in 

the training set? Were alternate states predicted for structures present in the training set or for 

entirely different sequences with none of the alternate conformations seen during training. And were 

any structures similar to the predicted alternate states present in the training set (irrespective of 

sequence similarity)?

2) The overall prediction accuracy of Cfold seems unclear. On one hand Figure 8 suggests ‘good’ 

performance (although unclear compared to AF2), but then it seems that only 66% structures were 

predicted with TM>0.6 for the alternate state predictions. What does that mean?

3) It seems that what is reported are the best conformations from a large set of samples with no clear 

mechanism for selecting such conformations without knowing the answer. If so, that would be a 

significant limitation to practical applications.

Reviewer #2 (Remarks to the Author):

The work by Bryant and Noe is a timely and pertinent experiment that is exactly set up to address 

many current open questions about deep learning models and the prediction of multiple 

conformations.

However, in my opinion the work is currently missing the big picture for interpreting their results. To 

be fit for publication in Nature Comms, the authors need to dig deeper into their results in the 

following major ways, to provide the field with more insight in the prediction of multiple 

conformations.

The work is also in general lacking connections to biological function of the discussed proteins, and 

this needs to be significantly improved in my view to be fit for publication. For instance, the example 

of perforin is used frequently throughout the paper as an example of predicting multiple 

conformations. The structure 7PAG is one subunit of a symmetric multimer (see 

https://www.science.org/doi/10.1126/sciadv.abk3147, Fig 1C). If 7PAG was in the test set, then this 

means that learning from [primarily] monomers enabled Cfold (and AF2) to predict structure in both a 

monomeric and multimeric context. None of the above is described in the paper currently.

1 It has been posited by others [see, for instance, introduction of 

https://www.nature.com/articles/s41586-023-06832-9] that dropout in AF2 is able to sample multiple 

conformations when evolutionary couplings for both structures are present at the level of an entire 

MSA, and dropout or subsampling an MSA obstructs one set of contacts, allowing for the other to 

dominate driving the prediction. As long ago as 2012 in Hopf et al. Cell, it was shown that evolutionary 

couplings were present for multiple sets of contacts of ion channels.

The authors have the potential to evaluate if this is true more generally using their network. For a 



given protein where both conformations are correctly predicted, can the authors discern if embeddings 

from the evoformer that lead to either state are significantly different before they are fed into the 

structure model? If so, this indicates that the evoformer has already learned differentiating 

representations for both. If not, it would indicate that prediction of both states is stochastic.

2) Dropout is statistically principled to represent underlying uncertainty within a model, see, for 

instance, https://arxiv.org/abs/1506.02142. Therefore, I was intrigued to see sampling comparing 

dropout and MSA clustering, which is in effect taking fewer random sequences from across the MSA. 

These two sampling methods should have fundamentally different theoretical bases, with dropout 

representing uncertainty across the entire model and MSA clustering adding noise at the sequence 

level.

With this in mind – I want to know more about the proteins that showed a difference between MSA 

clustering and dropout, and if increased sampling there recovers the failed predictions from dropout. If 

not, can the authors identify why these worked for MSA clustering and not dropout?

Sampling could also be used to interpret the AF2/Cfold framework. For instance, can the authors use 

dropout just in some parts of the model to pinpoint more precisely how the AF2 framework is leading 

to predicting multiple conformations? (i.e., is it in the pair representations? Is it in the first vs 10th 

evoformer block?) This is probably beyond the scope of this paper, but just floating the idea.

3) The authors could do more in their interpretation of the process of sampling. My guess is that this 

sampling is far from sampling a Boltzmann distribution from each of the targets, but just how far? 

Specifically it would be interesting to report what proportion of samples correspond to the trained, vs 

alternate state, vs. other states. It should be quite possible to compare these to literature 

experimental values for at least a handful. This would be an opportunity to dig more into biological 

insight in AF2 + multiple conformation prediction.

4) Fig 1c presents an interesting result – if I understand right, it seems that some proteins resulted in 

the “seen” conformation being sampled more, whereas others result in the “unseen” conformation 

being sampled more. Can the authors interpret any attributes of what causes proteins to fall into 

either of these extremes? This would be another potential place for interesting insight.

5) I recognize that Fig. 4 is making the case that pLDDT is not predictive of model accuracy, but the 

authors need to discuss / show statistics on pLDDT vs tmscore for within the sampling for each 

member of the test set. If pLDDT is not correlated with TMscore, can the authors provide any 

insights/takeaways on how to select models for prospective tests?

6) Depending on how resource intensive training is, the authors could use their setup to answer 

outstanding questions on how much “regular” AF2 has memorized multiple conformations by 

comparing the current Cfold to a second re-training of Cfold with all the structure clusters in the train 

set. This is not a hard ask from me, but if it were easy to re-run it would elevate the impact of the 

paper.

Minor:

Throughout the paper, proteins are referred to by their PDB codes. They need to be referred to by 

their actual names.

I got hung up on when TM-score is referring to TM-score to the ground truth and TM-score between 

multiple conformations. Would recommend finding a way to better differentiate phrasing.

“the structural change between conformations is 0.2-0.3 TM-score (Figure 6)” I don’t understand how 

0.2-0.3 TMscore is represented in Fig 6. To me it looks like most TM-scores are around 0.8? Please 

clarify the writing.

The writing is overly simplistic at times:

“Conformational changes are direct effects of environmental changes” -> this is simply not true, 

discounted by proteins that in vitro interconvert between distinct states. I get the sentiment but it can 

be made more accurately.

“Currently, protein structure is viewed as a single snapshot in time while in reality, it should be viewed 

rather like a video. This video is the continuous collection of states that make up the protein and its 

functions.” Again while I agree with the sentiment, this is overly simplistic -- “protein structure is 

viewed as a single snapshot in time” – 50 years of spectroscopists beg to differ!

Note in methods how long training took and on what sort of hardware.



Dear Editors and Reviewers,

We thank you for your insightful comments and suggestions and here provide a
point-by-point response to all raised issues and suggestions in bold. We have
updated the manuscript accordingly and marked all changes in red throughout the
text.

REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

This paper focuses on the prediction of alternate protein conformations via machine
learning. A number of previous efforts have addressed the challenge by modifying input
to the AlphaFold2 pipeline, with sampling of multiple sequence alignments being a
promising strategy. Here, a new AlphaFold2-like model is trained and applied in a similar
manner by either sampling sequence alignments or applying dropout functions to obtain
conformationally varying structures for a given sequence.
The main motivation for retraining a new network is to obtain a larger number of
independent test cases on which AF2 has not been trained before and, as in previous
studies based on AF2, there is success in obtaining structural models of alternative
states. The analysis is interesting, but at the end it seems to only confirm that sampling
multiple sequence alignment space, e.g. via clustering, is indeed a useful strategy to
sample conformational states via AF2.
The manuscript is difficult to understand at many places and it was often not quite clear
to me what exactly was done and how the results should be interpreted. Some specific
questions I have are given below:

1) For which systems were alternate conformations generated and evaluated and what
was present in the training set? Were alternate states predicted for structures present in
the training set or for entirely different sequences with none of the alternate
conformations seen during training. And were any structures similar to the predicted
alternate states present in the training set (irrespective of sequence similarity)?

The idea with Cfold is to provide more support for that structure prediction networks
(AlphaFold2) can be used to predict alternative conformations. Previously, although
some indications have been provided for this, such an evaluation has not been possible
as almost all conformations have been seen when training AlphaFold2. Therefore, any
claims made by using AlphaFold2 are not confirmed but rather given support for the
first time here. Cfold includes almost 20x more data than previous analyses and
contest findings of how structure prediction and selection of alternative conformations
work.



2) The overall prediction accuracy of Cfold seems unclear. On one hand Figure 8
suggests ‘good’ performance (although unclear compared to AF2), but then it seems
that only 66% structures were predicted with TM>0.6 for the alternate state predictions.
What does that mean?

We can’t directly compare to AlphaFold2. The performance should be identical to
AlphaFold2 if this network had been trained to the same degree (as the network
architectures are identical). AlphaFold2 has been trained on more data than Cfold
though - including e.g. monomers extracted from multimers and all possible alternative
conformations.

As less data was available and a fewer number of steps were taken for training Cfold,
the resulting confidence will not be as high on all protein structures. Other confounding
factors may be that these structures do indeed have alternative conformations. Still, we
excluded structures whose conformations present in the training set we could not
capture with a certain degree of confidence (TM-score 0.6).

We have added a paragraph about this in Methods to acknowledge this limitation:
“One reason that not all structures are predicted with the same fold as would be expected
from AlphaFold2 is that Cfold is trained with less data (excluding e.g. monomers extracted
from multimers) for a fewer number of steps. Other confounding factors may be that these
structures do indeed have alternative conformations and the training states may not be
favourable.
“

3) It seems that what is reported are the best conformations from a large set of samples
with no clear mechanism for selecting such conformations without knowing the answer.
If so, that would be a significant limitation to practical applications.

Indeed, we do not provide any clear way of selecting these conformations. However, we
do not only report the best conformations. As can be seen in Figure 1c, we display a
KDE plot of all sampled conformations. Here it can be seen that the test conformational
state is favourable as the density is much higher there. For Figure 1b, the reviewer has
a point though and we acknowledge that this is a limitation. As it seems to be likely to
capture informative states (Figure 1c) we still believe the method to be useful for
exploring potential changes within protein structures.

We have tried to make this clear by visualising the TM-score distributions for train and
test conformations in Figure 1c (density plot). We also discuss this limitation under
“Selecting accurate conformations”. In addition, we note that AF can’t be used for
selecting conformations as has been found recently here:
https://www.biorxiv.org/content/10.1101/2024.01.05.574434v1. This critique
underlines the problems with using AF directly on conformations it has seen during

https://www.biorxiv.org/content/10.1101/2024.01.05.574434v1


training - the reason for developing Cfold. Previous attempts to predict alternative
conformations seem to have had a substantial amount of luck as this only works in a
single case with very little structural difference between states (
https://www.nature.com/articles/s41586-023-06832-9?utm_campaign=related_conten
t&utm_source=HEALTH&utm_medium=communities) and the reason for why is not
clear. This is also a reason for the investigative nature of Cfold which shows that we
cannot reliably select different conformations only stochastically sample them with a
certain probability.

Reviewer #2 (Remarks to the Author):

The work by Bryant and Noe is a timely and pertinent experiment that is exactly set up to
address many current open questions about deep learning models and the prediction of
multiple conformations.
However, in my opinion the work is currently missing the big picture for interpreting their
results. To be fit for publication in Nature Comms, the authors need to dig deeper into
their results in the following major ways, to provide the field with more insight in the
prediction of multiple conformations.

We thank the reviewer for the excellent suggestions made here that we think have
greatly improved the manuscript.

The work is also in general lacking connections to the biological function of the
discussed proteins, and this needs to be significantly improved in my view to be fit for
publication. For instance, the example of perforin is used frequently throughout the
paper as an example of predicting multiple conformations. The structure 7PAG is one
subunit of a symmetric multimer (see
https://www.science.org/doi/10.1126/sciadv.abk3147, Fig 1C). If 7PAG was in the test
set, then this means that learning from [primarily] monomers enabled Cfold (and AF2) to
predict structure in both a monomeric and multimeric context.

We thank the reviewer for this suggestion and have analysed the biological relevance
of what induces the conformational changes for the 52 structures that could be
predicted with a TM-score>0.8 for both train and test conformations. We have added a
section “Biological relevance of sampled conformations” about this.

The biological relevance of sampled conformations

To connect the sampled conformational changes with biological relevance, we analysed the
structures that could be predicted with a TM-score>0.8 for both train and test conformations
among the samples taken (52 structures, Figure 1c). Most conformational changes are
induced by ligand binding (n=42, Supplementary Table 1), a few are due to introduced

https://www.nature.com/articles/s41586-023-06832-9?utm_campaign=related_content&utm_source=HEALTH&utm_medium=communities
https://www.nature.com/articles/s41586-023-06832-9?utm_campaign=related_content&utm_source=HEALTH&utm_medium=communities
https://www.science.org/doi/10.1126/sciadv.abk3147


mutations (n=5), 3 are due to protein binding and for 2 of them, the trigger is unknown, but
may be due to ligands which were not resolved in the X-ray data.

The structural changes induced by ligands (mainly binding of substrates to enzymes or
transporters) that are important for cellular functions in one way or the other should have
states that are accessible through the analysis of coevolutionary information. However, some
conformational variation should not be possible to capture through coevolutionary
information alone (e.g. elongation factor Tu which gets its conformational variation from
binding different ligands, PDB IDs 2C78:https://www.rcsb.org/structure/2C78 and
1HA3:https://www.rcsb.org/structure/1HA3). This suggests that variation in coevolutionary
information may be less important than previously suggested [5,7] in exploring possible
alternative conformations and that this process is instead stochastic with different states
being constrained by coevolutionary inferred contacts (see below).

We do not find that we can predict conformational changes induced by multimeric
interactions with Cfold and note that Perforin is not predicted accurately in both states.
The structure the reviewer refers to in Figure 2 is there to illustrate differences
between different types of conformational changes but does not refer to predictions.
We have underlined this in the figure legend and hope that this makes things more
clear: Different types of conformational changes displayed from native structures;

None of the above is described in the paper currently.
1 It has been posited by others [see, for instance, introduction of
https://www.nature.com/articles/s41586-023-06832-9] that dropout in AF2 is able to
sample multiple conformations when evolutionary couplings for both structures are
present at the level of an entire MSA, and dropout or subsampling an MSA obstructs one
set of contacts, allowing for the other to dominate driving the prediction. As long ago as
2012 in Hopf et al. Cell, it was shown that evolutionary couplings were present for
multiple sets of contacts of ion channels.

The authors have the potential to evaluate if this is true more generally using their
network. For a given protein where both conformations are correctly predicted, can the
authors discern if embeddings from the evoformer that lead to either state are
significantly different before they are fed into the structure model? If so, this indicates
that the evoformer has already learned differentiating representations for both. If not, it
would indicate that prediction of both states is stochastic.

We thank the reviewer for this great suggestion. To answer the question we reran the
52 structures that could be predicted with a TM-score>0.8 for both train and test
conformations with MSA sampling with the difference of intercepting the embeddings

https://www.rcsb.org/structure/2C78
https://www.rcsb.org/structure/1HA3
https://paperpile.com/c/lRWXAx/izFS+oHzh
https://www.nature.com/articles/s41586-023-06832-9


(single sequence embeddings and pair embeddings) before entering the structure
module. We find no relationship with the embedding differences suggesting that the
outcome is stochastic - at least in relation to the embeddings that enter the structural
module.

We have added a section about this in the main text.

TM-score difference to test conformation vs embedding difference for predictions with the
highest TM-scores to the test and train conformations, respectively (n=52). a) Comparison
between TM-score and cosine similarity of the single sequence embeddings. b) Comparison
between TM-score and L2 difference of the pair embeddings.

2) Dropout is statistically principled to represent underlying uncertainty within a model,
see, for instance, https://arxiv.org/abs/1506.02142. Therefore, I was intrigued to see
sampling comparing dropout and MSA clustering, which is in effect taking fewer random
sequences from across the MSA. These two sampling methods should have
fundamentally different theoretical bases, with dropout representing uncertainty across
the entire model and MSA clustering adding noise at the sequence level.
With this in mind – I want to know more about the proteins that showed a difference
between MSA clustering and dropout, and if increased sampling there recovers the failed
predictions from dropout. If not, can the authors identify why these worked for MSA
clustering and not dropout?

We thank the reviewer for this suggestion. To answer this question we have selected the
proteins that could be predicted with a TM-score above 0.8 for both conformations using
clustering but not for dropout (n=8). We reran these predictions and increased the number of
samples to 1000. We find that none of these can be ‘rescued’ and conclude that the MSA
cluster variation seems superior in introducing stochasticity compared to Dropout.

The only suggestion we have is that the MSA sampling results in more ordered coevolutionary
information that better represents different states which evidently is unlikely to obtain by
simply activating dropout. According to the embedding analysis, this can’t be true though since
this shows that the outcome is stochastic. Therefore, we suggest that the MSA sampling rather
acts in reverse and results in increased stochasticity increasing the probability of capturing a
more diverse set of outcomes (conformations). Note that it is also possible that the network

https://arxiv.org/abs/1506.02142.


uses the embeddings in a different way than what is captured by cosine similarity. Analysing
how neural networks is not really possible.

We have detailed these findings under “Increasing sampling with dropout to rescue
failed predictions” in the supplementary information.

Sampling could also be used to interpret the AF2/Cfold framework. For instance, can the
authors use dropout just in some parts of the model to pinpoint more precisely how the
AF2 framework is leading to predicting multiple conformations? (i.e., is it in the pair
representations? Is it in the first vs 10th evoformer block?) This is probably beyond the
scope of this paper, but just floating the idea.

We thank the reviewer for this suggestion and agree that this may be something to
investigate in future studies to explore more of the conformational space.

3) The authors could do more in their interpretation of the process of sampling. My
guess is that this sampling is far from sampling a Boltzmann distribution from each of
the targets, but just how far? Specifically it would be interesting to report what
proportion of samples correspond to the trained, vs alternate state, vs. other states. It
should be quite possible to compare these to literature experimental values for at least a
handful. This would be an opportunity to dig more into biological insight in AF2 +
multiple conformation prediction.

We agree with the reviewer that it is unlikely that the evolutionary sampling follows a
Boltzmann distribution. We also do not quite know how to compare the samples to
literature values directly (or where to find such values that correspond to different
conformations). In addition, there is, to our knowledge, no way to test if these samples
are truly Boltzmann distributed. What we can say is how likely it is that known
conformations are observed from the samples.

To this end, we provide the distribution of TM-scores to the train/test states and can
conclude that the test conformations seem to be more likely and that in most cases
either the train or test conformation is preferred. As a Boltzmann distribution is an
exponential distribution, it is easy to see that the scores do not follow such a
distribution as a whole. In individual cases (see below), some samples appear to be
approximately exponential towards the test conformations.

We have not included this in the manuscript as we do not think this is relevant for the
structure prediction of alternative conformations.



Distribution of conformational samples
TM-score distributions to conformations in the training set and TM-score to unseen
conformations (test) using the best strategy (MSA clustering) for structures that could
be predicted with a TM-score>0.8 for both train and test conformations among the
samples taken are displayed (52 structures, n=5408 sampled predictions). The test
conformations are preferred overall with a median TM-score of 0.86 vs 0.82 for the
train conformations.



Distributions. Individual TM-score distributions to conformations in the training set
and TM-score to unseen conformations (test) using the best strategy (MSA
clustering).Only structures that could be predicted with a TM-score>0.8 for both train
and test conformations among the samples taken are displayed (n=104 samples per
distribution).

Distributions. Individual TM-score distributions to conformations in the training set
and TM-score to unseen conformations (test) using the best strategy (MSA
clustering). Only structures that could be predicted with a TM-score>0.8 for both train
and test conformations among the samples taken are displayed (n=104 samples per
distribution).

We have added the fraction of samples that correspond well to either train/test
conformations from Figure 1c highlighting that the test conformations are more likely
to sample: From all samples, 37% correspond well (TM-score >0.8) to the test
conformations, 33% to the train and 30% to neither of the conformations.



4) Fig 1c presents an interesting result – if I understand right, it seems that some
proteins resulted in the “seen” conformation being sampled more, whereas others result
in the “unseen” conformation being sampled more. Can the authors interpret any
attributes of what causes proteins to fall into either of these extremes? This would be
another potential place for interesting insight.

We thank the reviewer for this suggestion. To try and answer the question we selected
five examples where the train TM-scores are higher and five where the test TM-scores
are. We analysed the conformational types and the biological relevance and found that
the length seems to explain the differences the best. The cases where the train
conformations are better contain slightly bigger proteins compared to when the test
conformations are better (344 vs 318 amino acids). We added a section “Favourable
conformations” in the supplementary information.

5) I recognize that Fig. 4 is making the case that pLDDT is not predictive of model
accuracy, but the authors need to discuss / show statistics on pLDDT vs tmscore for
within the sampling for each member of the test set. If pLDDT is not correlated with
TMscore, can the authors provide any insights/takeaways on how to select models for
prospective tests?

We thank the reviewer for this suggestion. To further highlight the finding that plDDT
can’t be used to select accurate states we display the same plot as in Fig 1c but as a
scatter coloured by plDDT. As can be seen here, the plDDT score is highly variable and
does not seem to select for either conformation overall:



We do not have any suggestion for how to select for either conformation, but we do
note that the test conformations seem to be more likely to be predicted. Therefore, a
possible strategy for selection is to simply choose the most predicted structure by
comparing all structures to each other as can be read from “Distribution of
conformational samples”.

6) Depending on how resource intensive training is, the authors could use their setup to
answer outstanding questions on how much “regular” AF2 has memorized multiple
conformations by comparing the current Cfold to a second re-training of Cfold with all
the structure clusters in the train set. This is not a hard ask from me, but if it were easy
to re-run it would elevate the impact of the paper.

This is a good idea, but we are not sure that this would answer the question definitively.
The reason is that there is still some stochasticity in the predictions due to the
sampling of sequences from the MSA which will impact training. Therefore, we suggest
that it is not possible to check (definitively) how well structures have been memorised
but it is possible to check if alternative conformations that have not been seen can be
predicted well (which we do here).



We would like to do this for a future study, but it is currently not easy to retrain Cfold
due to migration issues on our cluster resulting in most data having to be reprocessed
and due to the computational resources and time necessary for a retraining run making
it impossible to meet the review deadline. We appreciate the reviewers' understanding
in this matter.

Minor:
Throughout the paper, proteins are referred to by their PDB codes. They need to be
referred to by their actual names.

The reason why we use the PDB codes is that this is a requirement from NComms (we
have previously done the reverse and then had to change to all PDB codes). We have
added the names to Figure 2 displaying the different types of conformational changes
as well so that both are now available

I got hung up on when TM-score is referring to TM-score to the ground truth and
TM-score between multiple conformations. Would recommend finding a way to better
differentiate phrasing.

We thank the reviewer for this suggestion. There is only one instance where the
TM-score does not refer to the ground truth in the main text which is when we analyse
the structural change between conformations to show that it is harder to predict larger
conformational changes. We have stated there in the first sentence that “The structural
change (TM-score between conformations)” and do not have any ideas of how to make
this more clear. This is also described in the figure legend.

“the structural change between conformations is 0.2-0.3 TM-score (Figure 6)” I don’t
understand how 0.2-0.3 TMscore is represented in Fig 6. To me it looks like most
TM-scores are around 0.8? Please clarify the writing.

We understand that this is confusing and thank the reviewer for this suggestion. It is
the TM-score btw conformations→ change = 1-TM-score. We have made this more
clear in the figure legend:
“As most conformations are between 0.7-0.8, this suggests that the structural change is
mainly 0.2-0.3 TM-score. “

The writing is overly simplistic at times:
“Conformational changes are direct effects of environmental changes” -> this is simply
not true, discounted by proteins that in vitro interconvert between distinct states. I get
the sentiment but it can be made more accurately.

We thank the reviewer for this suggestion and have changed the phrasing to:



“Conformational changes occur due to a variety of reasons, many being direct effects
of environmental changes such as interacting with other proteins or substrates.”

“Currently, protein structure is viewed as a single snapshot in time while in reality, it
should be viewed rather like a video. This video is the continuous collection of states
that make up the protein and its functions.” Again while I agree with the sentiment, this is
overly simplistic -- “protein structure is viewed as a single snapshot in time” – 50 years
of spectroscopists beg to differ!

We thank the reviewer for this suggestion and have changed the phrasing to:
“Currently, most protein structures are viewed as a single snapshot in time due to
only one static conformation being resolved for most structures while in reality, it
should be viewed rather like a video.”

Note in methods how long training took and on what sort of hardware.

We have stated the hardware used:
“The effective batch size is 24 distributed across 8 NVIDIA A100 GPUs (3 examples
per GPU) with a crop size of 256 residues. “
and updated the methods to include the total training time (training, Methods):
Each step takes approximately 19.7 s, resulting in a total training time of 17 days.



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

The revised version addresses my comments. Thank you.

Reviewer #2 (Remarks to the Author):

Firstly, I apologize for not having realized the following major concern in the first round of review. 

Continued thought, and reading the additions to the paper after one round of review, have brought it 

to my attention. It is possible I have missed something very fundamental in the work that already 

addresses this, if so, I apologize, and rewriting would help regardless to clarify.

If I understand correctly, the paper’s main point is that AF2 can predict multiple conformations by 

virtue of something intrinsic, rather than explicitly having been trained on multiple conformations per 

protein from the PDB.

30% sequence similarity is a common rule of thumb cutoff for detecting homology, but many 

homologs can be found that have less than 30% sequence similarity (c.f. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820096/.

Here's a concrete example of the concern: let's say there are two kinases that are less than 30% 

sequence similar. Kinases adopt multiple conformations, two of which are the active and inactive 

conformations. These are very similar between kinases and many structures of both conformations 

exist for many kinases. As I understand the current training and evaluation scheme, it would have 

been possible for Cfold to have been trained on an active conformation of one kinase, and an inactive 

conformation of another kinase, as the conformations for each protein in the training set were 

randomly selected. This would make Cfold's ability to predict both states for any given kinase less 

striking than a scenario where, for instance, only kinase active states had been selected. The same 

holds for open/closed states of GPCRs, transporters – there are many examples of protein families 

with multiple conformations where the known solved states are highly similar between proteins that 

can very reasonably be less than 30% sequence similar. The possibility of transferred learning 

between structures, if not investigated and understood, lessens the impact of the work and still leaves 

open the question to what degree AF2 memorizes multiple conformations.

Secondly, the authors’ responses to the first round of review indicates ignorance of the current 

understanding and literature in protein conformational landscapes. I illustrate this in a few points 

below. Without significant rewriting I do not view the paper as fit for publication in Nature Comms.

1. In analyzing differences between the structure pairs correctly predicted, the authors found that 

many of the structure clusters in the data contained pairs of apo/holo structures, but the authors 

incorrectly state that “Most conformational changes are induced by ligand binding”. The presence of 

apo/holo structure pairs says nothing about whether a protein occupies both states prior to ligand 

binding (conformational selection), or if ligand binding causes the conformational change (induced fit), 

an elementary principle of biochemistry. The last decades have demonstrated that conformational 

selection is at play in many diverse protein families. This degree of simplicity in the writing concerns 

me.

2. In my first round of review, I wrote “It should be quite possible to compare [sampled populations] 

to literature experimental values for at least a handful.” In the response to referees, the authors write, 

“We also do not quite know how to compare the samples to literature values directly (or where to find 

such values that correspond to different conformations).” This indicates a lack of understanding of the 

field and without such comparison, I do not view the work as suitable for publication in Nature 



Comms. Observables on populations could come from NMR or from single-molecule studies such as 

FRET, to name a few sources.

Lastly, the authors wrote in their response, "Analysing how neural networks is not really possible" [sic] 

is out of touch. Interpreting neural networks is part and parcel of modern computational research, and 

I thought the intent of this paper.



Dear Editors and Reviewers,

We thank you for your insightful comments and suggestions and here provide a
point-by-point response to all raised issues and suggestions in bold. We have
updated the manuscript accordingly and marked all changes in red throughout the
text.

REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

The revised version addresses my comments. Thank you.

Reviewer #2 (Remarks to the Author):

Firstly, I apologize for not having realized the following major concern in the first round of
review. Continued thought, and reading the additions to the paper after one round of review,
have brought it to my attention. It is possible I have missed something very fundamental in
the work that already addresses this, if so, I apologize, and rewriting would help regardless
to clarify.

If I understand correctly, the paper’s main point is that AF2 can predict multiple
conformations by virtue of something intrinsic, rather than explicitly having been trained on
multiple conformations per protein from the PDB.

The main idea in this work is that the coevolutionary constraints constrain the
structure, but also contain descriptions of different states. If slightly different
representations are sampled, this should result in different outputs (structures). Here
we investigate if this is true by training a network on a structural split of the PDB to
obtain an extensive evaluation of all protein structural clusters that differ
substantially (>0.2 TM-score).

30% sequence similarity is a common rule of thumb cutoff for detecting homology, but many
homologs can be found that have less than 30% sequence similarity (c.f.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820096/.

Here's a concrete example of the concern: let's say there are two kinases that are less than
30% sequence similar. Kinases adopt multiple conformations, two of which are the active
and inactive conformations. These are very similar between kinases and many structures of
both conformations exist for many kinases. As I understand the current training and
evaluation scheme, it would have been possible for Cfold to have been trained on an active
conformation of one kinase, and an inactive conformation of another kinase, as the
conformations for each protein in the training set were randomly selected. This would make
Cfold's ability to predict both states for any given kinase less striking than a scenario where,
for instance, only kinase active states had been selected. The same holds for open/closed
states of GPCRs, transporters – there are many examples of protein families with multiple
conformations where the known solved states are highly similar between proteins that can

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820096/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820096/


very reasonably be less than 30% sequence similar. The possibility of transferred learning
between structures, if not investigated and understood, lessens the impact of the work and
still leaves open the question to what degree AF2 memorizes multiple conformations.

We thank the reviewer for this example. We have tried to clarify what we have done in
terms of structural alignment with TM-align and manual checks in the methods
section. We have selected structures that have large conformational changes (>0.2
TM-score) to ensure that the structures are indeed different between training and test
clusters. As the reviewer mentions, there may be some sequences that have a very
low sequence identity but have similar structures and the only possibility to account
for these would be pairwise structural alignment of the entire PDB. Since this is too
computationally expensive, we have adopted a hybrid strategy where we use 30%
sequence clustering to reduce the number of necessary structural alignments. We
have performed the structural alignments to the best of our ability and do not know of
any more stringent condition or previous study that is certain that there is no
structural similarity between any sequences. Although different sequence clusters
may have similar structures, it is highly unlikely that these encompass different
conformational changes with >0.2 TM-score and that these would happen to be
divided in a way that would bias the study given how rare these conformations are
(current pool of 244 conformations out of the 10116 sequence clusters (2.4%)) among
all structures in the PDB.

Secondly, the authors’ responses to the first round of review indicates ignorance of the
current understanding and literature in protein conformational landscapes. I illustrate this in a
few points below. Without significant rewriting I do not view the paper as fit for publication in
Nature Comms.

1. In analyzing differences between the structure pairs correctly predicted, the authors found
that many of the structure clusters in the data contained pairs of apo/holo structures, but the
authors incorrectly state that “Most conformational changes are induced by ligand binding”.
The presence of apo/holo structure pairs says nothing about whether a protein occupies
both states prior to ligand binding (conformational selection), or if ligand binding causes the
conformational change (induced fit), an elementary principle of biochemistry. The last
decades have demonstrated that conformational selection is at play in many diverse protein
families. This degree of simplicity in the writing concerns me.

We thank the reviewer for this comment and have rewritten this section to better
reflect the possibilities described by the reviewer:
“Most structures that display conformational changes interact with a ligand (ligand
binding, n=42, Supplementary Table 1), a few are due to introduced mutations (n=5), 3
bind to proteins and for 2 of them, the reason for the conformational variability is
unknown, but may be due to ligands which were not resolved in the X-ray data.”

2. In my first round of review, I wrote “It should be quite possible to compare [sampled
populations] to literature experimental values for at least a handful.” In the response to
referees, the authors write, “We also do not quite know how to compare the samples to
literature values directly (or where to find such values that correspond to different



conformations).” This indicates a lack of understanding of the field and without such
comparison, I do not view the work as suitable for publication in Nature Comms.
Observables on populations could come from NMR or from single-molecule studies such as
FRET, to name a few sources.

We have perhaps misinterpreted the reviewer's previous suggestion here. We thought
that this suggestion was about MD trajectories or similarities to these. We did not use
any NMR data for training and therefore selected three NMR ensembles with structural
fluctuations from the PDB to investigate the possibility of sampling similar
fluctuations with Cfold.

We ran Cfold with the clustering strategy for PDB ids:
https://www.rcsb.org/structure/2M6Q
https://www.rcsb.org/structure/7ZK0
https://www.rcsb.org/structure/2N4A

We have added a section in the Supplementary information about this: “Comparison
with NMR ensembles”. We compare the states by PCA and projecting the structural
variation on the first two PCs of the different Cfold samples in comparison with the
NMR ensembles. The ensembles here match poorly with the NMR data, which is not
surprising – NMR ensembles typically report flexibility within one state and
additionally the statistical uncertainty of matching NMR restraints. Thus, to predict
NMR ensembles one would need a more physical model of protein dynamics (e.g. MD
simulations), plus a statistical model of the NMR statistical uncertainties. Cfold, on
the other hand, is aimed at sampling distinct stable or meta-stable conformations, and
it has no physical model of local fluctuations within these states. Likely, a
combination of Cfold and MD simulation can achieve a more physical description of
protein ensembles.

We have also added a statement about this in the discussion:
We analysed three structures that display fluctuations in NMR ensembles to see what
dynamical aspects Cfold can capture (Supplementary information). We find that Cfold does
not capture dynamical aspects of proteins and therefore likely not of protein conformations.
Cfold can predict distinct conformational states of proteins, but no evidence is found to
support the transition between these.

https://www.rcsb.org/structure/2M6Q
https://www.rcsb.org/structure/7ZK0
https://www.rcsb.org/structure/2N4A


Lastly, the authors wrote in their response, "Analysing how neural networks is not really
possible" [sic] is out of touch. Interpreting neural networks is part and parcel of modern
computational research, and I thought the intent of this paper.

We agree that interpretable machine learning is an active area of research, however, it
is not within the scope of our paper. Here, we focus on analyzing the outputs of the
Cfold model and compare them with structural biology data.



Reviewers' comments:

Reviewer #2 (Remarks to the Author):

Please see attached pdf for my comments.



We have performed the structural alignments to the best of our ability and do not know of 
any more stringent condition or previous study that is certain that there is no structural 
similarity between any sequences. Although di<erent sequence clusters may have similar 
structures, it is highly unlikely that these encompass di<erent conformational changes with 
>0.2 TM-score and that these would happen to be divided in a way that would bias the study 
given how rare these conformations are (current pool of 244 conformations out of the 
10116 sequence clusters (2.4%)) among all structures in the PDB. 
 
Thanks to the authors for providing metadata of their train/test splits. (Adding these to the 
publicly available supporting materials would improve their accessibility.) 
 
From the train / test splits supplied in supplemental information, I was readily able to 
identify an example of what I was concerned about using the publicly available tool 
FoldSeek1 and which the authors have claimed are “highly unlikely.” 
 
One member of the test set is 4Z3N, a MATE transporter from E. coli. Using FoldSeek, I 
readily found a structure, 6IDR, that is highly similar (TM-score = 0.889, would get clustered 
by the authors’ criteria) with a sequence identity of 21.7% to the structure in the test set.  
 
In test_meta.csv: 

 
In train_meta.csv: 

 



 
 

 
 



Given that doing a principled training split was the main value of the study and the premise 
upon which the authors’ conclusions rest, I no longer view this study to have the value I 
previously thought it did. The authors would need to do this sort of comparison for each 
member of their test set to remove any proteins with low-homology, highly-similar 
structures and revise all their results accordingly. 
 
Regarding NMR ensembles: 
 
The authors have again demonstrated a lack of understanding about biochemistry as well 
as the current state of the field by incorrectly interpreting multiple conformations in NMR 
structures as populations. The set of structures contained in a NMR structure model do not 
reflect populations. See more in ref 2: “The ensemble of models … does not describe 
protein dynamics, but rather represents the uncertainty or inconsistencies present in the 
experimental NMR data.”  
 
The authors should be able to identify logical experiments to compare to. They still have 
not addressed a concern I raised in my first review of comparing sampling to experimental 
data on populations. 
 
Regarding overall writing 
 
Finally, I still do not view that the authors have substantially improved the writing to reflect 
a current understanding of the field. I do not intend to enumerate exhaustively here all the 
instances, but this is one example that has not been substantially changed: 
 
“Currently, most protein structures are viewed as a single snapshot in time due to only one 
static conformation being resolved for most structures while in reality, it should be viewed 
rather like a video.” 
 
This is still overly simplistic and shows a lack of awareness of what is known in the field. 
 
1. van Kempen M, Kim S, Tumescheit C, Mirdita M, Lee J, Gilchrist CLM, Söding J, and 
Steinegger M. Fast and accurate protein structure search with Foldseek. Nature 
Biotechnology, 2023. 
 
2. Vranken, Wim. “NMR structure validation in relation to dynamics and structure 
determination.” Progress in NMR spectroscopy, 2014. 
https://doi.org/10.1016/j.pnmrs.2014.08.001. 

https://www.nature.com/articles/s41587-023-01773-0
https://doi.org/10.1016/j.pnmrs.2014.08.001


Reviewer #2 (Remarks on code availability):

The supplementary materials were unclear and required further communication to receive materials 

that allowed me to review it appropriately.



The claims made here regarding the train-test overlap are inaccurate for several
reasons outlined below.

1. The example provided by the reviewer was never used for testing.
2. The conformations claimed by the reviewer to be identical appear to be

functionally different and encompass two distinct structural states of GPCRs.
For GPCRs in general, the structural difference of different functional states is
less than that of other proteins.

3. No method ever developed (to our knowledge) has ever assessed the pairwise
structural similarity across the PDB as this is computationally intractable.
Clustering is used on both the sequence and structural level to reduce
complexity.

We outline the response further below in the appropriate sections.

Thanks to the authors for providing metadata of their train/test splits. (Adding these to the
publicly available supporting materials would improve their accessibility.)

They are available already through zenodo as stated under data availability. We have
also pointed to this link several times during the review process, and we don’t
understand why the reviewer does not acknowledge that this request is solved:
https://zenodo.org/records/10837082

From the train / test splits supplied in supplemental information, I was readily able to identify
an example of what I was concerned about using the publicly available tool FoldSeek1 and
which the authors have claimed are “highly unlikely.”

The test ids used by the reviewer to extract a ‘contradictory example’ are not the ones
we have used for evaluation. Therefore the reviewer’s claim that this is a test example
demonstrating the failure of FoldSeek1 is not correct. We have stated this in a
communication to the editor, where we also attached the test ids used. These are also
available in the zenodo repo (see test.tar.zst - test set predictions):
https://zenodo.org/records/10837082

One member of the test set is 4Z3N, a MATE transporter from E. coli. Using FoldSeek, I
readily found a structure, 6IDR, that is highly similar (TM-score = 0.889, would get clustered
by the authors’ criteria) with a sequence identity of 21.7% to the structure in the test set.

https://zenodo.org/records/10837082
https://zenodo.org/records/10837082


Given that doing a principled training split was the main value of the study and the premise
upon which the authors’ conclusions rest, I no longer view this study to have the value I
previously thought it did. The authors would need to do this sort of comparison for each
member of their test set to remove any proteins with low-homology, highly-similar structures
and revise all their results accordingly.

We have performed a ‘principled training split’ using structural alignment after
sequence clustering with following manual inspection as outlined in methods. The
example provided by the reviewer was never used for testing (please see the test ids
in the final test set that I sent to you or download them from zenodo).



Further, the conformations claimed by the reviewer to be identical appear to be
functionally different and encompass two distinct structural states of GPCRs (one is
the ‘bent form’ https://www.rcsb.org/structure/4z3n vs
https://www.rcsb.org/structure/6IDR). For GPCRs in general, the structural difference
between functional states is less than that of other proteins.

Regarding NMR ensembles:

The authors have again demonstrated a lack of understanding about biochemistry as well as
the current state of the field by incorrectly interpreting multiple conformations in NMR
structures as populations. The set of structures contained in a NMR structure model do not
reflect populations. See more in ref 2: “The ensemble of models ... does not describe protein
dynamics, but rather represents the uncertainty or inconsistencies present in the
experimental NMR data.”

The authors should be able to identify logical experiments to compare to. They still have not
addressed a concern I raised in my first review of comparing sampling to experimental data
on populations.

This study was never about addressing structural fluctuations observed in NMR
studies, but about predicting distinct conformational states. We do not understand
the purpose of the reviewer’s determination to include NMR to investigate protein
dynamics when the reviewer now suggests that NMR data can’t be used for this. We
reluctantly agreed to include the NMR data as the reviewer demanded this. That the
reviewer now critiques the use of the NMR data to assess dynamical behaviour we
find contradictory and would much rather simply remove this data from the study
altogether as it was never included in the original submission.

We also find the demeaning comments about our lack of understanding of
biochemistry that the reviewer has provided us with throughout the review process
concerning. Reviews should be fact-based and constructive.

Finally, I still do not view that the authors have substantially improved the writing to reflect a
current understanding of the field. I do not intend to enumerate exhaustively here all the
instances, but this is one example that has not been substantially changed:

“Currently, most protein structures are viewed as a single snapshot in time due to only one
static conformation being resolved for most structures while in reality, it should be viewed
rather like a video.”

This is still overly simplistic and shows a lack of awareness of what is known in the field.

We have removed this statement.

https://www.rcsb.org/structure/4z3n
https://www.rcsb.org/structure/6IDR


REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

The major issue of concern revolves around possible overlap between training and test sets, in 

principle a valid concern, but I think the authors clearly responded and dismissed the concerns that 

were raised. Based on my reading along with the reviewer responses, this appears to be a non-issue.

A second issue is validation and comparison with (experimental) data. That is an important point but 

fraught with difficulties as there is not a whole lot of data that is immediately useful for the predictions 

made here. Comparing with NMR ensembles is problematic - as evident from the discussion between 

the reviewer and authors - and it is clearly well out of scope of this work to carry out new 

experiments. What is left are suggestions for experimental validation and partial comparison with 

available conformations in the PDB, both of which were done. There is potentially more that could be 

done to elaborate in more detail on possible experimental validation and the comparison with 

examples of alternate states could be extended, but there is probably not too much more that could 

be done here to address the issue.

The only issue that remains from my perspective is about significance. The main point here is 

essentially that AlphaFold2 (or its retrained version cfold presented here) can be massaged into 

producing alternate conformations by varying the MSA input and adding dropout layers. That has been 

published previously (see the AFSample paper from Wallner). The new point here is a rigorous 

separation of training and testing with a retrained version of AlphaFold2, but the main conclusion 

about how to generate conformational states largely remains the same. Moreover, it is not clear from 

this work that cfold is in fact more useful in the end than simply applying e.g. the AFSample strategy 

using the original AlphaFold2 model.



Dear Editors and Reviewers,

We thank you for the additional review and your insightful comments and suggestions
and here provide a point-by-point response to all raised issues and suggestions in
bold. We have updated the manuscript accordingly and marked all changes in red
throughout the text.

REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

The major issue of concern revolves around possible overlap between training and test
sets, in principle a valid concern, but I think the authors clearly responded and dismissed
the concerns that were raised. Based on my reading along with the reviewer responses,
this appears to be a non-issue.

We thank the reviewer for confirming our view.

A second issue is validation and comparison with (experimental) data. That is an
important point but fraught with difficulties as there is not a whole lot of data that is
immediately useful for the predictions made here. Comparing with NMR ensembles is
problematic - as evident from the discussion between the reviewer and authors - and it is
clearly well out of scope of this work to carry out new experiments. What is left are
suggestions for experimental validation and partial comparison with available
conformations in the PDB, both of which were done. There is potentially more that could
be done to elaborate in more detail on possible experimental validation and the
comparison with examples of alternate states could be extended, but there is probably
not too much more that could be done here to address the issue.

We thank the reviewer for this suggestion and have added a paragraph to the
discussion about this issue:

Experimental validation of predictions of alternative conformations would provide the ultimate
proof of the utility of Cfold. This would entail predicting the structure of possible
conformations of proteins where only one conformation is known, selecting for structural
variation and subsequent structural determination by e.g. X-ray crystallography. Such a
procedure would require substantial resources and is outside the scope of this study.
Importantly, alternative conformations may not be accessible unless these are due to a
natural structural equilibrium. If conformational differences are induced by cellular
environments, these may not be possible to observe unless the exact conditions are also
determined making the study of distinct structural states at scale impossible with current
technology.



The only issue that remains from my perspective is about significance. The main point
here is essentially that AlphaFold2 (or its retrained version cfold presented here) can be
massaged into producing alternate conformations by varying the MSA input and adding
dropout layers. That has been published previously (see the AFSample paper from
Wallner). The new point here is a rigorous separation of training and testing with a
retrained version of AlphaFold2, but the main conclusion about how to generate
conformational states largely remains the same. Moreover, it is not clear from this work
that cfold is in fact more useful in the end than simply applying e.g. the AFSample
strategy using the original AlphaFold2 model.

Indeed, Cfold does not present a new way to sample different conformations compared
to AlphaFold2. The main novelty here is related to the training regimen which enables
us to prove that structure prediction networks such as AlphaFold2 can be used to
predict alternative conformational states based on coevolutionary information sampled
from an MSA. Previously, no support for this was provided as AlphaFold2 had seen
structures identical to or highly similar to all conformations evaluated in e.g.
https://elifesciences.org/articles/75751.

We thereby provide a foundation for future studies by providing support for the
sampling of alternative states being possible and how likely it is to obtain these. This is
important as adopting methods that turn out to be false can have a large negative
impact on the community. We realise that distinguishing between ML models and how
to adequately evaluate them for different tasks is difficult. We do this comprehensively
by analysing all known structural classes (n=155 vs n=8 previously) with significant
structural changes.

In addition, we analyse the impact of different types of conformational changes on the
prediction and showcase what structural changes are predictable (small) and which are
not (large). We also show that the prediction of alternative conformations is largely
stochastic and can’t be directly related to internal network representations explaining
how this prediction works.

We have clarified the significance in the results section:

In contrast to previous attempts to predict alternative conformations, we ensure that our
structure prediction network (Cfold) does not see any structures similar to those used for
evaluation during training. This is the only way to ensure that predicting different
conformations is possible and not an artefact from train and test data overlaps.

And added a point in the discussion:

In contrast to previous attempts to predict the structure of different conformations, Cfold is
evaluated on a comprehensive set (n=155 vs n=8 previously) of structural states distinct
from those seen during training. This is crucial to assess if conformational states can be

https://elifesciences.org/articles/75751


predicted and are not simply reproduced from memory (as is the case when using e.g.
AlphaFold2).

The significance is also highlighted in the abstract:
…Neural networks such as AlphaFold2 can predict the structure of single-chain proteins with
conformations most likely to exist in the PDB. However, almost all protein structures with
multiple conformations represented in the PDB have been used while training these models.
Therefore, it is unclear whether alternative protein conformations can be genuinely predicted
using these networks, or if they are simply reproduced from memory. …

and in the introduction:

… These protocols are evaluated on very few structures (eight, six and five, respectively)
whose sequences may be present in the AF training set. Therefore, it is not known if these
alternative conformations are already encoded in the AF embeddings
…
…
To improve over the previous analyses and provide an answer to whether different
conformations can be predicted, we first extracted a set of structures from the PDB [14] that
have alternative conformations with substantial changes (a difference in TM-score [15] of at
least 0.2 between structures) and are not homologous to the training set of AF. This resulted
in a total of only 38 proteins with alternative conformations. We do not think this amount is
sufficient to address the multi-conformation prediction problem as the total number of
structural clusters (TM-score≥0.8 within each cluster) is 6696, meaning that only 0.6% of
possible structures would be evaluated.

Therefore, we created a dataset suitable for the multi-conformation prediction task by
performing a conformational split of the PDB using structural clusters (TM-score≥0.8).
Thereby, we obtain 244 alternative conformations for evaluation which represent all
sequences that have nonredundant structures that differ >0.2 in TM-score in the PDB. As AF
(and other structure prediction methods) can’t be evaluated on this set due to having seen
most of these conformations during training, we train a new version of AF on the
conformational split which we name Cfold.
…
…

https://paperpile.com/c/lRWXAx/kaO0
https://paperpile.com/c/lRWXAx/YtrW
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