Supporting information

Hydrodeoxygenation of furfural to 2-methylfuran using

supported molybdenum carbides: Study of the support effect

Leticia F. Sosa¹, Priscilla M. de Souza², Raphaela A. Rafael², Eric Marceau², Valérie Briois³, Fabio S. Toniolo¹, Fabio B. Noronha^{2,4}, Franck Dumeignil², Sébastien Paul^{2*}

¹ Chemical Engineering Program of COPPE/UFRJ, Federal University of Rio Janeiro, P.O. Box 68502, CEP 21941-972, Rio de Janeiro, Brazil.

² Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.

³ Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France.

⁴ National Institute of Technology, Catalysis, Biocatalysis and Chemical Processes Division, Av. Venezuela 82, 20081-312, Rio de Janeiro, RJ, Brazil.

Figure S1. Diffractograms of the calcined precursors of Mo carbides supported on different materials. ◊ MoO₃, ⋈ ZSM-5, ▲ m-ZrO₂, ♣ a-TiO₂, □ r-TiO₂

Figure S2. N₂ adsorption-desorption isotherms of the passivated Mo carbides and respective supports.

Figure S3. XANES spectra recorded at the Mo K-edge for the calcined precursors of

Mo₂C/SiO₂ and Mo₂C/TiO₂. Comparison with reference MoO₃.

Figure S4. EXAFS signals recorded at the Mo K-edge for the calcined precursors of Mo₂C/SiO₂ and Mo₂C/TiO₂. Comparison with reference MoO₃.

Figure S5. Fourier transforms of the EXAFS signals recorded at the Mo K-edge for the calcined precursors of Mo_2C/SiO_2 and Mo_2C/TiO_2 (k = 3.5 - 15 Å⁻¹). Comparison with

reference MoO₃.

Figure S6. Raman spectra of the calcined precursors of Mo_2C/SiO_2 and Mo_2C/TiO_2

(recorded at room temperature).

Figure S7. XANES spectra recorded at the Mo K-edge for carburized Mo_2C/SiO_2 and Mo_2C/TiO_2 (spectra recorded at room temperature).

Comparison with reference β -Mo₂C.

Figure S8. EXAFS signals recorded at the Mo K-edge for carburized Mo_2C/SiO_2 and Mo_2C/TiO_2 (spectra recorded at room temperature).

Comparison with reference β -Mo₂C.

Figure S9. Fourier transforms of the EXAFS signals recorded at the Mo K-edge for carburized Mo₂C/SiO₂ and Mo₂C/TiO₂ (spectra recorded at room temperature, $k = 3.5 - 15 \text{ Å}^{-1}$). Comparison with reference β -Mo₂C.

Figure S10. XANES spectra recorded at the Mo K-edge for passivated β-Mo₂C, Mo₂C/SiO₂, Mo₂C/TiO₂, and Mo₂C/ZSM-5 (spectra recorded at room temperature). Comparison with references MoO₃ and metallic Mo (dotted lines).

Figure S11. EXAFS signals recorded at the Mo K-edge for passivated β -Mo₂C, Mo₂C/SiO₂, Mo₂C/TiO₂, and Mo₂C/ZSM-5 (spectra recorded at room temperature). Comparison with reference MoO₃.

Figure S12. Fourier transforms of the EXAFS signals recorded at the Mo K-edge for passivated β-Mo₂C, Mo₂C/SiO₂, Mo₂C/TiO₂, and Mo₂C/ZSM-5 (spectra recorded at room temperature). Comparison with reference MoO₃.

Figure S13. Analysis of the data recorded at the Mo K-edge for the passivated catalysts (spectra recorded at room temperature), using linear combinations of MCR-ALS components (see Table S1). XANES spectrum (left) and EXAFS oscillations (right), a) β-Mo₂C and b) Mo₂C/SiO₂.

Continuation of Figure S13. Analysis of the data recorded at the Mo K-edge for the passivated catalysts (spectra recorded at room temperature), using linear combinations of MCR-ALS components (see Table S1). XANES spectrum (left) and EXAFS oscillations (right), Mo₂C/TiO₂, and b) Mo₂C/ZSM-5.

Table S1. Fitted parameters at the Mo K-edge ($E_0 = 20013 \text{ eV}$, $S_0^2 = 0.98$) determined from the EXAFS analysis of spectra recorded at room temperature on catalysts after passivation. $k = 3.5 - 15 \text{ Å}^{-1}$. Fit of the first peak(s) from the Fourier transform between

Catalyst	Backscatter	Ν	σ^2 (Å ²) x 10 ³	R (Å)
β-Mo ₂ C	С	2.9 ± 0.9	5 ± 3	2.09 ± 0.02
	Мо	6.8 ± 0.8	6.4 ± 0.6	2.971 ± 0.005
	$\Delta E_0 = -4.9 \text{ eV}, \text{ r-factor} = 0.01493, \chi^2 = 646, N_{\text{ind}} = 13, N_{\text{var}} = 7$			
Mo ₂ C/SiO ₂	О	0.9 ± 0.9	7 ± 5	1.71 ± 0.04
	С	4 ± 3	7 ± 5	2.08 ± 0.02
	Mo	4 ± 1	7 ± 2	2.97 ± 0.01
	$\Delta E_0 = -5.2 \text{ eV}, \text{ r-factor} = 0.03112, \chi^2 = 1745, N_{\text{ind}} = 13, N_{\text{var}} = 9$			
Mo ₂ C/TiO ₂	О	0.8 ± 0.4	8 ± 2	1.69 ± 0.03
	С	3.7 ± 0.7	8 ± 2	2.13 ± 0.02
	Мо	0.4 ± 0.2	8 ± 2	2.52 ± 0.03
	Мо	2.1 ± 0.5	8 ± 2	2.97 ± 0.01
	Δ_{E_0} = -0.4 eV, r-factor = 0.01268, χ^2 = 708, N _{ind} = 13, N _{var} = 10			
Mo ₂ C/ZSM-5	О	0.9 ± 0.9	6 ± 4	1.71 ± 0.03
	С	3 ± 2	6 ± 4	2.10 ± 0.02
	Мо	3.9 ± 0.9	7 ± 1	2.969 ± 0.009
	$\Delta_{\text{E}_0} = -5.3 \text{ eV}, \text{ r-factor} = 0.02999, \chi^2 = 1515, \text{N}_{\text{ind}} = 13, \text{N}_{\text{var}} = 9$			

1 and 3 Å.

Figure S14. XANES spectra recorded at the Mo K-edge for reduced β-Mo₂C, Mo₂C/SiO₂, Mo₂C/TiO₂, and Mo₂C/ZSM-5 (spectra recorded at room temperature). Comparison with references MoO₃ and metallic Mo (dotted lines).

Figure S15. EXAFS signals recorded at the Mo K-edge for reduced β -Mo₂C, Mo₂C/SiO₂, Mo₂C/TiO₂, and Mo₂C/ZSM-5 (spectra recorded at room temperature).

Figure S16. Fourier transforms of the EXAFS signals recorded at the Mo K-edge for reduced β -Mo₂C, Mo₂C/SiO₂, Mo₂C/TiO₂, and Mo₂C/ZSM-5 (spectra recorded at room temperature).

Figure S17. XAS data at the Mo K-edge of the catalysts after reduction (spectrum recorded at room temperature). Fit of the first and second shells of neighbors: Fourier transform (left) and EXAFS oscillations (right), a) β-Mo₂C and b) Mo₂C/SiO₂.

Continuation of Figure S17. XAS data at the Mo K-edge of the catalysts after reduction (spectrum recorded at room temperature). Fit of the first and second shells of neighbors: Fourier transform (left) and EXAFS oscillations (right), a) Mo₂C/TiO₂ and b) Mo₂C/ZSM-5.

Table S2. Fitted parameters at the Mo K-edge ($E_0 = 20013 \text{ eV}$, $S_0^2 = 0.98$) determined from the EXAFS analysis of spectra recorded at room temperature on catalysts after passivation and reduction in H₂. $k = 3.5 - 15 \text{ Å}^{-1}$. Fit of the first peak(s) from the Fourier

Catalyst	Backscatter	Ν	σ^2 (Å ²) x 10 ³	R (Å)
β-Mo ₂ C	С	2.7 ± 0.9	4.1 ± 0.3	2.08 ± 0.02
	Мо	7.3 ± 0.8	5.7 ± 0.5	2.966 ± 0.005
	$\Delta_{\text{E}_0} = -5.5 \text{ eV}, \text{ r-factor} = 0.01575, \chi^2 = 592, \text{ N}_{\text{ind}} = 13, \text{ N}_{\text{var}} = 7$			
Mo ₂ C/SiO ₂	С	4.1 ± 0.6	6 ± 1	2.105 ± 0.006
	Мо	4.1 ± 0.4	6.1 ± 0.4	2.976 ± 0.003
	$\Delta E_0 = -2.7 \text{ eV}, \text{ r-factor} = 0.00717, \chi^2 = 202, N_{\text{ind}} = 13, N_{\text{var}} = 7$			
Mo ₂ C/TiO ₂	С	4.0 ± 0.7	5 ± 2	2.13 ± 0.01
	Mo	0.3 ± 0.2	8 ± 2	2.49 ± 0.04
	Мо	2.3 ± 0.7	8 ± 2	2.977 ± 0.009
	$\Delta E_0 = -0.1 \text{ eV}, \text{ r-factor} = 0.01630, \chi^2 = 514, N_{\text{ind}} = 13, N_{\text{var}} = 9$			
Mo ₂ C/ZSM-5	С	3.9 ± 0.7	8 ± 2	2.10 ± 0.01
	Mo	0.7 ± 0.5	9 ± 2	2.69 ± 0.02
	Мо	3.0 ± 0.9	9 ± 2	2.980 ± 0.009
	$\Delta E_0 = -2.9 \text{ eV}, \text{ r-factor} = 0.01134, \chi^2 = 271, N_{\text{ind}} = 13, N_{\text{var}} = 9$			

transform between 1 and 3 Å.