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Figure S1. (a) AFM 2D map of annealed slits for NMs growth (W=140 nm, P=2000 nm, scale bar = 500 
nm); (b) AFM line profiles of slits at different widths for a fixed pitch (P=2000 nm), showing reproducible 
homogeneity over the arrays in terms of depth; (c) Different annealing depths for NMs at different widths 
and pitches, showing variability due to atoms recollection; (d) Plot of the different annealing depths for 
NWs at different nominal diameters. Dashed line refers to average value.

After the annealing step, both slits and pinholes show reproducible depth in different structures 
over a single array, thus providing uniform initial condition for the growth. This homogeneity can 
be seen in Figure 1a-c for slits and figure 1d for holes. When considering different arrays, slits 
show more variability in depth rather than pinholes, as observable from the plot in Figure 1c. While 
holes with fixed pitch for all the diameters tend to have similar depths, slits show variability as a 
function of the pitch. This behavior can be explained considering atoms recollection from the 
material that is desorbed during annealing [1]. Slits at smaller pitches contribute with more 
desorption and hence can recollect more during the annealing, thus leading to smaller depths. 

2. Growth within the mask for NMs and NWs

Figure S2. (a) AFM map of  NMs (W=80 nm, P=500 nm) and (b) NWs (D=160 nm, P=750 nm) at 45 s of 
growth time. NMs show layer-by-layer growth within the mask with terraces and islands. NWs show filling 
of the pinholes at slightly different heights throughout the array and at a slower speed compared to NMs. 
(c) SEM image of NMs (W=140 nm, P=2000 nm) at 90 s of growth, showing the terraces at the end of the 
slits when reaching mask height. 

Figure S2 (a) shows monolayer islands and terraces in the early stages of the NMs growth. 
Contrarily, the NWs do not show significant islands formation in early stages of growth within the 
mask, as it can be seen in Figure S2 (b). Such a difference can be reasonably due to the different 
exposed areas and filling volumes. Slits get filled more than holes for a fixed growth time. This 
trend is observed for all combinations of geometrical parameters that have been investigated. 
The islands and terraces forming in the NMs tend to laterally expand with growth time until they 
are uniquely visible at the very end of the slits. Figure S2 (c) shows the presence of the terraces in 
the final part of the slits. 
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3. Layer-by-layer growth in NMs

Figure S3. AFM 2D maps of NMs from the same array (w=140 nm, p=2000 nm) at different growth times, 
showing atomic terraces when NMs are still growing below the mask level and no atomic terraces when 
they protrude outside. The color legend has been rescaled at need to enhance the contrast on the growing 
top facet, thus maximizing the chance to observe atomic steps. 

Figure S3 shows AFM scans of nanomembranes at different growth times. In the first growth 
stages when the nanostructures are still below the mask, islands and terraces of monolayer 
thickness are evident, showing layer-by-layer growth. Once nanostructures grow outside the mask, 
these terraces are no longer observable at any growth time. 

4. Nanomembrane shape 

Figure S4. SEM tilted images comparing (a) NMs grown in this study (W=140 nm, P=1000 nm, tgrowth= 
840 s) with (b) the commonly described morphology from MBE-grown GaAs (111)B NMs[2]. In the panel 
(c), the modelled schematic of the growing facets for GaAs (111)B NMs used as templates for the growth 
of InAs nanowires is shown, highlighting the presence of (113) tapered top facets that are not present in 
our geometry [Reproduced from Ref. S3].

Our nanomembranes grow with flat (111)B top facet which is conserved throughout the growth in 
all the time window that has been investigated, as shown in Figure S4a. Such a morphology is 
markedly different with previously reported shapes[2,3] where the kinetics drive the appearance of 
(113) facets on top, leading to full completion of the structure into a triangular slab. Considering 
the saturation tendency of the sublinear growth of our NMs, such a morphology looks presumably 
far from being reachable. 



S4

As for the quantitative morphological description is concerned, the NMs are assumed to be 
infinitely long. The height (H) is obtained averaging over the AFM profile of different NMs 
belonging to the same array. The width (W) is obtained averaging over the values obtained from 
top-view SEM images of different NMs belonging to the same array. The volume per unit length 
(S) represents the vertical cross-section of the NMs and it is simply calculated by the product of 
their height and width. 
To understand the shape of GaAs NMs grown in rectangular trenches of length 𝐿0 elongated in 
<11-2> direction, we consider the tapered geometry shown in Figure S5 (a), where the NM has 
three inclined facets of lengths 𝑊, 𝑊 [2sin (  2 )] and 𝑊 [2sin (  2 )] , where  is the angle 
of the ridge made by the two edge facets. The facet of length 𝑊 makes the angle 𝜃1 to the vertical 
<111B> direction. The triangle edge is inclined at the angle 𝜃2 to the vertical.  The volume 𝑉𝑡 of 
a tapered NM having the base length 𝐿0, top length 𝐿 = 𝐿0 ―𝐻(𝑡𝑎𝑛𝜃1 +𝑡𝑎𝑛𝜃2), and height 𝐻 
above the mask level is given by:

𝑉𝑡 = 𝑊𝐻 𝐿0 ― 𝐻
2

(𝑡𝑎𝑛𝜃1 + 𝑡𝑎𝑛𝜃2) + 𝑊2

4 𝑐𝑜𝑡𝑎𝑛 
2

𝐻
𝑐𝑜𝑠𝜃2

.                                         (S1)                                                                 

Here, the first term is the volume of trapezoid of width 𝑊, and the second term is the volume of 
triangle prism having the cross-sectional area 𝑊2𝑐𝑜𝑡𝑎𝑛( 2)/4 and length 𝐻 𝑐𝑜𝑠𝜃2. The volume 
𝑉𝑟 of rectangular NM of the same width 𝑊 and length  𝐿0 but different height 𝐻0 (Figure S5b) 
restricted by two (110) and two (211) vertical side facets, equals:
𝑉𝑟 = 𝑊𝐿0𝐻0.                                                                                                                   (S2)
From Equations (1) and (2), the two NMs have the same volume (𝑉𝑡 = 𝑉𝑟) when: 

𝐻0 = 𝐻 1 ― 𝐻(𝑡𝑎𝑛𝜃1 𝑡𝑎𝑛𝜃2)
2𝐿0

+ 𝑊𝑐𝑜𝑡𝑎𝑛(  2 )
4𝐿0𝑐𝑜𝑠𝜃2

.                                                                   (S3)

We now compare the surface energies 𝐹𝑡 and 𝐹𝑟 of the tapered and rectangular NMs shown in 
Figures S5a and S5b, respectively, under the condition of equal volumes. The experimentally 
observed NM shape should correspond to the lower surface energy[4].  The surface energy of 
tapered NM is given by:

𝐹𝑡 = 𝑊 𝐿0 ― 𝐻(𝑡𝑎𝑛𝜃1 + 𝑡𝑎𝑛𝜃2) + 𝑊2

4
𝑐𝑜𝑡𝑎𝑛 

2
𝛾(111𝐵) +

2𝐻𝐿0 ― 𝐻2(𝑡𝑎𝑛𝜃1 + 𝑡𝑎𝑛𝜃2) + 𝑊𝐻 1
𝑐𝑜𝑠𝜃1

+ 1

𝑠𝑖𝑛 (  2 )𝑐𝑜𝑠𝜃2
𝛾(110) + 𝑊2

4 𝑐𝑜𝑡𝑎𝑛 
2

𝛾𝑖.                                                  
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Here, the first term is the surface energy of the top (111B) facet, the second term is the surface 
energy of the (110) side facets, and the third term is the additional energy of the NM corner in 
contact with the mask surface, with the interfacial energy 𝛾𝑖. The surface energy of rectangular 
NM equals:
𝐹𝑟 = 𝑊𝐿0𝛾(111𝐵) +2𝐻0𝐿0𝛾(110) +2𝑊𝐻0𝛾(211),                                                          (S5)
where the two vertical side (211) facets have the surface energy 𝛾(211). Using Equation (3) for 𝐻0 
in Equation (5) and taking the difference 𝐹𝑡 ― 𝐹𝑟, the sign of 𝐹𝑡 ― 𝐹𝑣 at a given 𝐻 is determined 
by:

𝐹𝑡 𝐹𝑟

𝑊𝐻𝛾(110)
=

1
𝑐𝑜𝑠𝜃1

+ 1

sin (  2 )
― 𝑐𝑜𝑡𝑎𝑛(  2 )

2

1
𝑐𝑜𝑠𝜃2

―(𝑡𝑎𝑛𝜃1 +𝑡𝑎𝑛𝜃2)
𝛾(111𝐵)

𝛾(110)
+

𝐻(𝑡𝑎𝑛𝜃1 𝑡𝑎𝑛𝜃2)
𝐿0

― 𝑊𝑐𝑜𝑡𝑎𝑛(  2 )
2𝐿0𝑐𝑜𝑠𝜃2

― 2
𝛾(211)

𝛾(110)
+ 𝑊

4𝐻𝑐𝑜𝑡𝑎𝑛 
2

(𝛾(111𝐵) 𝛾𝑖)
𝛾(110)

.                                                       
(S6)              
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Figure S5. (a) Geometry of tapered NM having the width 𝑊, restricted by the two vertical side facets of 
the base length 𝐿0 and height 𝐻, three inclined facets making the angle 𝜃 to the vertical, and the (111B) 
top facet parallel to the substrate surface. All side facets belong to the (111) family. (b) Rectangular NM 
of the same width 𝑊 and length  𝐿0 but different height 𝐻0. The two side facets of rectangular NM 
belong to the (211) family, with a higher surface energy. 

The angles 𝜓 between the facets with the Miller indices (ℎ1𝑘1𝑙1) and (ℎ2𝑘2𝑙2) in cubic zincblende 
(ZB) lattice were obtained using:

𝑐𝑜𝑠𝜓 =
ℎ1ℎ2 𝑘1𝑘2 𝑙1𝑙2

ℎ2
1 𝑘2

1 𝑙2
1 ℎ2

2 𝑘2
2 𝑙2

2
.                                                                                       (S7)                            

This gives  = 60o, 𝜃1 = 54.7o (Ref. [5]), and 𝜃2 = 69.4o. The curves in Figure 4b, which is the 
same as in the main text, were obtained using the typical surface energy ratios of ZB GaAs planes 
(calculated, for example, in Refs.S6-S8): 𝛾(111𝐵) 𝛾(110) = 0.865,  𝛾(211) 𝛾(110) = 1.16, assuming 
𝛾𝑖 𝛾(110) = 0.5. The surface energy of the (211) family facets should be larger than that of the 
(110) family facets, which explains why hexahedral NWs grown in circular openings are restricted 
by six (110) side facets. On the other hand, tapered NMs have a smaller surface area of the lowest 
energy (111)B top facets. The surface energy of tapered NMs with three inclined facets, as in 
Figure S5a (the experimentally observed shape) is increased due to the additional surface and 
interfacial energy of the NM corner. This term is dominant for small heights 𝐻 and suppresses 
tapering of such NMs in the initial growth stage. Further evolution of the NM shape with its height 
strongly depends on the length of rectangular trench 𝐿0. According to Figure 4b, short NMs with 𝐿0
~𝑊 should become rectangular, while longer NMs with 𝐿0 >  2000 nm should taper after 𝐻~80 
nm and remain tapered for any height of interest. This explains the experimentally observed shape 
of NMs shown in Figure S5a on surface energetic grounds.           

5. Transport-limited growth rates of NWs and NMs 
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Figure S6. Growth kinetics of GaAs NMs and NWs. (a) Experimental data (symbols) and fits 
within the model (lines) for the time dependences of height 𝐻, width 𝑊, and volume per unit length 
𝑆 of the NMs grown in arrays of the different pitches 𝑃 shown in the legend and the three different 
nominal widths 𝑊0 = 40, 80 and 140 nm. (b) Height, diameter, and (c) volume of NWs grown in 
holes of different nominal diameters 𝐷0 shown in the legend. (c) Superlinear for NWs and sublinear 
for NMs evolution of height with time for similar nominal size (𝑊0=80 nm for NMs, 𝐷0=80 nm 
for NWs). In all graphs, zero height corresponds to the mask level. 

Growth kinetics for NMs and NWs are fully described in Fig. S6. The symbols in Figure 
S6a show the time evolution of the NM widths (𝑊) and heights (𝐻), and volumes per unit 
length (𝑆) for different nominal widths (𝑊0) and pitches (𝑃) of the slits. The volume per 
unit length not only increases as the height, but also shows the evidence that bigger 
structures incorporate more material.  In Fig. S6b, the symbols show the time evolution of 
diameters, heights and volumes of NWs at a fixed pitch of 750 nm. As no pitch-dependence 
has been observed for NMs, only one pitch has been considered for the analysis of NWs. 
The diameters follow the same trend as for NMs, where an initial increase reaches 
saturation after ~200 s.
We first consider the transport-limited axial growth rate of hexahedral NWs restricted by 
six equivalent vertical (110) facets of length 𝑊 3 and height 𝐻. The growth is assumed 
to proceed under As-rich conditions, as usual in modeling the SAE process or VLS growth 
of III-V NWs[9]. The stationary diffusion equation for the surface concentration of Ga 
adatoms 𝑛𝑓 on each sidewall facet is given byS6:

𝐷𝑓
𝑑2𝑛𝑓

𝑑𝑧2 +𝐼 ―
𝑛𝑓

𝜏𝑓
= 0, 

𝑑𝑛𝑓

𝑑𝑧 |
𝑧=0

= 0,  𝑛𝑓(𝑧 = 𝐻) = 𝑛∗.                                                                               (S8)

Here, 𝑧 is the vertical distance, 𝐷𝑓 is the surface diffusion coefficient, 𝜏𝑓 is the characteristic 
desorption time and 𝐼 is the flux of Ga atoms per unit area per unit time in nm-2s-1. The 
boundary condition at the NW base (𝑧 = 0) corresponds to zero diffusion flux from the 
mask surface. The second boundary condition at the NW top equates the concentration of 
sidewall adatoms at 𝑧 = 𝐻 to the unknown adatom concentration on the top facet 𝑛∗. 
Solving Equation (S8), we calculate the diffusion flux of Ga adatoms per unit length per 
unit time:
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𝑗 = ― 𝐷𝑓
𝑑𝑛𝑓

𝑑𝑧 |
𝑧=𝐻

.                                                                                                     (S9)

The result is given by:

𝑗 = 𝐼𝜆𝑓𝑡𝑎𝑛ℎ 𝐻
𝜆𝑓

1 ― 𝑛∗

𝐼𝜏𝑓
,                                                                                    (S10)

with 𝜆𝑓 = 𝐷𝑓𝜏𝑓 as the desorption-limited diffusion length of adatoms on the (110) NW 
sidewalls. It can be shown that the use of a more general boundary condition at the NW top 
of the Kramers type[9] modifies the value of the unknown 𝑛∗,  but does not change the form 
of Equation (S10). 
The diffusion-induced contribution to the axial growth rate of hexahedral NW having the 
volume ( 3 2)𝑊2𝐻 at a constant width 𝑊 is obtained from:
1
Ω

3
2 𝑊2 𝑑𝐻

𝑑𝑡 𝑑𝑖𝑓𝑓
=

6𝑊

3 𝑗,                                                                                         (S11)

where Ω is the elementary volume per GaAs pair in solid. Inserting Equation (S10) into 
Equation (S11) leads to:

𝑑𝐻
𝑑𝑡 𝑑𝑖𝑓𝑓

= 𝑣2𝜆𝑓

𝑅 𝑡𝑎𝑛ℎ 𝐻
𝜆𝑓

1 ― 𝑛∗

𝐼𝜏𝑓
,  𝑅 = 𝑊

2 .                                                        (S12)

Adding the direct impingement term:
𝑑𝐻
𝑑𝑡 𝑑𝑖𝑟

= 𝑣                                                                                                               (S13)    

to Equation (S12), the transport-limited growth rate of hexahedral NWs is obtained in the 
form:
1
𝑣

𝑑𝐻
𝑑𝑡 𝑡𝑟

= 1 + 2𝜆𝑓

𝑅 𝑡𝑎𝑛ℎ 𝐻
𝜆𝑓

1 ― 𝑛∗

𝐼𝜏𝑓
,                                                                   (S14)

with 𝑅 as the equivalent radius of hexahedral NW. 
The transport-limited growth rate of long enough NMs in the geometry shown in Figure 
S5a is obtained as follows. The NMs have five facets, two of which are long and vertical, 
and the other three are short and inclined by the angles 𝜃1 and 𝜃2 to the vertical. Repeating 
the same calculations as above, the diffusion flux 𝑗𝑣 originating from the long vertical facets 
is obtained in the form of Equation (S13): 

𝑗𝑣 = 𝐼𝜆𝑓𝑡𝑎𝑛ℎ 𝐻
𝜆𝑓

1 ― 𝑛∗

𝐼𝜏𝑓
.                                                                                   (S15)

The diffusion fluxes 𝑗𝜃1 and 𝑗𝜃2 originating from the inclined facets with angles 𝜃1 and 𝜃2 
to the vertical are given by:

𝑗𝜃1 = 𝐼𝜆𝑓𝑡𝑎𝑛ℎ 𝐻
𝜆𝑓𝑐𝑜𝑠𝜃1

1 ― 𝑛∗

𝐼𝜏𝑓
, 

𝑗𝜃2 = 𝐼𝜆𝑓𝑡𝑎𝑛ℎ 𝐻
𝜆𝑓𝑐𝑜𝑠𝜃2

1 ― 𝑛∗

𝐼𝜏𝑓
,                                                                          (S16)

because the maximum distances along the inclined facets corresponding to the NW top 
equal 𝐻 𝑐𝑜𝑠𝜃1 and 𝐻 𝑐𝑜𝑠𝜃2. The total length of the two vertical facets at the NM top 
equals 2𝐿 = 2[𝐿0 ―𝐻(𝑡𝑎𝑛𝜃1 +𝑡𝑎𝑛𝜃2)]. The length of the 𝜃1 facet equal 𝑊, and the total 
length of the two 𝜃2 facets equals 𝑊 sin (  2 ). Differentiation of the NM volume given 
by Equation (S1) at 𝑊 = 𝑐𝑜𝑛𝑠𝑡 equals the total diffusion current from the NM sidewalls to 
the top: 

𝑊 𝐿0 ― 𝐻(𝑡𝑎𝑛𝜃1 + 𝑡𝑎𝑛𝜃2) + 𝑊
4

𝑐𝑜𝑡𝑎𝑛(  2 )
𝑐𝑜𝑠𝜃2

1
𝑣

𝑑𝐻
𝑑𝑡 𝑑𝑖𝑓𝑓

= 𝜆𝑓 1 ― 𝑛∗

𝐼𝜏𝑓

2(𝐿0 ― 𝐻(𝑡𝑎𝑛𝜃1 + 𝑡𝑎𝑛𝜃2))𝑡𝑎𝑛ℎ 𝐻
𝜆𝑓

+ 𝑊𝑡𝑎𝑛ℎ 𝐻
𝜆𝑓𝑐𝑜𝑠𝜃1

+ 𝑊
sin ( 𝛼 2 )

𝑡𝑎𝑛ℎ 𝐻
𝜆𝑓𝑐𝑜𝑠𝜃2

.    

(S17) 
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The total transport-limited vertical growth rate of NMs is obtained after adding the direct 
impingement term given by Equation (S13).                                         
In the limit 𝐻 𝜆𝑓≪1, corresponding to the absence of desorption from the side facets, and 
for long enough NMs with 𝐻 𝐿0≪1 and 𝑊 𝐿0≪1, this yields the transport-limited growth 
rate of the form:
1
𝑣

𝑑𝐻
𝑑𝑡 𝑡𝑟

= 1 + 2𝐻
𝑊 1 + 𝑊

2𝐿0

1
𝑐𝑜𝑠𝜃1

+ 1

𝑠𝑖𝑛 (  2 )
― cotan (  2 )

2
1

𝑐𝑜𝑠𝜃2
1 ― 𝑛∗

𝐼𝜏𝑓
.       (S18)

At very large 𝐿0 = 20 m, as in our experiments, the edge terms in Equation (S17) can be 
safely neglected. This reduces Equation (S20) to the transport-limited vertical growth rate 
of infinitely long NMs (at 𝐿0→∞), considered in the main text: 
1
𝑣

𝑑𝐻
𝑑𝑡 𝑡𝑟

= 1 + 2𝜆𝑓

𝑊 𝑡𝑎𝑛ℎ 𝐻
𝜆𝑓

1 ― 𝑛∗

𝐼𝜏𝑓
.                                                                   (S19)

Therefore, the transport-limited growth rates of symmetrical NWs and infinitely long NMs, 
given by Equations (S14) and (S19) are identical if we replace the NM width 𝑊 to the 
equivalent NW radius 𝑅 = 𝑊/2. In particular, both equations are reduced to:
1
𝑣

𝑑𝐻
𝑑𝑡 𝑡𝑟

= 1 + 2𝐻
𝑊 1 ― 𝑛∗

𝐼𝜏𝑓
.                                                                                    (S20) 

in the absence of desorption from the NW/NM side facets. 

Figure S7. Time evolution of height for GaAs NMs grown in rectangular trenches of a fixed 
nominal width 𝑊0 =  80 nm and different lengths shown in the legend, compared to GaAs NWs 
grown in circular openings under the same conditions (the upper brown line). The transition 
from super-linear to sublinear behavior occurs for larger lengths. 

The transport-limited growth rate of NMs given by Equation (S18) decreases with 𝑊 𝐿0, 
because the 𝑊 𝐿0 term in the bracket is positive. This corresponds to a decrease of the 
parameter 𝑏 in the self-consistent growth model considered in the main text and hereinafter. 
The decrease of the growth rate for larger lengths is explained by the fact that the diffusion 
fluxes from the short edge facets of a NM become negligibly small in comparison with the 



S9

diffusion fluxes from the long sides at 𝑊 𝐿0→0, but give a non-vanishing contribution for 
shorter NMs. This qualitatively explains the data shown in Figure S7, where the time 
evolution of the NM heights of a fixed width occurs for larger lengths 𝐿0 or smaller aspect 
ratios 𝑊 𝐿0. For the sake of clarity, data in Figure S7 are qualitative and not conclusive, 
as the structures that are taken into consideration do not grow in regular arrays in the same 
manner as the NWs and NMs presented in this work.       

6. Nucleation-limited growth rate and self-consistent growth equation 
Most III-V NWs grow in the so-called mononuclear regime[9-15], in which the NW growth 
rate is determined by the waiting time between two successive nucleation events rather than 
by the lateral growth rate of two-dimensional (2D) island. In this mode, the monolayer 
propagation is almost instantaneous. We assume that the mononuclear growth regime 
occurs also in NMs after they grow out of the trenches. This assumption is supported by 
the fact that we never observe any steps on the top facets of such NMs, similarly to ZB III-
V NWs grown by the vapor-liquid-solid method[5,16].
The nucleation-limited vertical growth rate of any structure in the mononuclear regime 
equals the nucleation rate 𝐽 times the area 𝑆 available for nucleation[9-12,14,15]: 

𝑑𝐻
𝑑𝑡 𝑛𝑢𝑐𝑙

= ℎ𝑆𝐽 𝑛∗

𝑛𝑒𝑞
,                                                                                       (S21)          

with ℎ as the height of a monolayer. The nucleation rate depends on supersaturation on the 
top facet 𝜑∗ = 𝑛∗ 𝑛𝑒𝑞, with 𝑛𝑒𝑞 as the equilibrium concentration of Ga adatoms. In 
classical nucleation theory, the nucleation rate is given by the Zeldovich formula: 

𝐽 𝑛∗

𝑛𝑒𝑞
= 𝐽0

𝑛∗

𝑛𝑒𝑞
𝑒𝑥𝑝 ― 𝐴

ln ( 𝑛∗ 𝑛𝑒𝑞 )
,                                                                 (S22)

which is valid for nucleation from liquid in the vapor-liquid-solid NWs[9-12,14] as well as for 
nucleation from 2D sea of adatoms in the vapor-solid growth[15]. The pre-exponential factor 
in this expression depends weakly on supersaturation. The exponential dependence is 
extremely steep, because the surface (or edge) energy constant 𝐴 is much larger than unity. 
The value of 𝐴 related to the surface energy of the island perimeter of monolayer height in 
thermal units, as discussed in detail below. 
The transport-limited growth rate of NMs or NWs given by Equation (S19) contains the 
unknown 𝑛∗, which also enters the nucleation-limited growth rate given by Equation (S21). 
In the self-consistent approach[9,10,17], this uncertainty is circumvented using the condition 
that the two growth rates equal each other:

𝑑𝐻
𝑑𝑡 𝑡𝑟

= 𝑑𝐻
𝑑𝑡 𝑛𝑢𝑐𝑙

.                                                                                             (S23)

Using Equations (S19) and (S21), (S22), this is equivalent to

1 + 2𝜆𝑓

𝑊 𝑡𝑎𝑛ℎ 𝐻
𝜆𝑓

1 ― 𝑛∗

𝐼𝜏𝑓
= ℎ𝑆𝐽0 𝑛∗ 𝑛𝑒𝑞 𝑒𝑥𝑝 𝐴

ln ( 𝑛∗ 𝑛𝑒𝑞 )

𝑣
,                                 (S24)

with 𝑊 = 𝑅 2 for hexahedral NWs. The steep exponential dependence of the Zeldovich 
nucleation rate on supersaturation allows us to use the asymptotic method of Refs.[9,10] for 
analytical solution of this equation for 𝑛∗. We approximate the nucleation barrier under the 
exponent in the right-hand side of Equation (S24) in the form:

𝐴
ln ( 𝑛∗ 𝑛𝑒𝑞 )≅

𝐴

ln 𝐼𝜏𝑓 𝑛𝑒𝑞 +
𝐴

𝑙𝑛2 𝐼𝜏 𝑛𝑒𝑞 1 ― 𝑛∗

𝐼𝜏𝑓
,                                                    (S25)

and note that 𝐴 𝑙𝑛2 𝑛𝑓 𝑛𝑒𝑞  equals the critical size (the number of GaAs pairs in the 
critical island) of classical nucleation theory at supersaturation 𝜑 = 𝐼𝜏𝑓 𝑛𝑒𝑞: 
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𝑖𝑐 =
𝐴

𝑙𝑛2 𝐼𝜏𝑓 𝑛𝑒𝑞 .                                                                                                   (S26)

Using Equation (S25) in Equation (S24), and introducing the new unknown:

𝑥 = 𝑖𝑐 1 ― 𝑛∗

𝐼𝜏𝑓
,                                                                                                   (S27)

Equation (S24) takes the form:
(𝑎 + 𝑥)𝑒𝑥 = 𝑏,                                                                                                     (S28)
as in the main text. The parameters are given by:

𝑎 =
𝑊𝑖𝑐

2𝜆𝑓𝑡𝑎𝑛ℎ ( 𝐻 𝜆𝑓 ),  𝑏 = ℎ𝑆𝐽 𝐼𝜏𝑓 𝑛𝑒𝑞
𝑣

.                                                                    (S29) 

The parameter 𝑏 contains the nucleation rate at the known supersaturation 𝜑 = 𝐼𝜏𝑓 𝑛𝑒𝑞, 
which is proportional to the vapor flux of group III atoms 𝐼. Clearly, this parameter equals 
the ratio of the nucleation-limited growth rate on top of NMs/NWs over the direct flux of 
group III atoms 𝑣. The NM/NW growth rate is given by
1
𝑣

𝑑𝐻
𝑑𝑡 = 1 +

𝑥
𝑎,                                                                                                          (S30)

where 𝑥 is the solution to Equation (S28). This solution is expressed through the Lambert 
function 𝐹(𝑍) such that 𝐹𝑒𝑥𝑝(𝐹) = 𝑍: 
𝑥 = 𝐹(𝑎𝑒𝑎𝑏) ―𝑎.                                                                                                  (S31)
Substitution of this solution into Equation (S30) leads to the final result given in the main 
text:
1
𝑣

𝑑𝐻
𝑑𝑡 = 𝐹(𝑎𝑒𝑎𝑏)

𝑎 .                                                                                                         (S32)
By definition of the Lambert function, we have 𝐹[𝑎𝑒𝑥𝑝(𝑎)] = 1. Therefore, 𝑑𝐻/𝑑𝑡 = 𝑣 at 
𝑏 = 1. According to Figure 4e, which is the same as in the main text, 𝑑𝐻 𝑑𝑡 𝑣 at 𝑏 > 1 
and 𝑑𝐻 𝑑𝑡 𝑣 at 𝑏 < 1. This result can be understood as follows. When 𝑏 > 1, the 
nucleation-limited growth rate at a given level of vapor supersaturation is higher than the 
direct flux of Ga atoms. This difference is compensated by positive diffusion flux of Ga 
adatoms from the NM/NW sidewalls to their tops. Conversely, at  𝑏 < 1 the nucleation-
limited growth rate is lower than the direct flux. Therefore, the excessive Ga adatoms 
should be removed by negative surface diffusion from the NM/NW top to their sidewalls. 
Negative diffusion of group III adatoms was earlier discussed, for example, in Ref.[18] for 
VLS GaAs NWs. However, the dependence of the direction of the adatom diffusion flux 
on the nucleation rate on the top facet was never considered before to our knowledge.     
Equation (S32) in the general case can be integrated only numerically. In this paper, we use 
the simplified growth law which follows from Equation (S32) at 𝑎𝑒𝑥𝑝(𝑎)𝑏 ≫ 1. At 
𝐻 𝜆𝑓≫1, corresponding to the absence of desorption from the NM/NW sidewalls, the 
parameter 𝑎 given by Equation (S29) becomes:

𝑎 = 𝑊𝑖𝑐

2𝐻 .                                                                                                               (S33)
Taking a plausible value of 𝑖𝑐 = 50 and assuming 𝑏 > 0.1, the value of 𝑎𝑒𝑥𝑝(𝑎)𝑏 is larger 
3 for 𝑊 = 100 nm and𝐻 < 1000 nm, while 𝑎 is larger than 2.5. Using the known asymptotic 
behavior of the Lambert function at large 𝑍, 𝐹(𝑍)≅𝑙𝑛𝑍 ― 𝑙𝑛(𝑙𝑛𝑍), and 𝑎 ≫ 1, we obtain      
𝐹(𝑎𝑒𝑎𝑏)

𝑎 ≅1 + 𝑙𝑛𝑏
𝑎 .                                                                                                (S34)

This reduces Equation (S32) to
𝑑𝐻
𝑑𝑡 = 𝑣 1 + 𝛼 𝐻

𝑊
, 𝛼 =

2𝑙𝑛𝑏
𝑖𝑐

,                                                                               (S35)

as in the main text. Figure S8 shows that this approximation is indeed accurate for large 
enough 𝑎.  
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Figure S8. Normalized growth rates versus 𝑎, obtained from Equation (S32) for two 
different 𝑏 shown in the legend (solid lines). Dashed lines show the approximation given 
by Eq. (S34).

Integrating Equation (S35) with the initial condition 𝐻(𝑡 = 𝑡0) = 0, where 𝑡0 is the moment 
of time at which the structure emerges above the mask level, we find:

𝐻 = 𝑊
𝛼 𝑒𝑥𝑝 𝛼𝑣(𝑡 𝑡0)

𝑊
― 1 .                                                                               (S36)                                                                                                        

At 𝛼 > 0, the NW height increases exponentially with time, which is typical for short III-
V NWs[9,18-20]. At 𝛼 < 0, the height evolution is sublinear with a tendency to saturation in 
the large time interpolation, as in our long NMs. As in the general case shown in Figure S6 
the growth is super-linear at 𝑏 > 1 and sublinear at 𝑏 < 1. Equation (S36) is used in the 
main text for fitting the kinetic data for GaAs NMs and NWs with different 𝛼. The values 
of 𝛼 are related to the parameters 𝑏 according to Equation (S35).    
The fitting parameters for Equation S36 are summarized in Table S1. The difference in the 
fitting values of 𝑣 = 0.7 for NMs and 𝑣 = 0.41 ― 0.47 for NWs is not clear at the moment 
and requires further studies. It can be related to different coverages of the surface by the 
NWs and NMs, different local As/Ga ratios and other factors that are not taken into account 
in our Ga-limited growth model. Most importantly, the exponential growth kinetics of NWs 
is well-fitted with positive 𝛼 = 0.5, while fitting the sub-linear growth of NMs necessarily 
requires negative 𝛼.   

Table S1: Fitting parameters for GaAs nanomembranes and nanowires in the simplified growth law of 
Equation S36

Nanomembranes
Nominal width 𝑊0 

(nm)
𝑊 = 𝑐𝑜𝑛𝑠𝑡 (nm) 𝑡0 (s) 𝛼 𝑣 (nm/s)

40 125 80 -0.278 0.71
80 180 80 -0.46 0.71
140 270 60 -1 0.7

Nanowires
Nominal radius 𝑅0

= 𝐷0 2 (nm)
𝑅 = 𝑐𝑜𝑛𝑠𝑡 

(nm)
𝑡0 (s) 𝛼 𝑣

40 70.9 60 0.5 0.41
56 90.9 60 0.5 0.458
69 102.3 60 0.5 0.45
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80 115.7 60 0.5 0.466

7.  Position-dependent nucleation on top of long nanomembranes    

According to our analysis and fits to the kinetic data for MOVPE growth of long GaAs 
NMs versus symmetrical NWs given in the main text, the parameter 𝑏 is larger than unity 
for NWs and smaller than unity for NMs. At the same supersaturation 𝜑 = 𝐼𝜏𝑓 𝑛𝑒𝑞 
corresponding to the identical (100) side facets of NWs and NMs, the decrease of 𝑏 for 
longer NMs can be due (i) smaller nucleation area on top of NMs and (ii) larger surface 
energy constant 𝐴 for islands nucleating on top of NMs, or a combination of these two 
factors. Indeed, from Equations (S29) and (S22) (at 𝑛∗ = 𝐼𝜏𝑓) we have:

𝑏 =
𝑆

𝑆0
𝑒𝑥𝑝 ― 𝐴

𝑙𝑛𝜑
, 𝑆0 = Ω

ℎ
𝐼

𝐽0(𝜑)≅𝑐𝑜𝑛𝑠𝑡.                                                         (S37)

Therefore: 

𝑏 ∝ 𝑆𝑒𝑥𝑝 ― 𝐴
𝑙𝑛𝜑

                                                                                                (S38)

is primarily determined by 𝑆 and 𝐴, and increases for larger 𝑆 and smaller 𝐴. 

Figure S9. Illustration of the corner nucleation on top of symmetrical NWs and asymmetrical NMs. It is 
assumed that all islands nucleate with the (110) family facets and the maximum percentage of the outer 
facets. NWs have six equivalent nucleation cites for nucleation of trapezoid 2D islands of monolayer 
height ℎ, restricted by vertical (110) facets. The surface energy of inner facets 𝛾∗ may be larger than 
𝛾(110) due to surface passivation by the excessive As atoms on the NW/NM top. NMs have five corners 
for nucleation of monolayer islands with (110) facets of shapes (1), (2) and (3). The tapered outer facets 
of these islands are shown in red. 𝑟 is the linear size of the critical islands nucleated on top of NWs and 
NMs in position (1). 

If nucleation of 2D islands of identical shape (at 𝐴 = 𝑐𝑜𝑛𝑠𝑡) were enabled on the whole top facets 
of NWs and NMs or along their perimeter, the exponential factor in Equation (38) would be the 
same for NWs and NMs, while the nucleation area 𝑆 would be much larger for long NMs. This 
would lead to a higher growth rate and hence larger height of NMs in comparison with NWs, 
which contradicts our experimental observations. Furthermore, nucleation of top of 20 m long 
NMs would probably become poly-nuclear. This would further enhance the vertical growth rate 
of NMs, because poly-nuclear growth is faster than mononuclear[10,11]. We therefore consider the 
nucleation scenarios shown in Figure S9, where 2D islands nucleate at the corners of NMs. This 
picture is similar to VLS GaAs NWs[13]. In the SAE process, the corner nucleation may be due 
several reasons. First, the surface concentration of Ga adatoms may be higher at the corners. 
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Second, surface passivation of inner facets by the excessive As atoms accumulated at the NM top, 
may lead to 𝛾∗ > 𝛾(110), where 𝛾(110) is the surface energy of unpassivated (110) planes. Third, 
and most important, tapered geometry of NMs can be preserved only when 2D islands nucleate 
with tapered facets, in which case the most probable nucleation cite is the NM corner[16]. Tapered 
facets are longer than vertical, which increases the parameter 𝐴 for NMs relative to NWs.
Considering the geometries of 2D islands restricted by the (110) facets with the lowest surface 
energy, and the maximum percentage of outer facets, as in Figure 4b, we note that their formation 
energy in thermal units of 𝑘𝐵𝑇 can be presented in the form[15]:         
𝐹(𝑖) = ― 𝑙𝑛(𝜑)𝑖 + 2 𝐴𝑖                                                                                     (S39)
for any island shape, with a shape-dependent surface energy constant 𝐴. The first term corresponds 
to the energetically favorable decrease of chemical potential of 𝑖 GaAs pairs in the vapor-solid 
phase transition driven by the supersaturation 𝜑. The second term stands for the energetically 
unfavorable formation of the island surface. Maximizing this in 𝑖, the critical size and the 
nucleation barrier are obtained in the form  𝑖𝑐 = 𝐴 𝑙𝑛2𝜑 and 𝐹𝑐 = 𝐹(𝑖𝑐) = 𝐴 𝑙𝑛𝜑, as in Equations 
(S26), (S22). The number of GaAs pairs in the island is related to its surface energy 𝑠 according 
to:
Ω𝑖 = 𝑠(𝑟)ℎ,                                                                                                            (S40)
where 𝑟 is a linear size of the island.
The shape of 2D island nucleating on top of symmetrical NWs is regular trapezoid with side 𝑟, 
restricted by four equivalent (110) facets. For nucleation at the corner of NMs in position (1) in 
Figure S9, the island shape is triangle with sides 𝑟, 3𝑟 and 2𝑟, with the tapered side 3𝑟 inclined 
by the angle 𝜃1 to the vertical direction. Assuming 𝑟 ≫ ℎ, which is essential for use of macroscopic 
model for the island shapes, the surface area of the two islands is identical:   

𝑠(𝑟) = 3
2 𝑟2.                                                                                                           (S41)

However, the surface area of lateral facets of the NM island is noticeably larger due to tapering. 
Calculation of the surface energy terms for the NW and NM islands readily gives:

𝐹𝑁𝑊
𝑠 (𝑖) = 2

(𝛾(110) 𝛾∗)
𝑘𝐵𝑇

2

3
𝛺ℎ

1 2
𝑖1/2.                                                                  (S42)

𝐹𝑁𝑀
𝑠 (𝑖) = 2

(𝑐𝛾(110) 𝛾∗)
𝑘𝐵𝑇

2

3
𝛺ℎ

1 2
𝑖1/2, 𝑐 = 1

2 1 + 3
𝑐𝑜𝑠𝜃1

.                                    (S43)

Comparing these expressions with Equation (S39), we find the surface energy constants for NWs 
and NMs:

𝐴𝑁𝑊 =
2

3𝛺ℎ 𝛾(110) 𝛾∗

𝑘𝐵𝑇

2
,                                                                                       (S44)

𝐴𝑁𝑀 =
2

3𝛺ℎ 𝑐𝛾(110) 𝛾∗

𝑘𝐵𝑇

2
,                                                                                      (S45)

The ratio of the two constants is given by:
𝐴𝑁𝑀

𝐴𝑁𝑊
= 𝑐𝛾(110) 𝛾∗

𝛾(110) 𝛾∗

2
.                                                                                                 (S46)

At 𝜃1 = 54.3o, the constant 𝑐 in Equation (S43) equals 2, yielding 𝐴𝑁𝑀 𝐴𝑁𝑊  2.17 at 
 𝛾(110) = 0.9𝛾∗. Therefore, the surface energy constant for islands nucleating on top of NMs is 
more than two times larger than for NWs. It is easy to show that Equation (S46) holds for all the 
island shapes shown in Figure S9, where 𝑐 is noticeably larger than unity. Consequently, the 
nucleation rate of monolayer islands on top of NMs is many orders of magnitude lower than in 
NWs. The suppression of the nucleation rate originates from the tapered shape of islands 
nucleating on top of tapered NMs, in contrast to vertical NWs. Using Equations (S37), (S35), the 
parameter 𝛼, which determines the direction of Ga diffusion flux, can be presented in the form:
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𝛼 = 2𝑙𝑛𝜑 𝑙𝑛𝜑
𝐴

𝑙𝑛 𝑆
𝑆0

― 1 .                                                                                      (S47)

Therefore, increasing the 𝐴 value is responsible for changing the sign of 𝛼 from positive in NWs 
to negative in NMs. Taking the parameters of cubic ZB GaAs[8,15]: Ω = 0.0452 nm3, ℎ = 0.326 nm, 
𝛾(110) = 0.798 J/m2 at 𝑇 = 800 oC, we obtain 𝐴𝑁𝑊 = 214. For the fitting value of 𝛼𝑁𝑊 = 0.5, 
obtained from modeling of the super-linear growth kinetics of NWs, Equation (S46) gives 
ln 𝑆𝑁𝑊 𝑆0 = 70.4. For similar values of ln 𝑆𝑁𝑀 𝑆0   for NMs, Equation (S47) leads to the 
estimate 𝛼𝑁𝑀~ ― 1, which corresponds to the fitting values for NMs given in the main text.  

In conclusion, we have explained the observed tapered shape of GaAs NMs grown in 
rectangular trenches elongated in the <11-2> direction. Tapering occurs due to the substitution of 
vertical (211) facets by the lower energy (110) facets, which becomes energetically preferred for 
large enough aspect ratios of the NMs. The diffusion-induced Ga-limited vertical growth rate of 
NWs and NMs has been considered in the self-consistent approach, where the unknown surface 
concentration of Ga adatoms at the top of the structures is related to the nucleation-limited growth 
rate in the mononuclear regime. We have shown that the nucleation rate on top of long tapered 
NMs is much lower than on top of symmetrical hexahedral NWs with vertical sidewalls. 
Insufficient nucleation rate of tapered islands on top of NMs redirects the diffusion flux of Ga 
adatoms from the NM top to their sidewalls, with subsequent evaporation. Consequently, the NM 
height evolves sub-linearly with time, in contrast to the exponential increase of the NW height. 
We believe that the established relationship between the direction of the diffusion flux and the 
position and shape-dependent nucleation rate on top of the structures has far-reaching implications 
in crystal growth in genera and will be useful for morphological tuning of a wide range of 
nanostructures in different material systems and epitaxy techniques.          
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