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Supplementary methods 

1. A log-link model for sparse compartments        

A simpler log-link model was included for pentamer-compartment categories with few observed SNVs. For 

instance, certain sequence contexts that are rare in promoters. For this model we estimated the effect of each 

covariate independently (no multiple regression), and multiplied the odds ratios to obtain the probability of not 

observing an SNV: 

𝑆𝑁𝑉ˇ~N-6* N-5*N-4*N-3* N3* N4* N5* N6* local_mutation_rate 

The likelihood of this model was then also compared to the case of a constant mutation rate (one parameter) 

within that category of sites. The fraction of the genome fit best by each model in the held-out 50% of sites is 

shown in Supplementary Figure 11. 

2. Application of an infinite sites model to single genomic positions 

Assuming constant mutation rate 𝜇 along a particular lineage of length 𝑡, the infinite-sites model states that the 

number of mutations in that lineage will be 𝑃𝑜𝑖𝑠(𝜇𝑡). Let 𝑆 be the number of mutations in the genealogy of a 

sample of individuals. It follows that 𝑆 ∼ 𝑃𝑜𝑖𝑠(𝜇𝑇𝑡𝑜𝑡), where 𝑇𝑡𝑜𝑡  is the total length of genealogy, because 

𝑇𝑡𝑜𝑡 is the sum over all branches in the genealogy. However, 𝑇𝑡𝑜𝑡 varies along the genome due to the inherent 

stochasticity of the coalescent process, and is also affected by linkage to selected sites. For a non-recombining 

locus, a category applicable to single sites in the human genome, the variance of S is 𝑉𝑎𝑟(𝑆) = 𝜇𝐸(𝑇𝑡𝑜𝑡) +
𝜇2𝑉𝑎𝑟(𝑇𝑡𝑜𝑡) (Watterson 1975)7. The Poisson approximation is therefore applicable when 𝜇2𝑉𝑎𝑟(𝑇𝑡𝑜𝑡) is 

small. In a large sample from a constant-size population 𝑉𝑎𝑟(𝑆) = 𝜃
∑𝑛−1𝑖=1 1

𝑖
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, where 𝜃 = 4𝑁𝜇, 𝑁 is 

the effective population size, and 𝑛 is the sample size. Since 𝜃 ≪ 1, for large 𝑛, 𝑉𝑎𝑟(𝑆) approaches 𝐸(𝑆) 
and the distribution of 𝑆 becomes approximately Poisson (Ewens 2004, pg. 299)8. Indeed, even the distributions 

of the number of low counts SNVs (singletons, doubletons, etc.) are approximately independent and Poisson 

distributed as the sample size becomes very large9. The variance in 𝑇𝑡𝑜𝑡 is therefore negligible.  

The recent growth of the human population results in genealogies with a greater proportion of 𝑇𝑡𝑜𝑡 residing in 

branches with fewer descendants compared to constant size populations. Summing over a larger number of 

branches with fewer descendants decreases 𝑉𝑎𝑟(𝑇𝑡𝑜𝑡) compared to a constant-sized population, increasing the 

accuracy of the Poisson approximation.  Therefore, for a sample as large as gnomAD v3 (71,702 individuals), we 

can expect 𝑆𝑃𝑜𝑖𝑠(𝜇𝑇𝑡𝑜𝑡). Please see Wakeley et al. (2022) for a detailed investigation into the applicability of 

Poisson models to single sites. 

3. Filtering 

We marked regions and individual sites as low quality based on quality criteria from gnomAD, abnormal density 

of SNV sites, and on suspicious patterns of recurrence. 

More specifically, we classified sites as low quality if Umap100 mappability was below 0.5, if the site 

overlapped with a long (>50 nucleotide) simple repeat, if in a hundred nucleotide window the mean 

ReadPosRankSum was above 1, or if the number of segregating SNVs in a hundred nucleotide window was 

zero. 

After we obtained predicted mutation rates for every site, we noticed that within some rate categories the site 

frequency spectra (SFS) has an abnormally high fraction of high frequency variants. We noticed that this 

problem is context specific. To separate problematic sites for each pair of pentamer and mutation rate we 

calculated fraction of high frequency SNVs [MAF >0.005 and MAF <=0.2] and compared it to the average 



fraction of high frequency SNVs across all mutation types; the pentamer was labeled unreliable if the fraction of 

high frequency sites is 1.5-fold higher than the mutation rate-controlled average (See Supplementary Figure 9). 

Most sites masked this way belong to repetitive contexts like AAATT>T, TTAAA>T, AATAT>A or CTCTA>A 

(Table S3).  

4. Correcting for mutational hotspots 

Comparing the predicted and observed number of rare SNVs shows that some regions have much higher 

mutation densities than expected. While we attributed some of these mutational hotspots to transcription by 

polymerase III, for other regions the biological etiology was unclear. To recalculate the mutation rate in 

hypermutable regions we ran additional logistic regressions among hotpots – 100 nucleotide windows with more 

than 75 rare SNVs. For this regression we used previously estimated mutability and mutation type to predict an 

adjusted hypermutable mutation rate. We applied a similar procedure to adjust for higher mutation rates at 

transcription factor binding sites (TFBS), whereas as with additional variables we used the type of transcription 

factor, distance from the center of the CHIP-seq peak, overlap with a promoter and tissues where the factor is 

active. We provide both adjusted and initial mutation rate predictions. We used an analogous procedure to re-

calibrate mutation rate in contexts that have atypical SFS.              

5. Genomic features for downstream analyses                                                                                              

Chip-seq tracks were downloaded from the Vorontsov et. al.11 and only category A data (highest quality) were 

used. Chip-seq signal from different overlapping TFBS were counted independently (Figure 4). 

DHS tracks were downloaded from ENCODE 
(https://www.encodeproject.org/search/?type=Experiment&assay_title=DNase-seq). We aggregated DHS peaks 

from 4 adult tissues (lung, stomach, leg muscle, brain) to obtain the “adult” DHS track and from 4 

embryonic/fetal tissues (fibroblast, placenta, large intestine, stomach) to obtain the “fetal” DHS track, finally we 

aggregated two tracks from testis to obtain the testis track. In order to obtain peaks private to “fetal” and “adult” 

tissues, we excluded peaks that overlapped between them or with “testis”. Testis, in contrast, includes ubiquitous 

peaks, but using the private testis track does not change our results.  

Annotations of active genes and pseudogenes that are transcribed by polymerase III (tRNA, snRNA, vault RNA, 

RNA component of 7SK nuclear ribonucleoprotein, ribonuclease P RNA component H1, ribosomal RNA, Ro60-

associated Y RNA) were downloaded from HUGO Gene Nomenclature Committee 

(https://www.genenames.org/data/gene-symbol-report/). It has been reported that some ALU repeats are also 

transcribed by polymerase III12, and we downloaded coordinates of such ALU elements from ref. 12.  

We used Ensembl for genic annotations and definition of promoters. We defined promoters as a region 0 to 2 KB 

upstream of the CDS containing the gene. We do not exclude regions that match our definition of promoters for 

more than one transcript.   

6. Demographic inference 

In order to determine whether mutation rate estimates from Roulette are sufficient to capture distortions to the 

site frequency spectrum due to recurrent mutation, we fitted a demographic model and assessed how well it 

matched the observed SFS in each mutation rate bin. We based our demographic model on those presented by 

Gao and Keinan (2016)13 and Gazave et. al., (2014)14. The Gazave model starts with a constant population size, 

followed by two bottlenecks (one of which is the out-of-Africa bottleneck), and ends with a recent population 

growth. Gao and Keinan (2016) used the parameters from Gazave et al. (2014), but re-estimates the parameters 

for the recent exponential growth phase. They conclude that the best demographic model has a faster-than-

exponential growth, with growth speed parameter 𝑏 = 1.12 ( 𝑏 = 1 is equivalent to exponential growth). We 

keep the model from Gao and Keinan (2016), but refit the parameters 𝑏 and the initial growth rate 𝑔, which they 

estimated as 0.0055.  

https://www.genenames.org/data/gene-symbol-report/


We use a Wright-Fisher simulator used in Weghorn et. al., (2019)15 to simulate the site-frequency spectrum a 

dense grid of 𝑏 = [1.1,1.3]  and 𝑔 = [0.005,0.006]. Though this may seem like a narrow range, the final 

population size varies from 0.7 million to 40 million. Here, the log-likelihood is computed as: 

(𝑏, 𝑔) = ∑

56885

𝑖=0

𝐶𝑖 ∗ 𝑙𝑜𝑔𝛦[𝑏, 𝑔], 

where 𝐶𝑖 is the folded synonymous allele counts for non-Finnish Europeans (NFE) in gnomAD v.2.1.1 whole 

exomes dataset and  𝛦[𝑏, 𝑔] is the expected folded SFS given parameters b and g. Under this framework we find 

  that maximizes the above likelihood. 

We utilize the full mutation rate information to find the maximum log-likelihood. For each parameter, we 

simulate the SFS for all the mutation rate bins and calculate the log-likelihood for each mutation rate bin. Then, 

we sum up the log-likelihood over the bins and find the growth parameters that maximizes this summed 

likelihood. 

Then, to compare how well the SFS fits within different possible mutation rate bins we re-fit μ using the 

maximum likelihood demographic parameters. We do this for all Roulette bins used in other analyses, as well as 

for low and high-rate defined as [1.3e-09, 3e-09] and [1e-07, 2.8e- 07]. The Wright-Fisher simulations allow for 

recurrent mutation, so the SFS changes shape as the mutation rate increases. We measure the fit to the shape of 

the SFS by calculating the likelihood conditional on sites being polymorphic by removing the zero bin and 

normalizing the remaining expected SFS. We evaluate the information added by Roulette’s fine-scale mutation 

rate estimates by comparing the conditional likelihoods of the low and high-rate fits to the μ fit specifically to 

that bin. 

To evaluate the information added to demographic modeling by high rate sites we compute the average per-

polymorphism contribution to the log-likelihood. We calculate the likelihood using the first 40 entries of the SFS 

under a model of pure exponential growth with recurrent mutation (Wakeley et al. 2022). As an example, we use 

the best fitting parameter 𝛽 = 𝑁0
𝑟

𝑛
≈ 6 to the rare SFS in the gnomAD v2 data, where 𝑁0is the current 

population size, 𝑟 is the per-generation growth rate, and 𝑛 is the sample size. The parameter 𝜃0 = 4𝑁0𝜇 was 

matched to estimates in Roulette bins to provide comparison points at 3e-09, 3e-08, and 3e-07. 
 

7. Estimating fraction of ancestral variants in training dataset 
 

When fitting Roulette we assumed that alternative alleles with frequency < 0.001 were derived and therefore 

represented mutation events from the reference to the alternative state. This assumption can be violated if an 

alternative allele observed at frequency x is really an ancestral allele at frequency 1-x.  In order to bound the 

fraction of rare variants (MAF < 0.001) used in training that are ancestral, we used the demographic fit of non-

Finnish Europeans (NFE) mentioned above. We simulated the unfolded SFS of a high mutation rate class (3e-07 

mutations per site per generation) using the Wright-Fisher simulator used for the demographic analysis. 

However, the gnomAD v3 dataset used to fit Roulette includes individuals with ancestry labels other than NFE, 

most of whom are of African descent. Since it was not feasible to fit another, more complex, demographic 

history, we used simulations of an equilibrium  population to capture a greater range of potential SFS. The 

probability the minor allele is ancestral will be greatest for the highest frequency under consideration, so we 

report values for 0.001. For the high mutation rate class, we get that 1.25*10-5 and 3.09*10-5 of the rare variants 

are ancestral in NFEs and in equilibrium population, respectively. 
                                                                                                         
8. The distribution of quality metrics in hypermutable gene classes 
 

To evaluate variants within hypermutable regions we used three quality metrics provided by gnomAD. Allelic 

balance is determined by the relative count of reads with the alternative and reference alleles. This should be 

concentrated around 50% for true germline variants, while variants representing somatic mutations will show up 



at frequencies <50% for the derived allele. We also examined mapping quality scores, which reflect the relative 

mapping likelihoods of alternative versus reference reads, in order to diagnose mis-mapping artifacts. These are 

shown in Supplementary Figure 2 and indicate that mapping quality is better in RNU and tRNA genes compared 

to the genomic background on chromosome 21, while scores in IGK are worse. Finally, we look at an overall 

allele-specific variant quality score (AS_VQSLOD) to capture any other factors. No de novo mutations were 

reported in IGK genes, consistent with little hypermutability.                                                                                   

 

Supplementary Figures 

 

 
Supplementary Figure 1.  Quality metrics for hypermutable regions. a) The allelic balance within RNU and 

tRNA genes match the control curve for all sites on chromosome 21, while IGK genes deviate substantially from 

the background. b) AS_VQSLOD which is the main metric for the quality of the variant is dramatically 

decreased for IGK.   



 
Supplementary Figure 2. Parental age effect. The best fit for the relationship between the number of 

mutations occurring in tRNA sites and the parental age. The fit is for the exponential dependency on age using 

Poisson regression. While only 104 de novo mutations occurred in tRNA genes, the association between parental 

age and the number of mutations is highly significant (p=9.9*10-5,  results remain significant for the linear 

relationship between age and mutation count: p=5.6*10-3). Only 18 mutations happened in RNU genes making 

analysis of the age effect unreliable. Error bars are 95% confidence intervals for t-statistic.  



 

 

 

Supplementary Figure 3.  Effect of polymerase III transcription 

a,b) The effect of acetylation and pseudo/active gene stratification (according to the HUGO annotation) on the 

SNV number in RNU genes. b) While the vast majority of RNU pseudogenes do not overlap with H3k27ac 

peaks, four out of five RNU pseudogenes with high mutation rate overlap H3k27ac. c) Active transcription 

increases mutation rate across different classes of RNU genes. d) Other classes of Pol III transcript, represented 

by a small number of genes also have elevated mutation rate e) The density of rare SNVs is in line with the 

Roulette predictions in ALU elements that have been predicted to be transcribed by polymerase III.  



 

 
Supplementary Figure 4.  Site frequency spectra (SFS) for sites with different mutation rates and for 

different gene categories. Rare variants on the top left and full SFS to the top right. On the bottom the mutation 

rate distributions for observed SNVs for different gene categories was estimated by fitting the SFS in these genes 

as a mixture of SFS shapes observed in Roulette bins. In contrast to Figure 4 c, d we did not use genome-wide 

mutation rate distribution as a prior. 



 
 

Supplementary Figure 5.  Mutation rate is accelerated at TFBS active in testis 

a) Observed to expected ratio of de novo mutations at TFBS active in different tissues. Distance from the TFBS 

center is shown on top. Error bars show 95% confidence intervals for the ratio of two Poisson variables. b) 

Observed to expected ratio of rare SNVs at TFBS active in different tissues. Panels are stratified by mutation 

type. 
  



 

Supplementary Figure 6.  Mutation rate is accelerated at TFBS active and overlapping multiple 

promoters. We compared observed/expected mutation rate for non- CpG mutations overlapping DHS in testis. 

These TFBS have higher mutation rate if they also overlap multiple promoters (light yellow) instead of a single 

promoter (dark yellow). 

  



 

Supplementary Figure 7.  Correction of mutation rate at TFBS 

Panels show the observed to expected density of rare SNVs at TFBS active in Testis or in other tissues as well as 

whether TFBS do or do not overlap a promoter. Bright colors are reflecting deviation from the model before the 

correction for higher mutability at TFBS, pale colors correspond for corrected values. 
 

  



 

 

Supplementary Figure 8. UV-induced mutations in melanoma. We analyzed TFBS overlapping DHS of 

foreskin melanocytes and measured the rate of TCC>T mutations (major UV-induced mutation type). Mutation 

rates in melanoma samples (ICGC data) differ between TFBS sites overlapping and not overlapping promoters. 

Error bars show 95% Poisson confidence intervals. Results are in line with Mao et al, Nature Comms. 2018 



    

Supplementary Figure 9.  Effect of surrounding nucleotides is varying between the coding strand, the non-

coding strand within genes and intergenic regions 

The figure shows the effect of nucleotides beyond the pentamer on the rate of  AGCAC>A mutations. The effect 

differs between genes and intergenic regions and is strand-dependent within genes. The  AGCAC>A mutation 

type is shown as an example.   



 

 

Supplementary Figure 10.  Filtering pentameric contexts with abnormal patterns of site frequency spectra 

Site frequency spectrum (SFS) is dependent on mutation rate for rare SNVs. For each pair of pentamer and 

predicted mutation rate (shown on top of the panels) we calculated the fraction of high frequency variants (MAF 

>0.005 and MAF <=0.2). We masked the context if it has a proportion of high frequency variants exceeding 

mean for the same mutation rate multiplied by 1.5. We show empirical cumulative distributions for the portion of 

high frequency variants for masked (purple) and non-masked pentamers.    
 

 



 
Supplementary Figure 11. Fraction of the genome where each of four tested models fits best. 
We selected the best of four models on a 50% hold out test for each genomic compartment. 
 

  



 
Supplementary Figure 12. Distributions of mapping quality scores for apparent hypermutable gene 

classes. We show the distribution of MQRankSum scores for SNVs in RNU, tRNA, and IGK genes compared to 

the background distribution from chromosome 21. Distributions were computed from the 1K genomes subset of 

gnomAD v3. 

  



 
Supplementary Figure 13. Distributions of estimated the total coalescent time (Ttotal) across mutation rate 

bins in gnomadV3 for three mutation rate models 




