

Supplementary Materials for

Adenylyl cyclase activating polypeptide reduces phosphorylation and toxicity of the polyglutamine-expanded androgen receptor in spinobulbar muscular atrophy

Maria Josè Polanco, Sara Parodi, Diana Piol, Conor Stack, Mathilde Chivet, Andrea Contestabile, Helen C. Miranda, Patricia M.-J. Lievens, Stefano Espinoza, Tobias Jochum, Anna Rocchi, Christopher Grunseich, Raul R. Gainetdinov, Andrew C. B. Cato, Andrew P. Lieberman, Albert R. La Spada, Fabio Sambataro, Kenneth H. Fischbeck, Illana Gozes, Maria Pennuto*

*Corresponding author. Email: mpennuto@dti.telethon.it

Published 21 December 2016, *Sci. Transl. Med.* **8**, 370ra181 (2016) DOI: 10.1126/scitranslmed.aaf9526

This PDF file includes:

Table S1. List of PACAP analogs and cAMP release in MN-1 cells treated with either PACAP or the indicated PACAP analogs.

Fig. S1. Overexpression of PKA reduces the accumulation of the upper isoform of polyQ-AR.

Fig. S2. PACAP stimulates the release of cAMP in MN-1 cells expressing AR24Q and AR65Q.

Fig. S3. VIP does not modify the accumulation of the upper isoform of polyQ-AR.

Fig. S4. Expression of polyQ-AR in MN-1 cells results in caspase 3 activation.

Fig. S5. Analysis of polyQ-AR phosphorylation upon inhibition of specific cellular phosphatases and kinases.

Fig. S6. Modulation of CDK1 and CDK5 activity does not affect the accumulation of the upper isoform of polyQ-AR.

Fig. S7. Nonexpanded AR and polyQ-AR colocalize with endogenous CDK2 in the absence and presence of androgens in MN-1 and PC12 cells.

Fig. S8. Nonexpanded AR and polyQ-AR colocalize with endogenous CDK2 in the brainstem motor neurons of control and knock-in SBMA mice.

Fig. S9. Nonexpanded AR and polyQ-AR colocalize with endogenous CDK2 in the motor neurons of the lumbar spinal cord of control and knock-in SBMA mice.

Fig. S10. Nonexpanded AR colocalizes with endogenous CDK2 in the quadriceps of control mice.

Fig. S11. Endogenous nonexpanded AR and polyQ-AR colocalize with endogenous CDK2 in control and SBMA patient-derived motor neurons and NPCs.

Fig. S12. Endogenous polyQ-AR colocalizes with endogenous CDK2 in the spinal cord of an SBMA patient.

Fig. S13. Forskolin, PACAP, and the pan-phosphatase inhibitor OA stimulate $p21^{Cip1}$ expression.

Fig. S14. Ser⁹⁶ of AR is conserved throughout evolution.

Fig. S15. Analysis of phosphoresistant polyQ-AR variants.

Fig. S16. Ser⁹⁶ phosphorylation is responsible for the formation of the upper isoform of polyQ-AR.

Fig. S17. Phosphodefective and phosphomimetic substitution of Ser⁹⁶ does not affect polyQ-AR subcellular localization.

Fig. S18. Forskolin and PACAP, and not VIP, reduce polyQ-AR aggregation. Fig. S19. Activation of the AC/PKA signaling increases the turnover of polyQ-AR.

Fig. S20. OA reduces the accumulation of phosphorylated polyQ-AR by inducing degradation through the UPS.

Fig. S21. PACAP induces cAMP production in vivo.

Fig. S22. Effect of intranasal administration of peptide 7 on body weight, food intake, and survival of AR113Q mice.

Fig. S23. Peptide 7 increases the CSA of glycolytic fibers in the skeletal muscle of AR113Q mice and restores the expression of glycolytic genes to normal levels.

Fig. S24. Intranasal administration of peptide 7 decreases polyO-AR

phosphorylation and accumulation in SBMA mice without altering CDK2, $p27^{Kip1}$, and $p57^{Kip2}$ expression levels.

Fig. S25. Data presented for experiments with sample sizes of less than 20.

Table S1. List of PACAP analogs and cAMP release in MN-1 cells treated with either PACAPor the indicated PACAP analogs.

Peptide 1: Stearyl-Lys-Lys-Tyr-Leu-NH₂

Peptide 2: HSDGIFTDSYSRYRKQ-Nle-AVKKYLAAVL-NH2

Peptide 3: HSDAVFTDNYTRLRKQ-Nle-AVKKYLNSILN-NH2

Peptide 4: HSDGIFTDSYSRYRKQ-Nle-AVKKYLAAVLGKRYKQRVKNK-NH2

 $Peptide \ 5: \ ACETYL- HSDGIFTDSYSRYRKQ-Nle-AVKKYLAAVLGKRYKQRVKNK-NH_2$

Peptide 6: ACETYL-HSDGIFTDSYSRYRAQMAVAKYLAAVLGKRYKQRVKNK- PROPYLAMID

Peptide 7: ACETYL-HSDGIFTDSYSRYRAQMAVAKYLAAVLGKRYKQRVKNK-OH

cAMP release in MN-1 cells treated with either PACAP or the indicated PACAP analogs.

EC50 (nM) of PACAP and the PACAP analogs described in Table 1 measured by BRET assay in MN-1 cells expressing AR24Q and AR65Q and treated with either vehicle or DHT (10 nM) for 24 h.

	AR24Q	AR24Q	AR65Q	AR65Q	
	Vehicle	DHT	Vehicle	DHT	
PACAP	0.24	0.23	0.18	0.27	
PEPTIDE 1	630	470	250	387	
PEPTIDE 2	0.38	0.59	0.17	0.26	
PEPTIDE 3	250	290	110	220	
PEPTIDE 4	0.49	0.48	0.32	0.32	
PEPTIDE 5	0.76	0.60	0.71	0.57	
PEPTIDE 6	2.4	2.4	4	3.2	
PEPTIDE 7	0.22	0.34	0.38	0.31	

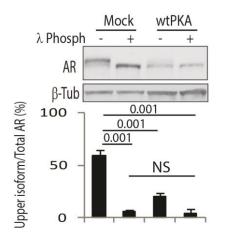
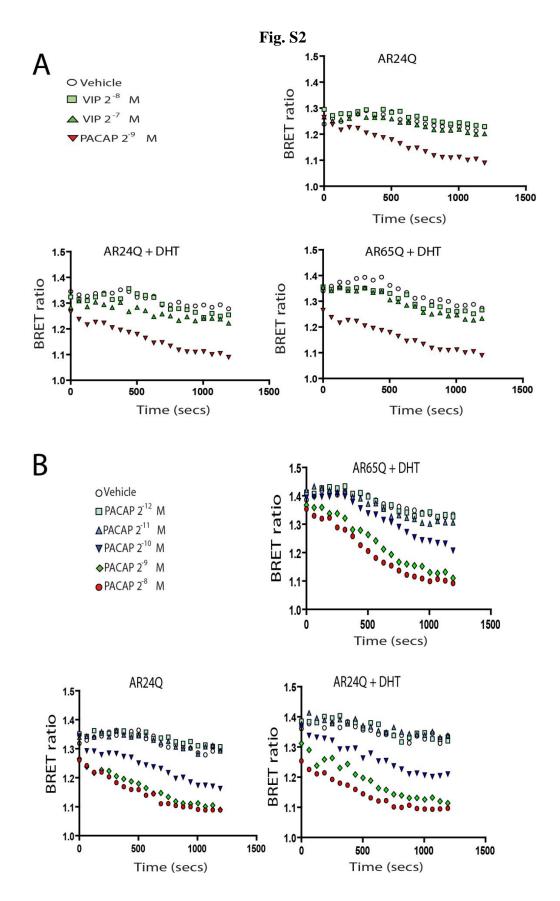
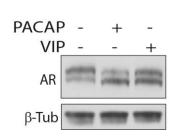


Fig. S1. Overexpression of PKA reduces the accumulation of the upper isoform of polyQ-AR. Western blotting analysis of AR55Q in HEK293T cells transfected with empty vector (Mock) and vector expressing wtPKA. Cell extracts were incubated with λ phosphatase (λ phosph). AR was detected with a specific antibody, and beta-tubulin (β -Tub) was used as loading control. Graph, mean \pm SEM, N = 3 independent experiments. One-way ANOVA. NS, non-significant.

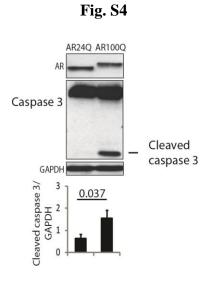
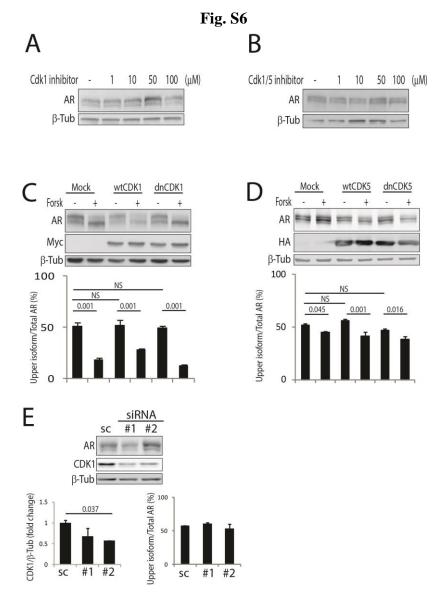

Fig. S2. PACAP stimulates the release of cAMP in MN-1 cells expressing AR24Q and AR65Q. A-B) BRET analysis of cAMP release in the MN-1 cells treated as indicated. PACAP induced cAMP release and its effect was dose-dependent. N = 3 independent experiments.

Fig. S3. VIP does not modify the accumulation of the upper isoform of polyQ-AR.

Western blotting analysis of AR55Q in HEK293T cells treated with PACAP (100 nM) and VIP (100 nM) for 5 h. PACAP, and not VIP, reduced the accumulation of the upper isoform of polyQ-AR. AR was detected with a specific antibody, and beta- tubulin (β -Tub) was used as loading control. *N* = 3 independent experiments.

Fig. S3


Fig. S4. Expression of polyQ-AR in MN-1 cells results in caspase 3 activation.

Western blotting analysis of caspase 3 proteolytic cleavage in MN-1 cells stably expressing either AR24Q or AR100Q treated with DHT (10 nM) for 72 h. AR and caspase 3 were detected with specific antibodies, and GAPDH was used as loading control. Graph, mean \pm SEM, N = 7 independent experiments. Student's t test.

	Fig. S5	5
Phosphatas	se inhibitors	Kinase inhibitors
A PP2A PACAP Fostriecin - 100 500 AR β-Tub		E PI3K inhibitor PACAP - + + LY294002 - + - + AR β-Tub
B PP PACAP Tautomycin - 100 500 AR β-Tub		F PACAP + + + PD98059 - 25 50 - 25 50 (μM) AR β-Tub
C Calcineu PACAP CsA - 0.01 1 AR β-Tub	ırin/PP2B inhibitor + + + - 0.01 1 (μM)	G PACAP - + - + Rapamycin + + AR β-Tub
PACAP FK506 - 0.01 1	rin/PP2B inhibitor + + + - 0.01 1 (μM)	GSK3β inhibitor PACAP + + + Inhibitor VIII - 100 500 - 100 500 (nM) AR β-Tub
		Pan CDK inhibitor PACAP - + - + Roscovitin + + AR B-Tub

Fig. S5. Analysis of polyQ-AR phosphorylation upon inhibition of specific cellular phosphatases and kinases.

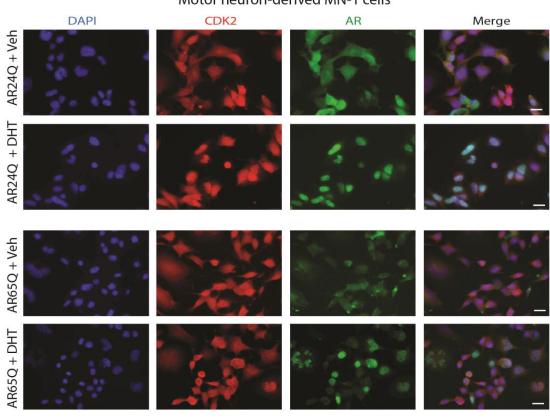

- A-D) Western blotting analysis of AR55Q in HEK293T cells treated with PACAP (100 nM) and specific phosphatase inhibitors: fostriecin (PP2A inhibitor), tautomycin (PP1 inhibitor), and cyclosporine A (CsA) and FK506 (PP2B inhibitors) for 5h. Inhibition of these phosphatases did not alter the accumulation of the upper isoform of polyQ-AR, nor did it block the effect of PACAP.
- E-I) Western blotting analysis of AR55Q in HEK293T cells treated with PACAP (100 nM) and specific kinase inhibitors: LY294002 (40 μ M) (PI3K inhibitor), PD98059 (50 μ M) (ERK1/2 inhibitor), rapamycin (100 nM) (mTOR inhibitor), inhibitor VIII (GSK3 β inhibitor), and roscovitin (20 μ M) (pan-CDK inhibitor) for 5 h. Inhibition of PI3K, ERK1/2, mTOR, and GSK3 β did not modify the accumulation of the upper isoform of polyQ-AR, and it did not block the PACAP effect on polyQ-AR phosphorylation. On the other hand, roscovitin decreased the accumulation of the upper isoform of polyQ-AR, indicating that a CDK is involved in the regulation of polyQ-AR phosphorylation.
- AR was detected with a specific antibody, and beta-tubulin (β -Tub) was used as loading control. N
- = 3 independent experiments.

Fig. S6. Modulation of CDK1 and CDK5 activity does not affect the accumulation of the upper isoform of polyQ-AR.

- A-B) Western blotting analysis of AR55Q in HEK293T cells treated with inhibitors targeting CDK1 and CDK5 for 5 h. Inhibition of either CDK1 or CDK5 did not modify the accumulation of the upper isoform of polyQ-AR. N = 3 independent experiments.
- C) Western blotting analysis in HEK293T cells transfected with vector expressing AR55Q together with empty vector (Mock), and vectors expressing Myc-tagged wtCDK1 and dnCDK1. The cells were treated with either vehicle or forskolin (Forsk, 10 μ M) for 5 h. Graph, mean \pm SEM, N = 3 independent experiments. NS, non-significant.
- D) Western blotting analysis in HEK293T cells transfected with vector expressing AR55Q together with empty vector (Mock), and vectors expressing HA-tagged wtCDK5 and dnCDK5 and treated with forskolin (Forsk, 10 μ M) for 5 h. Graph, mean \pm SEM, N = 3 independent experiments. NS, non-significant.
- E) Western blotting analysis in HEK293T cells expressing AR55Q together with either scrambled (sc) siRNA or two different siRNAs against endogenous CDK1. Graph, mean \pm SD, N = 2 independent experiments.

AR, Myc-tagged CDK1, and HA-tagged CDK5 were detected with specific antibodies, and beta-tubulin (β -Tub) was used as loading control. One-way ANOVA.

Motor neuron-derived MN-1 cells

PC12 cells

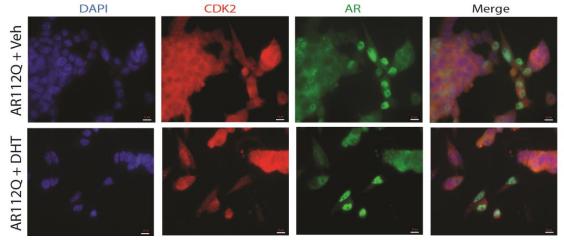
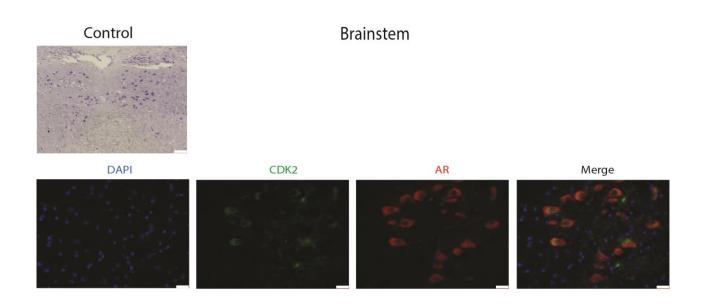
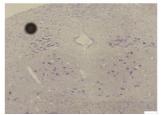




Fig. S7. Nonexpanded AR and polyQ-AR colocalize with endogenous CDK2 in the absence and presence of androgens in MN-1 and PC12 cells.

Immunofluorescence analysis of AR (green), CDK2 (red), and nuclei (blue) in motor neuronderived MN-1 cells stably expressing AR24Q and AR65Q, and doxycycline-inducible PC12 cells stably expressing AR112Q. The MN-1 cells were treated with vehicle (Veh) and DHT (10 nM) for 24 h. The PC12 cells were treated with doxycycline (10 μ g/ml), vehicle (Veh) and DHT (50 μ M) for 72 h. AR and CDK2 were detected with specific antibodies, and nuclei were stained with DAPI. N = 3 independent experiments. Scale bar, MN-1: 20 μ m; PC12: 10 μ m.

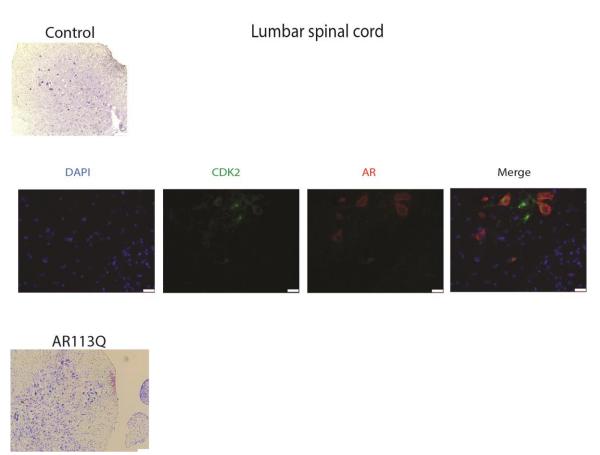


Fig. S8. Nonexpanded AR and polyQ-AR colocalize with endogenous CDK2 in the brainstem motor neurons of control and knock-in SBMA mice.

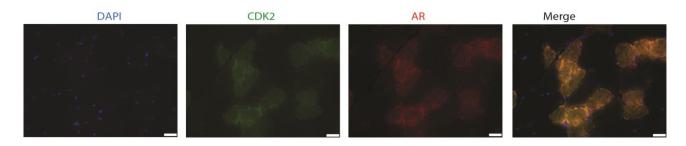
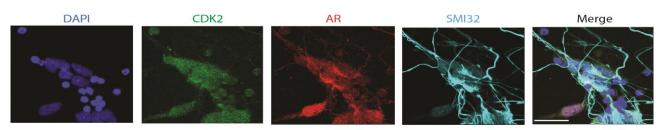
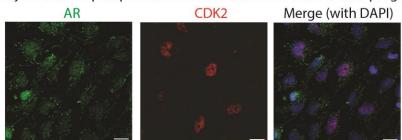
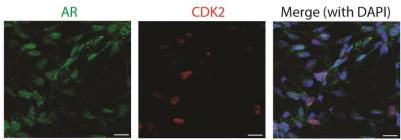

Top panels: Nissl staining. Bottom panels: Immunofluorescence analysis of AR (red), CDK2 (green), and nuclei (DAPI, blue) in the brainstem of 180-day-old control (wild type) and AR113Q mice. Immunofluorescence analysis of AR113Q is shown in the main text. N = 3 independent experiments. Scale bar, 25 µm.

Fig. S9. Nonexpanded AR and polyQ-AR colocalize with endogenous CDK2 in the motor neurons of the lumbar spinal cord of control and knock-in SBMA mice.


Top panels: Nissl staining. Bottom panels: Immunofluorescence analysis of AR (red), CDK2 (green), and nuclei (DAPI, blue) in the lumbar spinal cord of 180-day-old control and AR113Q mice. Immunofluorescence analysis of AR113Q is shown in the main text. N = 3 independent experiments. Scale bar, 25 µm.


Fig. S10. Nonexpanded AR colocalizes with endogenous CDK2 in the quadriceps of control mice.

Immunofluorescence analysis of AR (red), CDK2 (green), and nuclei (DAPI, blue) in the quadriceps muscle of 180-day-old control (wild type) mice. N = 3 independent experiments. Scale bar, 100 μ m.


SBMA patient-derived pluripotent stem cells differentiated to motor neurons

Control subject-derived pluripotent stem cells differentiated to neural progenitor cells

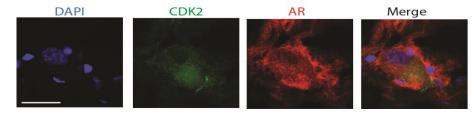
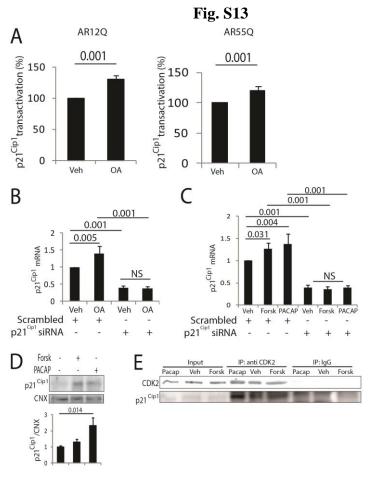

SBMA patient-derived pluripotent stem cells differentiated to neural progenitor cells

Fig. S11. Endogenous nonexpanded AR and polyQ-AR colocalize with endogenous CDK2 in control and SBMA patient-derived motor neurons and NPCs.


Immunofluorescence analysis of endogenous AR and CDK2 in SBMA patient-derived IPSCs differentiated to motor neurons for 7 DIV (days *in vitro*) in the presence of DHT (10 nM), and in control subject- and SBMA patient-derived neural progenitor cells (NPCs). AR (green), CDK2 (red), and the motor neuron marker SMI32 (cyan) were detected with specific antibodies, and nuclei (blue) were stained with DAPI. N = 3 independent experiments. Scale bar, motor neurons: 25 µm; NPCs: 10 µm.

Spinal cord specimen derived from an SBMA patient

Fig. S12. Endogenous polyQ-AR colocalizes with endogenous CDK2 in the spinal cord of an SBMA patient.

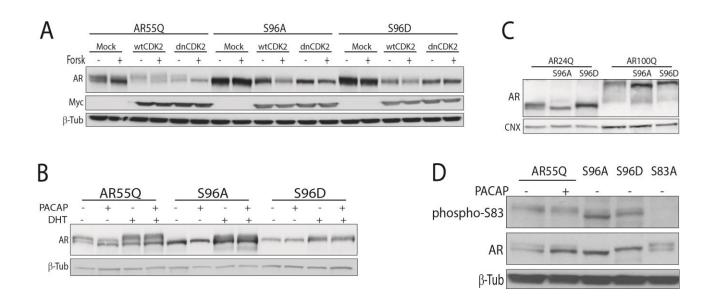
Immunofluorescence analysis of endogenous polyQ-AR and CDK2 in the spinal cord of an SBMA patient. Nuclei were stained with DAPI; CDK2 (green) and AR (red) were detected with specific antibodies. Bar, 25 microns.

Fig. S13. Forskolin, PACAP, and the pan-phosphatase inhibitor OA stimulate p21^{Cip1} expression.

- A) Luciferase assay in HEK293T cells transfected with vectors expressing either non-expanded AR (AR12Q) or polyQ-AR (AR55Q) and the luciferase reporter gene under the control of the p21^{Cip1} promoter. The cells were treated with vehicle (veh) and okadaic acid (OA, 5 nM) for 24 h. Treatment of the cells with OA resulted in activation of the p21^{Cip1} promoter. N = 4 independent experiments.
- B) Real-time PCR analysis of $p21^{Cip1}$ transcript levels normalized to actin in HEK293T cells transfected with either scrambled siRNA or siRNA against $p21^{Cip1}$ and treated with vehicle (veh) and OA (5 nM) for 24 h. N = 4-6 independent experiments.
- C) Real-time PCR analysis of $p21^{Cip1}$ transcript levels normalized to actin in HEK293T cells transfected with either scrambled siRNA or siRNA against $p21^{Cip1}$ and treated with vehicle (veh), forskolin (Forsk, 10 μ M), and PACAP (100 nM) for 24 h. N = 4-6 independent experiments.
- D) Western blotting analysis of $p21^{Cip1}$ expression in MN-1 cells treated with (Forsk, 10 μ M) and PACAP (100 nM) for 7 h. Because $p21^{Cip1}$ has a very short half-life, all samples were treated with MG132 (10 μ M) to increase the basal levels of $p21^{Cip1}$. N = 4 independent experiments.
 - E) Immunoprecipitation (IP) analysis in MN-1 cells expressing AR100Q and treated with MG132, PACAP, and forskolin, as indicated, and immunoblotting analysis of endogenous CDK2 and p21^{Cip1}. Input, 10% of total protein extract. N = 2 independent experiments.

Graph, mean ± SEM, Student's t test (A), one-way ANOVA (B-D). NS, non-significant.

	50	S83	S96	111
Homo sapiens	GASLLLLQQQQQQQQQQQQQ	QQQQQQQETSPRQQQQQQG-	EDG <mark>SP</mark> QAHRRGE	PTGYLVLD
Pan troglodytes	GASLLL-QQQQQQQQQQQQQ	QQQQQQQQQETSPRQQQQQG	EDG <mark>SP</mark> QAHRRGI	PTGYLVLD
Callithrix jacchus	GASLQQQQ	HTSP-QQQQQG	EDG <mark>SP</mark> QVHGRGI	TGYLALD
Macaca mulatta	GASLQQQQQQQQ	ETSPRQQQQQQQQ	GEDG <mark>SP</mark> QAHRRGI	PTGYLVLD
Papio hamadryas	GASLQQQQQQQQQ	ETSPRQQQQQQG-	EDG <mark>SP</mark> QAHRRGI	TGYLVLD
Eulemur fulvus collaris	GARLQQQQ	ETSPPQQQQQQQQ	GEDG <mark>SP</mark> QAQSRGH	PTGYLALD
Saimiri boliviensis	GASLQQQQQQQQPRQ	QQHNRQQQQQTSPRQQQQQG-	EDG <mark>SP</mark> QAHGRGI	PRGYLALD
Rattus norvegicus	GACLQQ	RQETSPRRRRQQ	-HPEDG <mark>SP</mark> QAHIRGT	TGYLALE
Mus musculus	GACLQQRQ	ETSPRRRRQQ	-HTEDG <mark>SP</mark> QAHIRGI	TGYLALE
Oryctolagus cuniculus	GARLQQQQQQQQQQQQQ	QQQQQETSPRQQQQQQQ	[EDG <mark>SP</mark> QAQIRGE	PTGYLALE
Canis lupus familiaris	GAHLQQQQQQQQQQ	ETSPRQQQQQQQQ	GDDG <mark>SP</mark> QAQSRGH	PTGYLALD
Sus scrofa	GARLQQQQLQQQ	ETSPRRQQQQQQQ	QPSEDG <mark>SP</mark> QVQSRGH	TGYLALD
Bos taurus	GARLQQQQ	ETSPRQQQQQQQQ	Q-REDG <mark>SP</mark> QVQSRGI	TGYLALE
Equus caballus	GAHLQQQQ	ETSPR-QQQQQ	GEDG <mark>SP</mark> QTQSRGI	PTGYLALE
Crocuta crocuta	GARLQQQHQHQQQHQH-	ETSPRRQQQQQ	PEDG <mark>SP</mark> QRPSRGI	PTSYLALD


Fig. S14. Ser⁹⁶ of AR is conserved throughout evolution.

Alignment of the AR fragment spanning residues 50 to 111 (human AR, NM_000044) shows that serine 96 is conserved throughout evolution.

Fig. S15. Analysis of phosphoresistant polyQ-AR variants.

A-B) Western blotting analysis of the indicated serine-to-alanine phospho-resistant polyQ-AR variants in HEK293T cells treated with vehicle, forskolin (10 μ M), and PACAP (100 nM) for 5 h. Loss of phosphorylation at the indicated residues (NM_000044) neither mimicked S96A nor it altered forskolin and PACAP effect on the accumulation of the upper AR isoform, suggesting that phosphorylation at these sites is not responsible for the formation of the upper isoform of polyQ-AR. AR was detected with a specific antibody, and beta-tubulin (β -Tub) was used as loading control. Graph, mean \pm SEM, N = 3 independent experiments, One-way ANOVA. NS, non-significant.

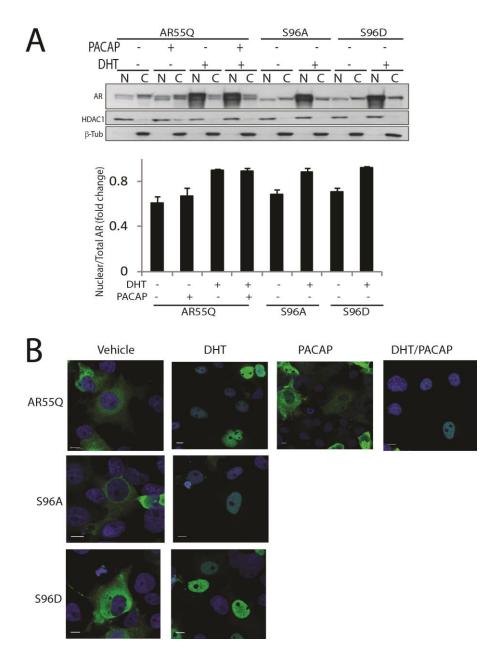
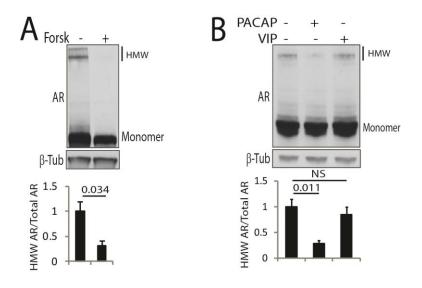
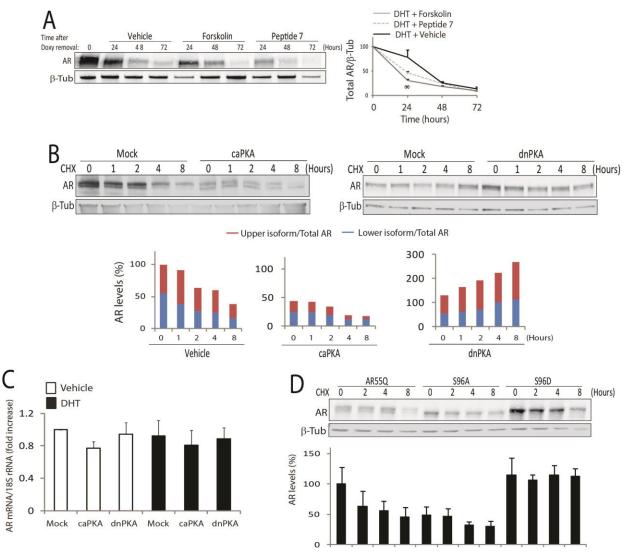


Fig. S16. Ser⁹⁶ phosphorylation is responsible for the formation of the upper isoform of polyQ-AR.

- A-B) Western blotting analysis in HEK293T cells transfected with vectors expressing AR55Q with and without S96A and S96D substitutions together with empty vector (Mock) and vectors expressing wtCDK2 and dnCDK2. The cells were treated with DHT (10 nM), forskolin (Forsk, 10 μM), and PACAP (100 nM) for 5 h. AR55Q-S96A and AR55Q-S96D run as the lower and upper AR isoforms, respectively. Forskolin, PACAP, and overexpression of wtCDK2 and dnCDK2 did not modify the accumulation of the upper isoform of polyQ-AR with alanine and aspartate substitutions at serine 96.
- C) Western blotting analysis in MN-1 cells stably expressing AR24Q and AR100Q with and without S96A and S96D substitutions.
- D) Western blotting analysis in HEK293T cells transfected with vectors expressing AR55Q with and without S96A, S96D, and S83A substitutions and treated with PACAP (100 nM) for 5 h. Substitution of serine 96 with alanine and aspartate did not alter phosphorylation at serine 83.


Serine 83-phosphorylated and total AR were detected with specific antibodies, and beta-tubulin (β -Tub) and calnexin (CNX) were used as loading control. N = 3 independent experiments.


Fig. S17. Phosphodefective and phosphomimetic substitution of Ser⁹⁶ does not affect polyQ-AR subcellular localization.

- A) Nuclear (N) and cytosolic (C) fractions were collected from HEK293T cells transfected with AR55Q, AR55Q-S96A, and AR55Q-S96D phospho-mutants and treated with vehicle, DHT (10 nM), and PACAP (100 nM) for 5 h. Histone deacetylase 1 (HDAC1) and beta-tubulin (β -Tub) were used as nuclear and cytosolic markers, respectively. Graph, mean \pm SEM, N = 4 independent experiments.
- B) Representative images of the indicated AR55Q variants in COS7 cells treated with vehicle, DHT (10 nM), and PACAP (100 nM) for 5 h. Treatment of the cells with DHT resulted in nuclear translocation independently of AR phosphorylation at serine 96. AR was detected with a specific antibody, and nuclei were stained with DAPI. N=? Scale bar, 10 µm.

Fig. S18. Forskolin and PACAP, and not VIP, reduce polyQ-AR aggregation.

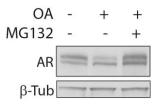

A-B) Western blotting analysis of AR55Q in HEK293T cells treated with forskolin (Forsk, 10 μ M), PACAP (100 nM), and VIP (100 nM) for 5 h. Forskolin and PACAP, but not VIP, reduced the accumulation of polyQ-AR into high molecular weight (HMW) species. AR was detected with a specific antibody, and beta-tubulin (β -Tub) was used as loading control. Graph, mean \pm SEM, N = 3 (A), 2-6 (B) independent experiments. NS, non-significant. Student's t test (A), one-way ANOVA (B).

Fig. S19. Activation of the AC/PKA signaling increases the turnover of polyQ-AR.

- A) Western blotting analysis of AR112Q levels in doxycycline-inducible PC12 cells treated with DHT (10 nM), forskolin (10 μ M), and peptide 7 (100 nM) upon removal of doxycycline (Doxy, 10 μ g/ml). Forskolin and peptide 7 increased the turnover of polyQ-AR. N = 4 independent experiments, * p = 0.001.
- B) Western blotting analysis of AR55Q turnover in HEK293T cells transfected with empty vector (mock) or vector expressing either caPKA or dnPKA, and treated with cycloheximide (CHX, 10 μ g/ml). caPKA increased the turnover of polyQ-AR, and dnPKA had the opposite effect. *N* = 4 independent experiments.
- C) Real-time PCR analysis of the transcript levels of human *AR* in HEK293T cells expressing AR55Q together with either caPKA or dnPKA and normalized to *18S* rRNA. Overexpression of caPKA and dnPKA did not modify the transcript levels of AR55Q. N = 3 independent experiments.
- D) Western blotting analysis of AR55Q, AR55Q-S96A, and AR55Q-S96D in HEK293T treated as in (B). N = 3-4 independent experiments.

AR was detected with a specific antibody, and beta-tubulin (β -Tub) was used as loading control. Graph, mean \pm SEM, one-way ANOVA.

Fig. S20. OA reduces the accumulation of phosphorylated polyQ-AR by inducing degradation through the UPS.

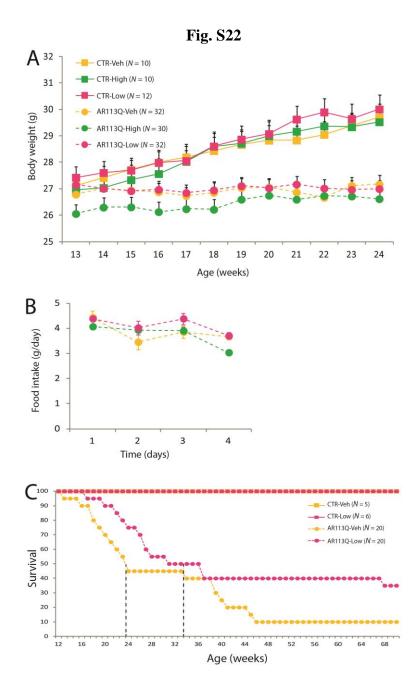
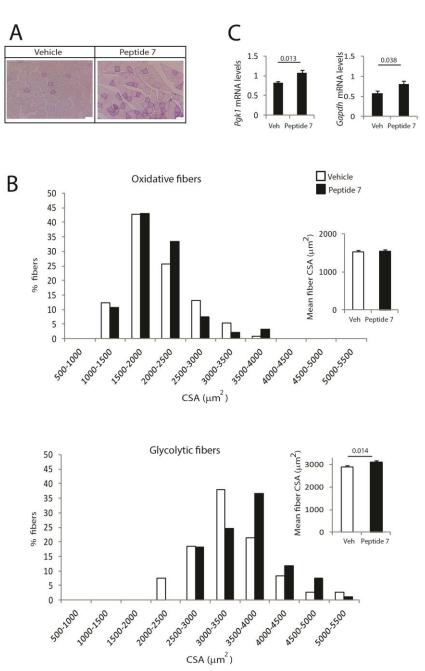

Western blotting analysis of AR55Q in HEK293T cells treated with the proteasome inhibitor MG132 (10 μ M) and okadaic acid (OA, 100 nM) for 5 h. *N* = 3 independent experiments

Fig. S21. PACAP induces cAMP production in vivo.

cAMP level analysis in tissues of control mice treated with PACAP27, PACAP38, peptide 2, and peptide 7. Intranasal administration of peptide 7 increased cAMP levels in the brain and quadriceps muscle. Graph, mean \pm SEM, N = 3 mice for each group.



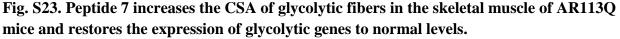


Fig. S22. Effect of intranasal administration of peptide 7 on body weight, food intake, and survival of AR113Q mice.

- A) Body weight analysis of control (CTR, wild type) and AR113Q mice upon intranasal administration of vehicle (yellow), low (2 μg/day, pink), and high (10 μg/day, green) concentrations of peptide 7. The body weight of AR113Q mice was lower compared to agematched control littermates and was not modified by peptide 7. Graph, mean ± SEM.
- B) Food intake analysis of AR113Q mice treated with vehicle and peptide 7 revealed that treatment of AR113Q mice with peptide 7 does not alter feeding behavior. Graph, mean \pm SEM, N = 5 mice for each group.
- C) Kaplan-Meier analysis of survival of control and AR113Q mice treated with either vehicle or low dose of peptide 7 revealed that survival of AR113Q mice is ameliorated by treatment of the mice with low dose of peptide 7 (χ 2-log rank = 3.293, *P* =0.069). Even if the effect of low-dose peptide 7 was not significant, it showed a trend for significance.

- A) NADH representative images from 180-day-old control (CTR, wild type) mice treated as indicated. Bar, 100 μ M.
- B) NADH staining and analysis of the distribution and mean myofiber CSA of quadriceps oxidative and glycolytic fibers of 180-day-old AR113Q mice treated with either vehicle or peptide 7 (10 μg/day). AR113Q veh N=4 mice; AR113Q peptide 7 N=3 mice; number of fibers AR113Q veh N= 237; AR113Q peptide 7 N=195.
- C) Real-time PCR analysis of the transcript levels of Pgkl and Gapdh in the quadriceps of 180day-old AR113Q mice treated with vehicle (veh) and peptide 7 and normalized to beta-actin. N= 3-6 mice for each group.

Graph, mean \pm SEM, Student's t test.

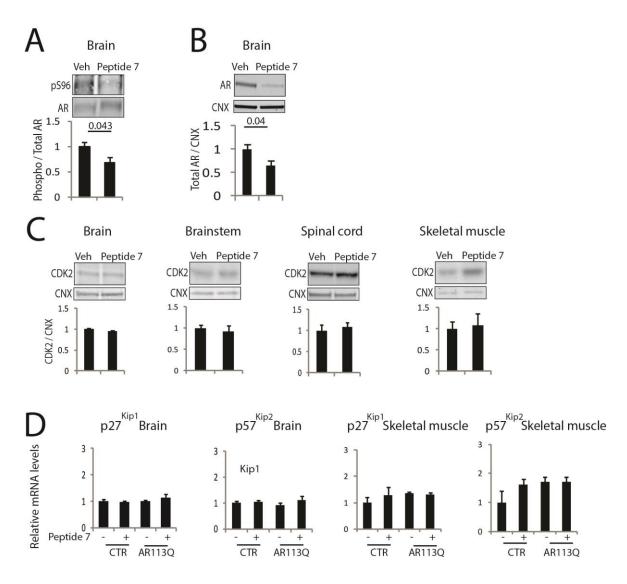


Fig. S24. Intranasal administration of peptide 7 decreases polyQ-AR phosphorylation and accumulation in SBMA mice without altering CDK2, p27^{Kip1}, and p57^{Kip2} expression levels.

- A-C) Western blotting analysis of S96-phosphorylated (A) and total (B) AR, and CDK2 (C) in 180day-old AR113Q mice treated with either vehicle (veh) or peptide 7 (10 μ g/day). AR and CDK2 were detected with specific antibodies, and calnexin (CNX) was used as loading control. Graph, mean ± SEM, *N* = 6 vehicle- and 5 peptide 7-treated mice. Student's t test.
- D) Real-time PCR analysis of the transcript levels of the indicated genes in 180-day-old CTR and AR113Q mice treated with vehicle and peptide 7, and normalized to beta-actin. Treatment did not alter the expression of the CDK2 inhibitors, $p27^{Kip1}$ and $p57^{Kip2}$. Graph, mean \pm SEM, N = 3-6 mice for each group. Two-way ANOVA.

Fig. S25. Data presented for experiments with sample sizes of less than 20.

Figure 1A

group	treat	value
AR24Q	veh	64.61355
AR24Q	veh	60.89108
AR24Q	veh	52.74321
AR24Q	DHT	75.65177
AR24Q	DHT	67.7636
AR24Q	DHT	57.93006
AR65Q	veh	40.60036
AR65Q	veh	58.67084
AR65Q	veh	55.51598
AR65Q	veh	58.99801
AR65Q	veh	65.09722
AR65Q	DHT	56.94792
AR65Q	DHT	70.62559
AR65Q	DHT	53.01864
AR65Q	DHT	73.36956
AR65Q	DHT	79.82488

Figure 1B

group	value
AR55Q	51.45065
AR55Q	60.15116
AR55Q	45.94778
AR55QLambda	4.568691
AR55QLambda	3.087861
AR55QLambda	5.287453
AR55QDHT	69.26399
AR55QDHT	60.20006

AR55QDHTLambda	3.663073
AR55QDHTLambda	4.231302

Figure 1C

group	value
AR55Q	56.77261
AR55Q	57.31843
AR55Q	56.50647
AR55QwtPKA	21.68686
AR55QwtPKA	17.84117
AR55QwtPKA	28.9492
AT55QcaPKA	28.38596
AT55QcaPKA	32.24674
AT55QcaPKA	35.51118
AR55qdnPKA	62.01565
AR55qdnPKA	63.53845
AR55qdnPKA	51.39946

Figure 1D

group	value
veh	48.05706
veh	49.46001
veh	54.80737
forskolin	15.96867
forskolin	17.65367
forskolin	14.62308
DHT	35.13415
DHT	35.81406
DHT	41.0187
forskolinDHT	19.9651
forskolinDHT	25.63933
forskolinDHT	25.33785

Figure 1E

gruop	treat	value
AR24Q	veh	72.107
AR24Q	veh	70.18157
AR24Q	veh	68.03606
AR24Q	forsk	26.51062
AR24Q	forsk	35.33785
AR24Q	forsk	32.95067

AR100Q	veh	73.45444
AR100Q	veh	75.11347
AR100Q	veh	68.00568
AR100Q	forsk	57.74464
AR100Q	forsk	56.9766
AR100Q	forsk	47.1267

Figure 1F

-		
group	treat	value
AR24Q	veh	71.45969
AR24Q	veh	76.43526
AR24Q	veh	80.78177
AR24Q	veh	75.56328
AR24Q	forsk	50.19038
AR24Q	forsk	40.78764
AR24Q	forsk	52.03635
AR24Q	forsk	39.09377
AR100Q	veh	66.07243
AR100Q	veh	76.0665
AR100Q	veh	68.90935
AR100Q	veh	67.58313
AR100Q	forsk	48.51305
AR100Q	forsk	41.35045
AR100Q	forsk	49.3337
AR100Q	forsk	44.49002

Figure 2G

group	value
AR100QDHT	1
AR100QDHT	0.4198
AR100QDHT	0.4349
AR100QDHTforsk	1.0428
AR100QDHTforsk	0.5411
AR100QDHTforsk	0.6949
AR100QDHTpacap	0.6498
AR100QDHTpacap	0.4089
AR100QDHTpacap	0.5821

Figure 3A

group	value
veh	62.67598

veh	43.63408
veh	57.54426
inh	34.32685
inh	38.99361
inh	27.53776

Figure 3B

group	value
mock	51.95686
mock	49.47315
mock	46.91003
mockFork	24.58667
mockFork	21.45491
mockFork	21.79211
wtcdk2	63.93148
wtcdk2	66.06152
wtcdk2	66.58536
wtcdk2Forsk	59.10957
wtcdk2Forsk	53.50074
wtcdk2Forsk	49.49958
dncdk2	41.36745
dncdk2	36.5945
dncdk2	34.24577
dncdk2Forsk	20.28015
dncdk2Forsk	6.624609
dncdk2Forsk	12.72713

Figure 3C

group	value
mock	45.29962
mock	60.61409
mock	59.69844
mockpacap	12.90056
mockpacap	42.88333
mockpacap	46.02248
cdk2	71.00053
cdk2	60.08351
cdk2	66.37873
cdk2pacap	60.96065
cdk2pacap	57.708
cdk2pacap	61.7661

Figure 3E

GROUP	VALUE
Mock-A	0.462458
Mock-A	17.18238
AR55Q-A	2.591437
AR55Q-A	13.16989
S96A-A	1.009827
S96A-A	9.731839
8A-A	1.139224
8A-A	11.95511
Mock-E	1.714967
Mock-E	13.48413
AR55Q-E	100
AR55Q-E	100
S96A-E	14.19443
S96A-E	18.85929
8A-E	176.9992

Figure 3H

group	value
veh	1.033299
veh	1.023615
veh	0.943086
OA	0.524224
OA	0.723362
OA	0.376426

Figure 3I

group	value
veh	56.01289
veh	56.31387
veh	59.65272
OA	38.71984
OA	42.09039
OA	48.8959
siRNA	61.11262
siRNA	70.61352
siRNA	63.51175
OAsiRNA	67.63696
OAsiRNA	69.2243
OAsiRNA	64.87957

Figure 3J

value
51.24308
54.93386
50.71006
35.61421
40.05759
41.76834
40.5925
40.91067
44.12021
51.60008
52.09947
51.70886
53.78707
54.65492
55.28472
53.75065
51.33402
54.90776

Figure 4D

GROUP	VALUE
VEH	0.930105
VEH	1.2271
VEH	0.634977
VEH	1.545337
VEH	0.66248
FORSK	0.370212
FORSK	0.263451
FORSK	0.157497
FORSK	0.363956
FORSK	0.517303

Figure 4G

GROUP	VALUE
AR100Q	0.675935
AR100Q	1.36768
AR100Q	0.956385
AR100Q-	
S96A	0.380767
AR100Q-	
S96A	0.393239

AR100Q-	
S96A	0.472027

Figure 5A

group	value
DHT	1.058325
DHT	0.884066
DHT	1.057609
DHTforsk	0.618815
DHTforsk	0.558673
DHTforsk	0.744951

Figure 6B

group	value
vehicle	1.080807
vehicle	1.050271
vehicle	0.868922
2peptide	1.455574
2peptide	1.287667
2peptide	1.202684
4peptide	1.424531
4peptide	1.295365
4peptide	1.201615
7peptide	1.418114
7peptide	1.23204
7peptide	1.253271
РАСАР	1.183957
РАСАР	1.161921
РАСАР	1.131423

Figure 7D-Musk

group	treat	value
wt	veh	0.97199053433859
wt	veh	0.93285437882211
wt	veh	1.10286945816958
wt	P7	1.90083757978007
wt	P7	1.81913414356073
wt	P7	1.10209104028611
113Q	veh	2.82029337080158
113Q	veh	1.63689492991979
113Q	veh	2.40876746799678
113Q	veh	1.46538115532798
113Q	veh	2.22023583439639
113Q	veh	2.18670611471188
113Q	P7	3.83220573511134
113Q	P7	3.58351843746970

113Q	P7	2.82612132499574
113Q	P7	4.02240786353928
113Q	P7	3.05997571911348

Figure 7D-Runx

treat	value
veh	0.758306
veh	1.281174
veh	1.029313
P7	1.245759
P7	1.345625
P7	0.780591
veh	2.927901
veh	3.083974
veh	2.193738
veh	2.82466
veh	3.170296
veh	2.360577
veh	3.843749
veh	2.950441
veh	4.55314
P7	1.627178
P7	2.466153
P7	2.513704
P7	2.347338
P7	2.453679
P7	2.776789
P7	3.397519
P7	2.562199
P7	2.146592
	veh veh veh P7 P7 P7 veh P7 P7 <

Figure 7D-NR4A1

treat	value
veh	0.829882
veh	1.082256
veh	1.113406
P7	1.188319
P7	1.294393
P7	0.704257
veh	0.442839
veh	0.565471
veh	0.279268
veh	0.43694
veh	0.429924
veh	0.432277
P7	0.916113
P7	1.0486
P7	0.844213
P7	0.34434
P7	0.435094
	veh veh veh P7 P7 veh veh veh veh veh P7 P7

Figure 8A-Brainstem

TRFAT	VALUE
VEH	1.00813
VEH	0.968293

VEH	1.171252
VEH	1.038694
VEH	0.997491
VEH	0.816139
P7	0.775883
P7	0.764594
P7	0.672096
P7	0.73033
P7	0.755427

Figure 8A-Spinal cord

group	value
veh	0.935092
veh	0.974224
veh	1.045049
veh	1.045635
P7	0.812464
P7	0.71794
P7	0.586372
P7	0.925581

Figure 8A-Quadriceps

group	value
VEH	0.984916
VEH	0.894556
VEH	1.048393
VEH	1.12763
VEH	0.880311
VEH	1.064194
P7	0.951503
P7	0.617908
P7	0.770826
P7	0.876331
P7	0.756268

Figure 8B-Brainstem

group	value
veh	1.038918
veh	0.911
veh	0.801594
veh	0.982986

veh	1.202745
veh	1.062914
P7	0.695233
P7	0.752206
P7	0.61346

Figure 8B- Spinal cord

group	value
veh	0.924574
veh	0.727626
veh	0.790763
veh	1.103925
veh	1.355227
veh	1.097885
P7	0.847616
P7	0.490114
P7	0.742131
P7	0.864832
P7	0.609966

Figure 8B-Quadriceps

group	value
veh	1.000537
veh	1.032252
veh	0.845576
veh	0.780098
veh	1.165167
veh	1.17637
P7	0.986917
P7	0.649521
P7	0.676404
P7	0.622728
P7	0.581452

Figure 8C-Brainsteim

group	value
veh	1.12054063681540
veh	0.55504621017770
veh	1.11177355691888
veh	1.44711360598648
veh	1.38594945932822
veh	0.93020225482736
P7	1.97985612296188
P7	1.49633932074617

P7	1.23300842801230
P7	1.59367555720856
P7	1.47751582242848

Figure 8C-Spinal cord

group	value
veh	1.073
veh	0.936
veh	0.872
veh	1.217
veh	1.047
veh	0.699
P7	1.231
P7	1.308
P7	1.170
P7	1.340

Figure 8C-Quadriceps

group	value
veh	1.995314
veh	1.449585
veh	1.087341
veh	1.317243
veh	2.15196
veh	1.280981
P7	2.065152
P7	2.471766
P7	2.84046
P7	2.659396
P7	2.076294

Figure S1

group	value
AR55Q	52.38728
AR55Q	69.10875
AR55Q	54.57804
AR55Qlambda	4.032082
AR55Qlambda	4.585267
AR55Qlambda	9.283778
AR55QcaPKA	18.86977
AR55QcaPKA	27.16672
AR55QcaPKA	15.02803
AR55QcaPKAlambda	-1.81743
AR55QcaPKAlambda	3.664756
AR55QcaPKAlambda	11.0601

Figure S6C

group value	
-------------	--

AR55Q	51.16187
AR55Q	57.30437
AR55Q	45.70833
AR55Qforsk	21.27907
AR55Qforsk	19.90788
AR55Qforsk	14.40095
cdk1	52.84058
cdk1	60.44314
cdk1	41.58285
cdk1Forsk	30.45949
cdk1Forsk	27.27467
cdk1Forsk	26.89848
dncdk1	45.98368
dncdk1	53.4518
dncdk1	48.94224
dncdk1Forsk	14.16013
dncdk1Forsk	12.68314
dncdk1Forsk	11.6148

Figure S6D

1	
TREATMENT	VALUE
VEH	1.041001
VEH	0.97228
VEH	0.986719
FORS	0.908217
FORS	0.835231
FORS	0.853947
VEH	1.14193
VEH	1.014026
VEH	1.076979
FORS	0.911366
FORS	0.667618
FORS	0.824989
VEH	0.923656
VEH	0.85451
VEH	0.939583
FORS	0.829978
FORS	0.647844
FORS	0.735882
	VEH VEH VEH FORS FORS FORS VEH VEH VEH VEH VEH VEH VEH VEH VEH VEH

Figure S6E- CDK1

group	value
SC	1.049442

SC	0.950558
2sh	0.820284
2sh	0.545235
3sh	0.571403
3sh	0.578556

Figure S6E-AR

value
57.68844
57.96591
61.93548
59.69266
58.32193
49.33665

Figure S13A

geno	treat	value
AR12Q	veh	100
AR12Q	OA	136.5645
AR12Q	OA	127.6972
AR12Q	OA	125.4959
AR12Q	OA	129.2315

geno	treat	value
AR55Q	veh	100
AR55Q	OA	110.7856
AR55Q	OA	114.5084
AR55Q	OA	112.3098
AR55Q	OA	140.2581

Figure S18A

group	value
veh	1.382302
veh	0.754637
veh	0.863061
forsk	0.263685

1	
forsk	0.180313
forsk	0.506954

Figure S18B

group	value
veh	0.387492
veh	0.898281
veh	1.213883
veh	1.457384
veh	1.044506
veh	0.998453
расар	0.024613
расар	0.013652
расар	0.319331
расар	1.112963
расар	0.391464
расар	0.229858
vip	1.041156
vip	0.687807

Figure S24A

group	value
VEH	0.69684
VEH	0.946757
VEH	1.247372
VEH	1.136663
VEH	0.848022
VEH	1.124347
P7	0.458967
P7	0.637935
P7	1.073778
P7	0.507454
P7	0.73606

Figure S24B

group	value
VEH	1.084487
VEH	1.214291
VEH	0.66745
VEH	0.769172
VEH	0.960789

VEH	1.303811
P7	0.810724
P7	0.990796
P7	0.466989
P7	0.414671
P7	0.545162

Figure S24C-Brain

group	value
veh	1.082829
veh	0.986177
veh	0.97859
veh	0.905549
veh	0.906052
veh	1.140804
р7	0.978738
р7	0.953045
р7	0.880701
р7	0.875824
р7	1.050497

Figure S24C-Brainstem

group	value
VEH	1.258977
VEH	0.898151
VEH	1.104892
VEH	0.94838
VEH	0.703191
VEH	1.08641
P6	0.521984
P7	1.180288
P7	1.080025
P7	0.892805

Figure S24C-Spinal cord

group	value
VEH	0.807015
VEH	0.855166
VEH	0.917293
VEH	1.420525
Р7	0.801848

P7	1.213797
P7	1.07229
P7	1.276142

Figure S24C-Quadriceps

group	value
VEH	1.0301
VEH	1.021649
VEH	0.459922
VEH	0.829487
VEH	1.739783
VEH	0.919059
P6	1.896515
P7	1.015766
P7	1.218774
P7	0.963457
P7	0.35197