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S1 Morphological characteristics of the MEA. 

Figure S1. More examples of the morphological characterization of the MEA. (A, B) 

Micrograph and SEM image of multiple electrode sites under selective plating. (C) SEM image of 

a single PEDOT:PSS-modified bare Pt electrode. (D) SEM image of GMμE/ PEDOT:PSS surface. 

(E, F) SEM images of neurons cultured on electrodes.  

Supplementary Material S14 details a selective plating method that allows for modifying 

individual or groups of electrodes. Specifically, Site No. 47 in Supplementary Figure S1 A,B 

displays the bare electrode interface resulting from selective plating without plating, thereby 

enabling electrodes of varying heights within the same MEA for customized research. 

Supplementary Figure S1 C, D present the morphology of PEDOT:PSS. Panel S1C shows the CV-

based PEDOT:PSS modification on the bare electrode, referred to as the planar electrode in this 

study, for comparison with the detection performance of 3D-GMμEAs/PEDOT:PSS. In panel S1D, 
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the nanostructure of PEDOT:PSS modified on the golden electrode demonstrates numerous rough 

structures on the surface, thereby significantly increasing the electrode's specific surface area and 

enhancing its performance. Supplementary Figure S1 E, F presents an SEM image of neurons 

cultured for four weeks on electrodes, illustrating the spatial relationship between neurons and 

electrodes. 

 

S2 Electrical characteristics of MEA.  

Figure S2. Measurements of the Cdl from CV experiments. (A, B, C) The CV curves of 

PEDOT:PSS-modified bare Pt electrodes (A), GMμEs (B), and GMμEs/PEDOT:PSS (C) at 

different scan rates. (D) The double layer capacitance of the GMμEs/PEDOT:PSS, GMμEs and 

PEDOT:PSS-modified bare Pt electrodes. 

The electric double-layer capacitance (Cdl) is a crucial parameter that characterizes the activity of 

the electrode surface, which refers to the capacitance formed between the electrode surface and 

the electrolyte. One commonly used method for calculating this capacitance is CV, which can 

provide information on the change of electrode surface potential with time, and the corresponding 

change in current with time. The relationship between the current and scan rate of the forward and 

reverse scans in the CV curve can be used to calculate the electrode surface capacitance. 

Specifically, the slope resulting from dividing the difference between the current values of the 

forward and reverse scans by the scan rate represents the surface capacitance of the electrode. 

Since the influence of other capacitances is minimal in this experiment, the calculated value of the 

surface capacitance is used as an approximation for the electric double-layer capacitance. 
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The results indicate that GMμEs/PEDOT:PSS exhibited a significantly higher Cdl value (1.84 μF), 

indicating a larger active surface area and more active sites compared to those of GMμEs (Cdl = 

0.76 μF) and PEDOT:PSS-modified bare Pt electrodes (Cdl = 0.20 μF). Based on the above, it can 

be concluded that the GMμEs/PEDOT:PSS modification method is more effective in enhancing 

the electrode surface activity and improving the performance of electrodes. 

 

S3 Electrical stimulation of MEA. 

 

Figure S3. The voltage transient detection of GMμEs and GMμEs/PEDOT: PSS.  (A) GMμEs 

(B) GMμEs/PEDOT:PSS. 

The charge injection limit (CIL) is measured in PBS solution by the electric potential transient 

method. The measurement also adopts a three-electrode system, and the counter electrode and 

reference electrode are Pt electrode and Ag/AgCl electrode, respectively. During the measurement, 

a dual-channel electrophysiological electrical stimulator is used to apply a current electrical 

stimulation pulse between the working electrode and the counter electrode, and at the same time 

an oscilloscope is used to record between the working electrode and the reference electrode to 

measure the corresponding curve of its potential, Figure S3. By continuously increasing the current 

value of the stimulation pulse, the potential response under different current pulses is recorded. 

When the potential polarization curve exceeds the potential window (Figure S3), the electrical 

stimulation current value is the maximum safe current. The injected charge density is the maximum 

safe charge injection amount. The CIL calculation method is as follows:  

CIL = (Imax × t)/S 

Where Imax is the maximum injection current, t is the pulse width, and S is the electrode area. As 

depicted in Figure S3AB, the electrodes exhibit Imax of 25 μA (GMμ) and 35 μA 

(GMμ/PEDOT:PSS), respectively. Based on calculations, the CIL is 3.54±0.22 mC/cm2 (GMμ) 

and 4.96±0.31 mC/cm2 (GMμ/PEDOT:PSS). Taken together, 3D-GMμEAs/PEDOT:PSS 

demonstrates superior capacitive performance, enabling the storage of more charges at a given 

potential. 
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Table S1 Electrical and electrical stimulation properties characteristics of MEA. 

Characteristics 

 

Material 

 

Impedance (kΩ) 

at 1 kHz 

 

Phase (°)  

at 1 kHz 

 

CSC 

(mC/cm2) 

 

CSCC 

(mC/cm2) 

 

CIL 

(mC/cm2) 

Pt 341.02 ± 22.40 -68.56 ± 1.21 0.35 ± 0.03 0.16 ± 0.04 0.27 ± 0.03 

PEDOT:PSS 29.98 ± 8.34 -20.52 ± 1.71 2.55 ± 0.31 1.18 ± 0.15 0.85 ± 0.08 

GMμ 26.51 ± 3.24 -57.53 ± 3.24 8.05 ± 0.23 5.05 ± 0.04 3.54 ± 0.22 

GMμ/PEDOT:PSS 6.49 ± 0.67 -16.40 ± 0.74 24.11 ± 0.46 11.26 ± 0.52 4.96 ± 0.31 

 

 

S4 Stability characteristics of MEA 

Figure S4. Electrical stimulation stability of (A) PEDOT:PSS-modified bare Pt electrodes, n=5, 

*** p <0.001, and (B) GMμEs and GMμEs/PEDOT:PSS, n=5. 
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S5 Biocompatibility characterization of MEA 

Figure S5. Pictures of neurons on electrodes for up to four weeks. 

By observing images of neurons cultured on the electrode surface for four weeks, we can see that 

the synapses of neurons have formed a good connection with the electrode surface, indicating a 

close interaction between the material on the electrode surface and neurons. This connection also 

indicates that the electrode has good biocompatibility with neurons, meaning it will not cause 

significant damage to neurons. Furthermore, neurons extend substantially on the electrode surface, 

which is another evidence of the electrode's good biocompatibility.  

 

S6 Detection performance of MEA 

To characterize the detection performance of the 3D-GMμEAs/PEDOT:PSS electrodes, we 

performed neuronal recording testing on randomly selected  3D-GMμEAs/PEDOT:PSS devices 

and planar devices (three devices per type) independently. Neurons were seeded at 1x106 cells/cm2 

for all the experiments, and neuronal signals were recorded during the third week of the culture. 

All the devices have successfully detected the electrophysiological signals of the cultured neurons.  

For detailed characterization of the detection performance of different types of electrodes, we 

evaluated the number of active electrodes on each device using the Cerebus software from 

Blackrock Microsystems (Figure S6-1 A&B). It was found that the average number of active 

electrodes per device on the 3D-GMμEAs/PEDOT:PSS devices was 41.7 ± 1.8, which was 

significantly higher than that of the planar electrode devices (11.3 ± 0.9) (Figure S6-1 C).   
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Figure S6-1. Comparison of active channels between 3D-GMμEAs/PEDOT:PSS and planar 

electrodes. (A) Activity map of a representative planar electrode device. (B) Activity map of a 

representative 3D-GMμEAs/PEDOT:PSS device. (C) Comparison of the average number of active 

channels between planar devices and 3D-GMμEAs/PEDOT:PSS devices (n=3, i.e. three 

independent devices per type, *p<0.05).  

Next, we evaluated the amplitude and signal-to-noise ratio (SNR) of the neural signals detected by 

the devices. Data from randomly selected nine active channels from a representative device of 

each type were selected for further analysis, as shown in Figure S6-2. Within a 300s timeframe, 

signals from the majority of planar electrodes were in the range of ±100 μV (Figure S6-2 A), 

whereas those from the 3D-GMμEAs/PEDOT:PSS electrodes were in the range of ±200 μV 

(Figure S6-2 B). The peak-to-peak amplitude from the 3D-GMμEAs/PEDOT:PSS electrodes was 

386.3 ± 21.9 μV compared to 175.7 ± 7.2 μV for the planar electrodes (Figure S6-3 C), and the 

SNR from the 3D-GMμEAs/PEDOT:PSS electrodes (13.8 ± 0.8) was also higher than that of 

planar electrodes (6.3 ± 0.3)( Figure S6-3 D).  

Furthermore, statistical analysis of the firing timestamps of action potentials shows that the 

average firing rate detected by the 3D-GMμEAs/PEDOT:PSS electrodes (1.78 ± 0.40 Hz) is also 

significantly higher than the planar electrodes (0.48 ± 0.10 Hz)(Figure S6-3 E), indicating  a higher 

sensitivity. Taken together, it is evident that the 3D-GMμEAs/PEDOT:PSS electrodes 

outperformed the planar electrodes significantly in all the tested metrics, elucidating their superior 

detection capabilities. 
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Figure S6-2. Raw data recordings from randomly selected nine channels (i.e. active 

electrodes) of a representative device of each type. (A) Planar electrodes. (B) 3D-

GMμEAs/PEDOT:PSS electrodes. Neural Processing MATLAB Kit - NPMK was used to plot 

these raw data. 
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Figure S6-3. Comparison of detection performance between the planar and 3D-

GMμEAs/PEDOT:PSS electrodes. Nine active electrodes channels were randomly selected from 

a representative device of each type.  (A) Timestamps of spikes discharged within 300s by the 

planar electrodes. (B) Timestamps of spikes discharged within 300s by the 3D-

GMμEAs/PEDOT:PSS electrodes. (C) Average peak-to-peak amplitude (*p<0.05). (D) Average 

signal-to-noise ratios (*p<0.05). (E) Average firing rates (*p<0.05). 

 

S7 Characterization of neuronal network communication capability  

In the field of neuroscience, assessing the functional connectivity of neuronal networks through 

correlation and mutual information between neurons is a well-established method. This approach 

is widely utilized to study interactions and communications among different brain regions and 

neurons. For instance, studies have employed correlation and mutual information to assess the 

functional connectivity of various neuronal networks and brain areas1-3. However, approaches for 
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quantitively evaluating the efficacy of these functional connectivity are lacking. To better 

characterize functional connectivity across different neuronal networks, especially during different 

developmental processes, we propose to quantify the dynamic changes in neuronal networks under 

different states through a measure of “neuronal network communication capability”.  

Specifically, we define “the neuronal network communication capability” using key metrics 

derived from the correlation heatmaps and mutual information networks, shown in Equation S7-1. 

Neuronal Network Communication Capability = F(correlation heatmap metrics) + F(mutual 

information network metrics)      Equation S7-1 

Where the function F(correlation heatmap metrics) = α × average correlation coefficient. The 

correlation coefficient is used to statistically measure the linear relationship between two neurons, 

calculated through the Pearson correlation coefficient, as follows: 

𝑟 =
∑(𝑋𝑖−𝑋̅)(𝑌𝑖−𝑌̅)

√∑(𝑋𝑖−𝑋̅)2(𝑌𝑖−𝑌̅)2
        Equation S7-2 

where 𝑟 is the Pearson correlation coefficient. 𝑋𝑖 and 𝑌𝑖  are the values in the action potential time 

series, and 𝑋̅ and 𝑌̅ are their mean values. In this study, the average correlation coefficient is the 

mean of correlation coefficients in the correlation matrix that are greater than 0.5.  

The function for mutual information network metrics, F(mutual information network metrics) 

= β × average mutual information + γ × average degree + δ × clustering coefficient. 

Where the “average mutual information” serves as a quantitative measure to assess the extent of 

information exchange between two neurons, elucidating the extent to which the activity state of 

one neuron informs about that of another. Based on the concept of entropy, mutual information 

captures both linear and nonlinear relationships between neurons, making it a generic tool for 

analyzing the functional connections of neuronal networks. The calculation formula is as follows: 

𝑀𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)log (
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
)𝑦∈𝑌𝑥∈𝑋     Equation S7-3 

where 𝑋 and 𝑌 are two neuronal variables, 𝑝(𝑥, 𝑦) is the joint probability distribution of 𝑋 and 𝑌, 

and 𝑝(𝑥) and 𝑝(𝑦) are the marginal probability distributions of 𝑋 and 𝑌, respectively. A high 

mutual information value indicates a high degree of information sharing and interdependence 

among neurons. In this study, the average mutual information refers to the mean value derived 

from the mutual information matrix, wherein the mutual information exceeds the threshold of 0.1. 

The “average degree” represents the average number of connections per node within the mutual 

information network, thereby serving as an indicator of the average connectivity density present 

within the neuronal network. Elevated values of the average degree typically imply a higher 

abundance of communication pathways among nodes, potentially indicating stronger 

communication efficacy and a more intricate network architecture. 

The “clustering coefficient” measures the degree of clustering among nodes in the mutual 

information network. A higher clustering coefficient indicates a tendency for neurons to form 

tightly interconnected groups. Networks with a high clustering coefficient usually imply a more 

efficient information transfer, as closely connected groups of neurons can synchronize and relay 

signals more effectively. Such network structures play a pivotal role in reducing redundancy and 

optimizing efficiency in information transmission. 
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Our method provides a quantitative assessment of neuronal network communication capability by 

integrating correlation and mutual information metrics, each representing different aspects of 

neuronal connections and interactions. The coefficients α, β, γ, and δ in the formula are adjustable 

parameters, enabling customization to suit different models. 

Building on the aforementioned content, we calculated various metrics for neurons across different 

days and after electrical stimulation, as shown in Figure S7. When the coefficients α, β, γ, and δ in 

the formula are all set to 1 (in this context, the communication capability of neuronal networks is 

considered only in terms of relative magnitude between states), we are able to determine the 

magnitude of neuronal network communication capability.  

The results indicate (Figure S7) that on Day 7, due to the lack of established effective network 

connections, all statistical values are zero. Subsequently, from Day 14 onwards, connections in the 

mutual information network among neurons began to form, characterized by high correlation and 

mutual information among a small portion of neurons (Figure S7A). However, the clustering 

coefficient remains low (only at 1) (Figure S7B), indicating relatively lower communication 

capability within the neuronal network. By Day 21, both the clustering coefficient and average 

degree increased substantially (Figure S7 B&C), leading to a significant increase in the final 

neuronal network communication capability. In summary, as the neuronal network matures, its 

communication capability progressively amplifies.  

Furthermore, upon subjecting the same neuronal network on Day 21 to electrical stimulation 

training, a further enhancement in neuronal network communication capability is observed, as 

illustrated in the increased values in the average correlation & the average mutual information 

(Figure S7A), the average degree &the clustering coefficient (Figure S7B), as well as 

communication capability and capability proportions (Figure S7C). 

Figure S7. Assessment of neuronal network communication capability at different stages. (A) 

Statistics on average mutual information and average correlation. (B) Statistics on the clustering 

coefficient and average degree of mutual information networks. (C) Values and relative 

magnitudes of communication capability. Data are from all the active electrodes from a 

representative 3D-GMμEAs/PEDOT:PSS device.  

 

S8 Analysis of spontaneous activity of neurons across days 

Burst discharge refers to a series of synchronous events in which neurons in a network discharge 

and is typically closely associated with information transmission and neuronal network formation. 

With time, burst discharge becomes more frequent, indicating that the connection and activity of 

the neuronal network are gradually strengthening. Specifically, the frequency and size of bursts 

depend on the connectivity and excitability of neurons. As neuronal network connections and 
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excitability levels increase, neurons may fire bursts more frequently. This is often an important 

indicator of the maturity of a neuronal network, as it suggests that the connections between neurons 

are strengthening, and the network is gradually forming and optimizing. By analyzing the statistics 

of burst analysis on different days, Table S2, we concluded that the neuronal network was formed 

after 21 days.  

 

Table S2 Statistics of bursts of neurons across days 

Burst 

 

Day 

Num. 

Bursts 

% of 

Spikes_in 

Bursts 

Mean 

Burst_Duration 

Mean 

Spikes_in 

Burst 

Mean 

ISI_in 

Burst 

Mean 

Freq._in 

Burst 

7 2 3.3 0.14 4.50 0.04 25.66 

14 39 5.5 0.13 5.20 0.03 38.40 

21 634 36.7 0.15 7.93 0.02 67.27 

 

 

S9 Calculation of network communication time 

In the field of neuronal network research, the time required for communication between neurons 

is a crucial factor to consider. We define this time as the network communication time, which 

represents the time difference between the first and last neuron delivery in a network, provided 

that the difference between adjacent delivery times is not greater than the maximum synaptic 

latency (SL) time of 10 ms. When the first neuron in a network fires, it communicates with other 

neurons in the network. We have demonstrated that SL is evidence of network communication but 

delays greater than 10 ms may result from independent neurons firing spontaneously. Thus, we 

removed such data to accurately calculate the overall network communication time. Our statistical 

analysis of network communication speed is based on this metric, which provides insight into the 

speed at which neuronal networks communicate and presents a valuable index for studying 

neuronal network dynamics. 

In this study, we investigated the impact of electrical stimulation on neural activity and network 

communication. Supplementary Figure S9A-C displays the complete time series of a burst before 

and after electrical stimulation. We observed that the overall discharge time during electrical 

stimulation was shorter than that after stimulation and shorter than that before stimulation. This 

finding indicates that electrical stimulation alters the SL time between neurons, resulting in 

changes in correlation between neurons and, in turn, changes in the functional connection network. 
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Figure S9 Time series of entire spikes in a burst of neurons. (A) Before electrical stimulation 

(ES), (B) During ES. (C) After ES. 
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S10 Calculation of network communication speed 

Figure S10-1: Calculation of network communication speed. (A) Schematic illustration of the 

method for calculating network communication time. The white arrow indicates the propagation 

direction of the neural signal, and the two red arrows mark the time points beyond the maximum 

SL rules. (B) Calculation diagram of network distance. The first discharge site was selected as the 

central point, marked in red as "1" in panel B, and the distance from site 1 to the corresponding 

site of each discharge time point meeting the requirements was calculated. 

Based on the calculation of network communication time, the distance of network communication 

was further estimated, and the network communication speed was determined by finding the slope 

of the fitting line. Firstly, the first firing site was selected as the central point, as shown in Figure 

S10-1AB site 62, marked as red 1 in Figure S10-1B. The distance from 1 to the corresponding site 

of each discharge time point that meets the requirements was calculated, for example, the second 

point 45, marked as white 2 in Figure S10-1B. By following this approach for other sites, the 

dynamic starting point was calculated using MATLAB. 
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 Figure S10-2. Scatter plot of network distance to all firing sites from the first firing site depending 

on network communication time before (A), during (B), and after electrical stimulation (C). The 

dotted line and shaded area represent the best fit of linear regression and the 95% confidence level, 

respectively. The slope of the linear regression denotes the network communication velocity. 
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S11 Calculation of synaptic delay across days 

Figure S11-1. Calculation of synaptic delay across days. (A) day 7. (B) day 14 (C) day 21. 
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We analyzed spontaneous discharges of neurons on different days in vitro culture and focused on 

calculating the synaptic latency (SL) of mutual neurons. Supplementary Figure S11-1A and S11-

2A demonstrates that on the seventh day, the delay time of synaptic information transmission 

between neurons is significantly longer than the time of normal synaptic transmission, indicating 

that there is no connection between neurons, at this time. On day 14, the SL time is less than 1ms, 

suggesting a direct connection between two neurons and explaining the strong connection in the 

mutual information network on this day, Figure S11-1B, S11-2B, and Figure 6E. For Day 21, we 

observed complex network connections and calculated an average SL of approximately 6ms, 

which is considered a normal SL time, Figure S11-1C, S11-2C, and Figure 6F.  

Our results suggest that the delay time of synaptic information transmission plays a crucial role in 

determining the connectivity between neurons. Longer SL times may indicate no connection 

between neurons, while shorter delay times suggest direct connections. The complex network 

connections observed on day 21 may reflect a combination of direct and indirect connections 

between neurons. Our findings provide insights into the dynamics of neuronal networks and the 

factors that contribute to the formation of functional connections. 

 

Figure S11-2. Data distribution of synaptic delay times for Figure 7H. 
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S12 Explanation of the neuronal network communication connectivity model  

Here, we delve into the neuronal network communication connectivity model, focusing on 

elucidating the differences between network connections and synaptic connections. Neuronal 

networks exhibit distinct connection states at different developmental stages (based on physical 

synaptic connections).  These diverse connection patterns lead to different functional connections. 

At the microscopic level, this is manifested as variations in synaptic delay or network 

communication speed, which underlies functional connections. At the macroscopic level, it is 

reflected in differing network communication capacities. Therefore, the communication 

connectivity model unveils the intricate relationships between neuronal network connections and 

function. It is imperative to introduce the hierarchical structure of neuronal networks in these 

representations, as a network’s representation encapsulates the entirety of relationships between 

neurons.  

Below, we delineate the disparity between the representation of neuronal networks and the 

representation based on the relationships between neurons: 

Relationship between network communication connectivity and synaptic connections: 

Synaptic connections, fundamental in neuroscience, describe the physical linkage between two 

neurons. Each synaptic connection serves as a basic unit of information transfer, governing signal 

transmission between neurons. Network communication connectivity describes the structural 

characteristics of information transfer across the entire network, amalgamating of multiple 

synaptic connections. It encompasses potential communication pathways among all neurons, 

extending beyond direct physical connections between individual neurons. 

Relationships between network communication capability and synaptic strength: 

Synaptic strength refers to the efficiency or strength of a single synaptic connection in signal 

transmission, quantifiable by the postsynaptic potential magnitude. Network communication 

capability is related to the efficiency of information transfer across the entire network holistically, 

incorporating contributions from individual synapses and the collective effects of multiple 

pathways and cascading communications within the network. 

In summary, while synaptic connections and strength are key indicators of interactions between 

individual neurons, our concepts of "network communication connectivity" and "network 

communication capability" offer a comprehensive and macroscopic viewpoint for exploring how 

neuronal networks collaboratively process and transmit information. These concepts facilitate the 

comprehension of network dynamics and functional structures beyond the individual synapse level, 

providing important tools and frameworks for understanding the brain's holistic functionality. 
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S13 Fabrication of the 3D-GMμEAs/PEDOT:PSS 

 

Figure S13. Fabrication and modification of the 3D-GMμEAs/PEDOT:PSS. (A) Substrate 

cleaning process. (B) Patterning of microelectrodes, wires, and contact pads on the substrate using 

the first photolithography. (C) Sputtering of a Cr/Au conductive layer. (D) Lift-off process. (E) 

Coating of the substrate with a thick layer of a positive photoresist (AZ4903). (F) Lithography and 

development process to access the electrode sites. (G) Gold electroplating in a gold bath, followed 

by the removal of the photoresist to expose the GMμEs. (H) Deposition of an insulation layer. (I-

J) Steps to create openings in the insulation layer. (K) Deposition of PEDOT:PSS onto the GMμEs. 

(R) Schematic illustration showing that GMμEs modified with PEDOT:PSS have good coupling 

with neurons. (M) Modified materials. 

Figure S13A-D details the process flow for fabricating flat electrodes with a pattern of conductive 

material on a quartz glass substrate. The process begins with cleaning the substrate using acetone, 

isopropyl alcohol, and deionized water, followed by boiling in concentrated sulfuric acid for 30 

minutes and drying in an oven, Figure S13A. Next, photoresist AZ1500 is spin-coated onto the 

substrate, exposed through a mask plate to define the electrode pattern layout, and developed, 

Figure S13B. Then, a conductive layer is sputtered onto the substrate, starting with a 30 nm Cr 

adhesion layer and followed by a 200 nm Au electrode layer, Figure S13C. Finally, the photoresist 

is removed in acetone to reveal a flat electrode with a pattern of conductive material, Figure S13D. 

Figure S13H-J depicts the process flow for fabricating gold mushroom electrodes with high 

sidewall insulation on a silicon oxide and silicon nitride substrate. The first step involves 

depositing a 300 nm layer of silicon oxide and a 500 nm layer of silicon nitride using plasma-

enhanced chemical vapor deposition (PECVD), optionally followed by coating with parylene-C 
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for higher sidewall insulation, Figure S13H. Next, a second mask plate is used to open the surface 

area of the gold mushroom electrode and the external contact pad, similar to the steps in Figure 

S13B. The exposed electrodes, wiring, and contact pads are then etched using CHF3 reactive ion 

etching, Figure S13J. Finally, a glass ring is glued to the surface of the electrode with silicone to 

provide a container for neuron culture (Figure 2A). 

 

S14 Fabrication of GMμEs. 

Figure S14. Electroplating methods for GMμEs. (A) Circuit interface boards for selective 

plating of specific sites on the MEA. (B) External pads on the MEA are connected using 

conductive tape for one-shot plating. (C) Two-electrode system used for electroplating the gold 

mushroom electrodes. 

We utilized two electroplating methods for the fabrication of GMμEs: selective plating and one-

shot plating. Selective plating allows for targeted plating of specific sites, which can be achieved 

using the interface plate shown in Figure S14A. While this method enables customization and 

modification of individual electrodes, its efficiency is limited when only a few parts are 

electroplated due to the long electroplating time (~1 hour). To overcome this limitation, we 

employed the one-shot plating method, where we short-circuited the external pads of the electrodes 

using conductive tape, Figure S14B, connecting them together and so making a single working 

electrode by using a common wire during gold electrodeposition (Figure S14C). This approach 

allows for more efficient electroplating of multiple parts simultaneously. 
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S15 The effect of electroplating parameters on electrode height and electroplating stability 

This section elucidates the relationship between electroplating parameters and electrode height, 

along with an explanation of electroplating stability. Here, we used the timed current method for 

electroplating, at a constant voltage of -1.5 V.  Only electroplating time was adjusted while the 

other conditions maintained constant.  

Regarding the electrode height, two scenarios were considered:  

1) When the electrode height did not exceed the depth of the holes in the developed 

photoresist, as shown in Figures S15-1 (a-c), the surface area of the electrode remained 

constant during electroplating. 

2) When the electrode height surpassed the depth of these holes, as illustrated in Figure S15-

1 (d), continuous deposition led to a change in the electroplated electrode's surface area. 

These two scenarios were discussed separately.  

Figure S15-1. Schematic illustration of electrode changes during the electroplating process. 

 

In this study, the formation of the three-dimensional structure primarily followed the first scenario. 

Electroplating data with different durations (Figure S15-2) were selected as model data to 

theoretically predict the relationship between electroplating time and electrode height. The 

algorithm is described as follows:  

Firstly, the total charge of the electroplating process is calculated using the i-t curve, with the 

formula: 

𝑄 = ∑ 𝐼𝑖
𝑁−1
𝑖=1 × 𝛥𝑡𝑖        Equation S15-1 

where 𝐼𝑖 represents the current at each time point and 𝛥𝑡𝑖 is the interval between two consecutive 

time points.  

Then, according to Faraday's laws of electrolysis, the mass of the deposited metal can be calculated 

using the formula: 

𝑚 =
𝑄×𝑀

𝑛×𝐹
          Equation S15-2 

where 𝑚 is the mass of the deposited metal, 𝑄 is the total charge, 𝑀 is the molar mass of the metal 

(for gold, 196.97 g/mol), 𝑛 is the valency of the metal, and 𝐹 is Faraday's constant.  

Finally, the height of the deposit is calculated using the formula:  

ℎ =
𝑚

𝜌 ×𝐴
          Equation S15-3 
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where ℎ is the height of the deposit, 𝜌 is the density of the metal, and 𝐴 is the surface area of the 

electrode.  

Based on the theoretical calculation, the electrode heights under four electroplating durations were 

approximated (Figure S15-2E). The results suggested that an electroplating duration of 4000s 

would yield three-dimensional micropillars approximately 30 μm in height, which matched well 

with the experimental data. Therefore, an electroplating time of 4000s was used for the formation 

of three-dimensional structures.  

To verify the stability of the electroplating effect under this parameter, the radius of a series of 

electrodes electroplated under these conditions was measured using a microscope (Figure S15-3A). 

Statistical analysis of these values indicated that the radius of the electrodes under these parameters 

was 15.19 ± 0.10 μm (Figure S15-2F), demonstrating that the electroplating process was stable 

and controllable.  

Figure S15-2. The effect of electroplating parameters on electroplating height and 

electroplating stability. (A) i-t curve for electroplating duration of 1000s. (B) i-t curve for 

electroplating duration of 2000s. (C) i-t curve for electroplating duration of 3000s. (D) i-t curve 

for electroplating duration of 4000s. (E) Relationship between electroplating time and electrode 

height. (F) Box plot of electrode radius for electroplating time of 4000s. (G) i-t curve for an 

additional 300s of electroplating after completing scenario 1. (H) i-t curve for an additional 2000s 

of electroplating after completing scenario 1. (I) Box plot of electrode radius for electroplating 

time of 6000s. 
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In the second scenario (as shown in Figure S15-1(d)), predicting the relationship between 

electroplating time and dimensions becomes more complex due to the change in the electrode's 

surface area during electroplating. Moreover, given the difficulty in accurately measuring several 

key variables, we are compelled to rely on certain assumptions to establish this relationship. These 

assumptions may introduce some discrepancies between our simulation results and the actual 

electroplating process. Nevertheless, this predictive model still holds significant value as it 

provides a reference for optimizing the electroplating process. For the second phase, we chose the 

i-t curve corresponding to an electroplating duration of 300s (which is the time for subsequent 

electroplating after completing the first scenario) as the basis for calculation. Initially, we calculate 

the total charge Q from the data file, then determine the added mass m, and subsequently compute 

the volume of the deposited metal V = m/ρ. To estimate the approximate change in electrode 

dimensions during this phase, we assume a uniform distribution of the deposited metal both 

laterally and longitudinally, forming a regular cylinder. We assume that the increase in the 

cylinder's radius is equal to the height increase: r2 - r1 = h2. Using the formula for the volume of a 

cylinder, the height h2, and thus the increase in the radius, can be calculated. 

Applying this algorithm to the data from Figure S15-2G, an increase in height and radius of 2.24 

μm was obtained. Assuming linear growth during electroplating, the radius increase rate is 

approximately 0.00746 μm/s. It is important to note that this parameter serves only as a reference, 

providing an approximate electroplating time necessary for customizing electrode sizes. Using this 

result, we estimated that an increase of 15 μm in the electrode radius would require approximately 

2000 seconds of electroplating time. Based on this estimation, we prolonged electroplating for an 

additional 2000s after completing the first scenario (as shown in Figure S15-2H). The average 

radius of a series of electrodes electroplated under these conditions is 27.72 ± 0.19 μm (Figure 

S15-2I, Figure S15-3B). While this indicates a slight deviation from our predicted radius of 30 μm, 

it underscores the utility of our parameter recommendations and reaffirms the consistency of 

electroplating under these parameters. 

 

Figure S15-3. Characterization of electroplating parameter stability. (A) Radius of the 

electrodes after 4000s of electroplating. (B) Radius of electrodes after 6000s of electroplating. 

Radius of the electrodes were measured from their optical images.  
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S16 Process of electroplating PEDOT:PSS 

Figure S16. Three-electrode system electroplating PEDOT:PSS 

We utilized a three-electrode system to modify PEDOT:PSS on GMμEs, as illustrated in Figure 

S16. The system consisted of a working electrode, a reference electrode, and a counter electrode. 

The plating solution employed in this study was PEDOT:PSS and the GMμEs served as the 

working electrode. The reference electrode was a reference point for measuring and controlling 

the potential of the working electrode without allowing any current to pass through it. To maintain 

a constant electrochemical potential at low current density, we employed Ag|AgCl as the reference 

electrode. The counter electrode, or auxiliary electrode, formed a circuit with the working electrode 

to facilitate the current flow, thereby enabling the modification process to take place on the 

working electrode. Here, we utilized Pt as the counter electrode. 

 

 

 

 



 

 

27 

 

S17 Neuronal recording and electrical stimulation 

 

Figure S17. The circuit interface of MEA. (A) Circuit interface module with soldered 

connections. (B) Metal probes located on the back of the module. (C) The interface module is 

connected to the acrylic tray. 

The interface module for detecting neuronal discharge information mainly consists of an acrylic 

MEA tray and a PCB detection interface module, with the PCB interface board designed using 

Altium Designer18 and the physical appearance after soldering shown in Figure S17A. The back 

structure of the PCB board is shown in Figure S17B, where the metal spring pins are used to fix 

the MEA and transmit the neural signal. The acrylic tray is designed to hold the MEA in the middle, 

with a through-hole in the middle for observing the status of the MEA, as shown in Figure S17C. 

At the same time, an external electrical stimulation interface is designed on the PCB circuit board, 

allowing the module to measure neuronal discharge during drug regulation and test the discharge 

of neuronal electrophysiological signals under external electrical stimulation. Considering the 

compatibility of the PCB interface detection module with various microelectrode arrays, this 

design has six out of 64 channels designed as toggle switches, which can be used as both reference 

and working electrodes. 
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