
Supplementary Notes

Introduction

Human genetics studies show that the individual genome of a person is linked to his/her
observed features, or phenotypes, such as standing height, or the case/control status
of heritable disorders such as schizophrenia. In this material, we consider quantitative
phenotypes, y ∈ R, but the results are also valid for binary phenotypes y ∈ {0, 1}. The
genome of a given person is typically encoded as a vector g = (g1, . . . , gM)T , formed
by M genetic features, typically gi ∈ {0, 1, 2} indicates the number of reference alleles
at a specific genetic locus, such as a single-nucleotide polymorphism (SNP).

Most of the available models assume a linear relationship between the genetic features
and the observed phenotype, i.e. assume that there is a vector β = (β1, . . . , βM)T ,
such that

y = gTβ + e =
M∑
i=1

βigi + e,

where βi ∈ R indicates the effect of i-th genetic variant, and e is the residual contri-
bution of non-genetic (environmental) factors, and non-linear genetic effects. Making
inference about β is crucial for our understanding of the genetics of complex human
traits, as it may discover novel drug targets and suggest better treatment strategies.

Recent genome-wide association studies (GWAS) collect genotype and phenotype in-
formation from large cohorts of individuals. For example, UK Biobank study has
released information for N = 500.000 individuals, M = 93.000.000 genetic variants,
and tens of thousands of quantitative and binary phenotypes. To study a phenotype y,
e.g. standing height, we have measurements y = (y1, . . . , yN)

T across all individuals,
and a genotype matrix G = {gki}, k = 1, . . . N , i = 1, . . .M . Our goal is to solve a
system of linear equations y = Gβ, with known y and G, w.r.t. unknown β.

As both y and G contain sensitive (individual-level) information, GWAS studies typ-
ically keep this information confidential and release the GWAS summary statistics.
Ignoring all genetic variants except j-th, consider a simple linear regression model

y ∼ gj. The corresponding regression coefficient β̂j can be estimated as β̂j =
vT
j y

vT
j vj

,

where vj = (g1j, . . . , gNj)
T is a vector of j-th genetic features across individuals. The

standard error of β̂j estimate vary substantially across genetic features, therefore in

addition to β̂j GWAS summary statistics provide statistical significance, zj =
β̂j

se(βj)
. It

would be more correct to use the notation tj instead of zj and call it Wald’s t-statistic,
but due to large N we usually denote it zj and refer to it as z-score. Across genetic

variants j = 1, . . . ,M , we have a vector z = (z1, . . . , zM) of z-scores, zj =
β̂j

se(βj)
. It

is possible to derive that such z-scores are linearly related to β via matrix A = (aij),
derived from G = (gij):

zj =
M∑
i=1

aijβi + ej,

where p(ej) = N(ej|0, σ2
0) and typically σ2

0 = 1. The elements of matrix A can be

obtained by aij =
∑M

i=1

√
NĤir̂ji as defined in [1] where Ĥi is the sample heterozy-

gosity of variant i and r̂ji is sample correlation coefficients between variant i and j.
The main goal is to solve a system of linear equations z = Aβ, with known z and A,
w.r.t. unknown β, knowing that A is sparse and band matrix.

MiXeR Model

In MiXeR model, we postulate a spike-and-slab prior distribution on βi:

p(βi) = (1− π1)N(βi|0, 0) + π1N(βi|0, σ2
β),

where π1 ∈ [0, 1] indicates the weight in the mixture, N(βi|0, σ2
β) denotes the normal

distribution function of βi with zero mean and σ2
β variance (except for a special case

N(βi|0, 0) which indicates probability mass at 0), and σ2
β corresponds to the variance

of non-zero effects and can be obtained from heritability(h2) as h2 = σ2
βπ1

∑M
i=1 Ĥi.

For now we assume that parameters θ = (π1, σ
2
β, σ

2
0) are the same across all SNPs, i.e.

do not depend on i. It is also possible to do the same analysis with SNP-specific priors
but left as a future work.

For finemapping, we introduce latent variables ui ∈ {0, 1} following Bernoulli distri-
bution, p(ui) = Bern(ui|π1) where ui = 1 implies that SNP i is causal and ui = 0
otherwise. Then the full probabilistic model is p(z, β, u|θ) = p(z|β, θ) ·p(β|u, θ) ·p(u|θ)
and its product components can be written as:

p(zj|β1, . . . , βM , θ) = N
(
zj

∣∣∣ M∑
i=1

aijβi, σ
2
0

)
,

p(βi|ui = 0, θ) = N(βi|0, 0), p(βi|ui = 1, θ) = N(βi|0, σ2
β),

p(ui|θ) = Bern(ui|π1).

Variational Bayesian inference

A tricky part of the model is that zj may depend on multiple βi. After observing
z = (z1, . . . , zM)T , we are aiming to do inference on θ by using maximum likelihood:

p(z|θ) =
∫
u

∫
β

p(z, β, u|θ)dudβ → max
θ

.

Next, for obtaining a tractable optimization function, we use Evidence Lower Bound
(ELBO) and, instead of p(z|θ)→ maxθ and optimize its Variational Lower Bound:

log p(z|θ) = Eq(β,u)[log p(z, β, u|θ)− log q(β, u)] +KL(q(β, u)||p(β, u|z, θ)) ≥
≥ Eq(β,u)[log p(z, β, u|θ)− log q(β, u)] = L(q, θ)→ max

q,θ
,

where KL(q(β, u)||p(β, u|z, θ)) is Kullback–Leibler divergence and it is a measure of
how distribution q(β, u) is different from p(β, u|z, θ). Therefore, choosing q(β, u) close
to the distribution of p(β, u|z, θ) leads to low values of KL(q(β, u)||p(β, u|z, θ)) term,

thus making L(q, θ) a tight bound of log p(z|θ). In this case, the optimization problems
p(z|θ) → maxθ and L(q, θ) → maxq,θ are almost equivalent (in a sense that any
local maximum of the second problem will also yield a local maximum of the original
optimization problem). We will search q(β, u) from the following a parametric family:

q(β, u) =
M∏
i=1

Bern(ui|qi)N(βi|µi, σ
2
i).

Using this model and parametric family, we can optimize L(q, θ) and obtain the pa-
rameters of the q(β, u) which corresponds to the posterior causal probability of each
SNP (qi), and parameter (µi) indicating corresponding effect size and its variance (σ2

i).

To optimize L(q, θ), we use ADAM algorithm [2] to explicitly optimize qi, µi and σ2
i

parameters as well as θ. As you will observe in the next chapters, in order to apply
ADAM algorithm, the first derivatives of the objective function are required. To do
so, we need to obtain a tractable formula for L(q, θ) which can be written initially as;

L(q, θ) = Eq(β,u) log p(z|β, θ) + Eq(β,u) log
p(β|u, θ)p(u|θ)

q(β, u)
=

= Eq(β) log p(z|β, θ) + Eq(β)q(u) log
p(β|u, θ)p(u|θ)

q(β)q(u)
=

= Eq(β) log p(z|β, θ) + Eq(β)q(u) log
p(β|u, θ)
q(β)

+ Eq(β)q(u) log
p(u|θ)
q(u)

=

= Eq(β) log p(z|β, θ) + Eq(u)q(β) log
p(β|u, θ)
q(β)

+ Eq(u) log
p(u|θ)
q(u)

=

= Eq(β) log p(z|β, θ)− Eq(u)KL(q(β)||p(β|u, θ))−KL(q(u)||p(u|θ)) =

= Eq(β) log p(z|β, θ)− Eq(u)

M∑
i=1

KL(q(βi)||p(βi|ui, θ))−
M∑
i=1

KL(q(ui)||p(ui|θ)).

Calculating the derivatives of Variational Lower Bound

In this section, we will obtain the first derivatives with respect to decision variables
which are µi, σ

2
i , and qi to optimize L(q, θ). Firstly, we need to expand the terms

of L(q, θ) in order to ease derivative calculation. Assuming zj’s are independent,

Eq(β) log p(z|β, θ) can be rewritten as Eq(β) log p(z|β, θ) = Eq(β)

∑M
j=1 log p(zj|β, θ) hence

L(q, θ) can also be represented as

L(q, θ) =Eq(β)

M∑
j=1

log p(zj|β, θ)︸ ︷︷ ︸
T1

−Eq(u)

M∑
i=1

KL(q(βi)||p(βi|ui, θ))︸ ︷︷ ︸
T2

−
M∑
i=1

KL(q(ui)||p(ui|θ))︸ ︷︷ ︸
T3

=

(1)

T1 − T2 − T3.

Hence we divide L(q, θ) into three terms in order to ease the workload for derivative
calculation.

To deal with the derivatives of Eq(β) log p(z|β, θ) (hence T1) we need to employ reparametriza-

tion trick [3]. In particular, it is easy to compute
∂Eq(a)f(b)

∂b
, but it’s unclear how to

compute
∂Eq(a)f(b)

∂a
and we have such cases in T1. The Reparametrization trick allows

us to circumvent this issue by using a parametric standard distribution ϵ (in our case,
the standard normal distribution can be used for this purpose), and reformulating the
function with this parametric function as

Eq(βi|µi,σ2
i)
log p(z|βi, θ) = Eϵ log p(z|βi(ϵ, µi, σ

2
i), θ).

Let ϵ ∈ [ϵ1ϵ2 . . . ϵM] ∼N(0, I), then reparametrization trick can be applied as

Eq(β)

M∑
j=1

log p(zj|β, θ) =

Eϵ

M∑
j=1

log p(zj|β1 = µ1 + σ1ϵ1, β2, . . . βi = µi + σiϵi . . . βM , θ) ≡ Eϵ

M∑
j=1

log p(zj|β = µ+ σϵ, θ).

(2)

Since zj =
∑M

i=1 aijβi + ej, then we may write its distribution as

zj|β=µ+σϵ,θ =
M∑
i=1

aij(µi + σiϵi) + ej ∼ N(zj|
M∑
i=1

aij(µi + σiϵi), σ
2
0). (3)

In order to calculate the gradients of T1 (hence Eϵ

∑M
j=1 log p(zj|β = µ+ σϵ, θ)), it

would be beneficial to write down log p(zj|β = µ+ σϵ, θ) explicitly. As Eq. 3 implies,
it can be written as

log p(zj|β = µ+ σϵ, θ) = − log

[√
2πσ2

0

]
−

(
zj −

∑M
i=1 aij(µi + σiϵi)

)2
2σ2

0

. (4)

If we plug this expression into T1, then it is possible to get the following expression:

T1 = Eϵ

∑M
j=1 log p(zj|β = µ+ σϵ, θ) = Eϵ

∑M
j=1− log

[√
2πσ2

0

]
− (zj−

∑M
i=1 aij(µi+σiϵi))

2

2σ2
0

= -
∑M

j=1Eϵ log
[√

2πσ2
0

]
−
∑M

j=1Eϵ
(zj−

∑M
i=1 aij(µi+σiϵi))

2

2σ2
0

= −M log
[√

2πσ2
0

]
−
∑M

j=1Eϵ
(zj−

∑M
i=1 aijµi−

∑M
i=1 aijσiϵi)

2

2σ2
0

= −M log
[√

2πσ2
0

]
−
∑M

j=1Eϵ
(zj−

∑M
i=1 aijµi)

2−2(zj−
∑M

i=1 aijµi)(
∑M

i=1 aijσiϵi)+(
∑M

i=1 aijσiϵi)
2

2σ2
0

.

If we expand the Eϵ operator in T1, we can deduce that the middle term vanishes since
it has Eϵ[ϵi] as a product term;

Eϵ[−2(zj −
M∑
i=1

aijµi)(
M∑
i=1

aijσiϵi)] = −2(zj −
M∑
i=1

aijµi)(
M∑
i=1

aijσiEϵ[ϵi]) = 0, (5)

and similarly, we can calculate the first term of T1 as

Eϵ[(zj −
M∑
i=1

aijµi)
2] = (zj −

M∑
i=1

aijµi)
2. (6)

The third term of T1 is the most challenging part. Firstly we need to rewrite this term
as the square of the summation(

M∑
i=1

aijσiϵi

)2

=
M∑
i=1

(
(aijσiϵi)

2 + 2
M∑

k=i+1

(akjσkϵkaijσiϵi)

)
(7)

and then if we employ Eϵ operator we may get;

Eϵ

(
M∑
i=1

aijσiϵi

)2

=
M∑
i=1

(
Eϵ(aijσiϵi)

2 + 2Eϵ

M∑
k=i+1

(akjσkaijσiϵkϵi)

)
, (8)

which implies

Eϵ

(
M∑
i=1

aijσiϵi

)2

=
M∑
i=1

(
(a2ijσ

2
iEϵ[ϵ

2
i]) + 2

M∑
k=i+1

(akjσkaijEϵ[σiϵkϵi])

)
. (9)

Note that Eϵ[ϵ
2
i] = 1 and Eϵ[σiϵkϵi)] = 0 since k > i. Then it is possible to further

simplify it as;

Eϵ

(
M∑
i=1

aijσiϵi

)2

=
M∑
i=1

(
a2ijσ

2
i

)
. (10)

Then T1 can be written as;

T1 =−M log

[√
2πσ2

0

]
− 1

2σ2
0

M∑
j=1

M∑
i=1

(
a2ijσ

2
i

)
− 1

2σ2
0

M∑
j=1

(zj −
M∑
i=1

aijµi)
2

= −M log

[√
2πσ2

0

]
− TA

2σ2
0

(11)

where TA =
∑M

j=1

∑M
i=1

(
a2ijσ

2
i

)
+
∑M

j=1(zj −
∑M

i=1 aijµi)
2.

Note that, since our main motivation is obtaining
∂Lq,θ

∂µi
,

∂Lq,θ

∂σ2
i
,

∂Lq,θ

∂qi
,

∂Lq,θ

∂θ
. It is always

worthwhile to keep in mind that Eϵ[ϵi] = 0 and Eϵ[ϵ
2
i] = 1. Then we may start by

evaluating ∂T1

∂µi
:

∂T1

∂µi

=− ∂

∂µi

M log

[√
2πσ2

0

]
− ∂

∂µi

M∑
j=1

Eϵ
(zj −

∑M
i=1 aijµi)

2 − 2(zj −
∑M

i=1 aijµi)(
∑M

i=1 aijσiϵi) + (
∑M

i=1 aijσiϵi)
2

2σ2
0

= −
M∑
j=1

Eϵ
∂

∂µi

(zj −
∑M

i=1 aijµi)
2 − 2(zj −

∑M
i=1 aijµi)(

∑M
i=1 aijσiϵi) + (

∑M
i=1 aijσiϵi)

2

2σ2
0

.

(12)

In Eq. 12, the rightmost term vanishes since it is independent of µi and the middle
term vanishes since it includes Eϵ[ϵi] = 0. Therefore, it is possible to simplify the
expression as

∂T1

∂µi∗
=−

M∑
j=1

Eϵ
∂

∂µi

(zj −
∑M

i=1 aijµi)
2

2σ2
0

= −
M∑
j=1

∂

∂µi

(zj −
∑M

i=1 aijµi)
2

2σ2
0

(13)

=
1

σ2
0

M∑
j=1

ai∗j(zj −
M∑
i=1

aijµi). (14)

In a similar manner, it is possible to calculate ∂T1

∂σi
:

∂T1

∂σi

= −
M∑
j=1

Eϵ
∂

∂σi

(zj −
∑M

i=1 aijµi)
2 − 2(zj −

∑M
i=1 aijµi)(

∑M
i=1 aijσiϵi) + (

∑M
i=1 aijσiϵi)

2

2σ2
0

.

(15)

Similar to the previous derivation, one can observe that the first and the second term
are vanished by the derivative and expectation operators respectively. Hence the
expression can be further simplified as

∂T1

∂σi∗
=−

M∑
j=1

∂

∂σ∗
i

Eϵ
(
∑M

i=1 aijσiϵi)
2

2σ2
0

= −
M∑
j=1

Eϵ
∂

∂σ∗
i

(
∑M

i=1 aijσiϵi)
2

2σ2
0

(16)

= −
M∑
j=1

Eϵ2ai∗jϵ
∗
i

(
∑M

i=1 aijσiϵi)

2σ2
0

. (17)

Note that the purpose of proposing i∗ is to avoid confusion with the summation index
in Eq. 16. Once we have eliminated this summation, then we will replace it as i. Since
ϵis are independent and identically distributed, Eϵ[ϵ

∗
i ϵi] = 1 iff i = i∗ and 0 otherwise.

Using these, we may obtain the following expression

∂T1

∂σi∗
= − 1

2σ2
0

M∑
j=1

2a2i∗jσi∗ . (18)

Then using the chain rule ∂T1

∂σi∗
= ∂T1

∂σ2
i∗

∂σ2
i∗

∂σi∗
, we can easily obtain ∂T1

∂σ2
i∗

as

∂T1

∂σ2
i∗

=
−1
2σi∗

1

2σ2
0

M∑
j=1

2a2i∗jσi∗ =
−1
4σ2

0

M∑
j=1

2a2i∗j. (19)

It is also quite straightforward to calculate the gradient of T1 with respect to θ which

is ∇θT1 =



∂T 1

∂π1

∂T 1

∂σ2
β

∂T1

∂σ2
0


.

Since T1 only depends on σ2
0 among variables of θ, we may readily calculate it by

utilizing (11) as

∂T1

∂σ2
0

=
TA −Mσ2

0

2σ4
0

. (20)

Hence,

∇θT1 =

 0
0

TA−Mσ2
0

2σ4
0

 . (21)

For T2, note that it is possible to rewrite it as

Eq(u)

M∑
i=1

KL(q(βi)||p(βi|ui, θ)) =
M∑
i=1

Eq(u)KL(q(βi)||p(βi|ui, θ)). (22)

Then, for ui = 0 and ui = 1 we write the expectation explicitly as:

Eq(u)KL(q(βi)||p(βi|ui, θ)) = q(ui = 0)KL(q(βi)||N(0, δ2))

+ q(ui = 1)KL(q(βi)||N(0, σ2
β))

= (1− qi)KL(q(βi)||N(0, δ2)) + qiKL(q(βi)||N(0, σ2
β))

where δ2 is a sufficiently small and adjustable parameter to approximate N(0, δ2) as
Dirac delta function.

In order to obtain the gradients of T2, the first step would be representing q(βi) and
q(ui) explicitly. Using q(β, u), it is possible to write them as

q(βi) = N(βi|µi, σ
2
i)

q(ui) = Bern(ui|qi).

Then it is possible to evaluate KL divergence in T2 (and also T3). In particular, T2

involves KL divergence of two normal distributions and can be written as 1

T2 =
M∑
i=1

Eq(u)KL(q(βi)||p(βi|ui, θ)) =
M∑
i=1

(1− qi)

(
log(

δ

σi

) +
σ2
i + µ2

i

2δ2
− 1

2

)
+

M∑
i=1

qi

(
log(

σβ

σi

) +
σ2
i + µ2

i

2σ2
β

− 1

2

)
.

1Let, x and y be two normal distributions with means µ1, µ2 and standard deviations σ1, σ2,

respectively. Then KL(x||y) =
(
log(σ2

σ1
) +

σ2
1+(µ1−µ2)

2

2σ2
2

− 1
2

)

Then it is straightforward to calculate derivatives as:

∂T2

∂µi

=
(1− qi)µi

δ2
+

(qi)µi

σ2
β

, (23)

∂T2

σ2
i

=
1

2

(
(1− qi)

δ2
+

(qi)

σ2
β

− 1

σ2
i

)
, (24)

∂T2

∂qi
=−

(
log(

δ

σi

) +
σ2
i + µ2

i

2δ2

)
+

(
log(

σβ

σi

) +
σ2
i + µ2

i

2σ2
β

)

= log(
σβ

δ
)− σ2

i + µ2
i

2δ2
+

σ2
i + µ2

i

2σ2
β

. (25)

It is clear that there is just one nonzero term in ∇θT2 and it can be calculated as

∂T2

∂σ2
β

=
M∑
i=1

−qi
2σ4

β

(
σ2
i + µ2

i − σ2
β

)
. (26)

Hence

∇θT2 =

 0∑M
i=1

−qi
2σ4

β

(
σ2
i + µ2

i − σ2
β

)
0

 . (27)

For the evaluation of KL(q(ui)||p(ui|θ)) term in T3, we need to apply KL divergence of
two Bernoulli distributions since q(ui) ≡ Bern(ui|qi) and p(ui|θ) ≡ Bern(π1). Then
the corresponding KL divergence can be obtained as2

KL(q(ui)||p(ui|θ)) ≡ KL(Bern(ui|qi)||Bern(π1)) = qi log
qi
π1

+ (1− qi) log(
1− qi
1− π1

).

Then,

2Let x and y be two Bernoulli distributions with parameters px and py. Then KL(x||y) =
px log(

px

py
) + (1− px) log

1−px

1−py
.

T3 =
M∑
i=1

qi log
qi
π1

+ (1− qi) log(
1− qi
1− π1

),

and corresponding nonzero derivatives are:

∂T3

∂qi
= log

qi
π1

− log
1− qi
1− π1

, (28)

∂T3

∂π1

=
M∑
i=1

π1 − qi
π1 − π2

1

, (29)

∇θT3 =

∑M
i=1

π1−qi
π1−π2

1

0
0

 , (30)

hence

∇θLq,θ =


−
∑M

i=1−
π1−qi
π1−π2

1

−
∑M

i=1
−qi
2σ4

β

(
σ2
i + µ2

i − σ2
β

)
TA−Mσ2

0

2σ4
0

 . (31)

All in all, as summarized in Table 1, we can add up the corresponding derivatives of
all terms to get the derivatives of Lq,θ.

T1 T2 T3 Lq,θ

∂µi

1
σ2
0

∑M
j=1

aij(zj −
∑M

k=1 akjµk)

(1−qi)

δ2
+

(qi)

σ2
β

0

1
σ2
0

∑M
j=1 aij(zj −

∑M
k=1 akjµk)

-
(1−qi)µi

δ2
− (qi)µi

σ2
β

∂σ2
i

−1

4σ2
0

∑M
j=1 2a2

ij
1
2

(
(1−qi)

δ2
+

(qi)

σ2
β

− 1
σ2
i

)
0 −1

4σ2
0

∑M
j=1 2a2

ij - 1
2

(
(1−qi)

δ2
+

(qi)

σ2
β

− 1
σ2
i

)

∂qi 0 log(
σβ
δ

) −
σ2
i +µ2

i
2δ2

+
σ2
i +µ2

i
2σ2

β

log
qi
π1

− log
1−qi
1−π1

-

(
log(

σβ
δ

) −
σ2
i +µ2

i
2δ2

+
σ2
i +µ2

i
2σ2

β

+ log
qi
π1

− log
1−qi
1−π1

)

∇θ


0
0

TA−Mσ2
0

2σ4
0




0∑M
i=1

−qi
2σ4

β

(
σ2
i + µ2

i − σ2
β

)
0



∑M

i=1
π1−qi
π1−π2

1
0
0




−
∑M

i=1
π1−qi
π1−π2

1

−
∑M

i=1
−qi
2σ4

β

(
σ2
i + µ2

i − σ2
β

)
TA−Mσ2

0
2σ4

0



Table 1: All partial derivatives of Lq,θ

Modifications for Adam Optimization

The direct implementation of ADAM algorithm itself does not take constraints into
account. On the other hand our decision variables qi and σ2

i , by definition, have to have

Algorithm 1 Modified ADAM algorithm for Finemap-MiXeR

Require: : θ = (π1, σ
2
β, σ

2
0) (optional) : hyperparameters

Require: : α : Stepsize
Require: : β1, β2 ∈ [0, 1) : Exponential decay rates for the moment estimates, paper
parameters are used

Require: : Reparametrize qi =
1

1+e
−kf oi

Require: : L(x, θ),: Stochastic objective function with parameters θ where x=[µ σ
o]

Require: : x0 : Initial parameter vector m0 ← 0 (Initialize 1st moment vector)
Require: : v0 ← 0 (Initialize 2nd moment vector) t← 0 (Initialize timestep)
while qt not converged do t← t+ 1

gt ← ∇θL (qt−1, θ) : (First gradients w.r.t. stochastic objective at timestep t)
mt ← β1 ·mt − 1 + (1− β1) · gt (Update biased first moment estimate)
Vt ← β2 · Vt − 1 + (1− βt) · g2t (Update biased second raw moment estimate)
m̂t ← mt/ (1− β2

1) (Compute bias-corrected first moment estimate)
v̂t ← Vt/ (1− β2

2) (Compute bias-corrected second raw moment estimate)
xt ← xt−1 − α · m̂t/(eps +

√
vt) (Update parameters)

if σi is smaller than 0, project into (0, ∞)
Update hyperparameters (θ) in the same manner if it is not given by the user

end while
return xt (Resulting parameters)

some constraints. In particular, qi corresponds to the probability of being causal hence
it needs to be between 0 and 1. Similarly, since σ2

i represents variance, it needs to be
non-negative. To satisfy these constraints, we may either employ Reparamtrization
(REP) or Projected Gradient (PG) approaches. For optimization of qi we are using
REP by reparametrizing qi with another variable oi as

qi =
1

1 + e−kfoi
(32)

where kf is an arbitrarily chosen constant. Therefore, regardless of the optimized
value of oi, qi is guaranteed to be placed between 0 and 1. Here instead of optimizing
with respect to qi, optimization with respect to oi is performed by determining the
derivative of L(q, θ) with respect to oi and it can be obtain using chain rule;

∂Lq,θ

∂oi
=

∂Lq,θ

∂qi

∂qi
∂oi

. (33)

For σ2
i , we are using Projected Gradient which is basically projecting the calculated

σ2
i to the defined space which is (0, ∞) in our case.

For hyperparameters (π1, σ
2
β, σ

2
0), if it is not given by the user, they can also be opti-

mized same manner using the corresponding derivatives. To sum up, we implemented

the ADAM algorithm for finemapping considering all these points as presented in
Algorithm 1.

Reducing Computational Complexity with Finemap-MiXeR PCA

As mentioned in the main text, the required computation to calculate derivatives
∂Lq,θ

∂µi
,

∂Lq,θ

∂σ2
i
,

∂Lq,θ

∂i
are O(M2), O(M) and O(M) respectively. Hence, if we can reduce

the computation of
∂Lq,θ

∂µi
somehow, we can also reduce the required computation of the

whole algorithm. We present a Principal Component Analysis (PCA) based approach,
namely Finemap-MiXeR PCA, to reduce the computational complexity. Firstly let’s
re-write the exact formula of this derivative in compact form as defined in the main
text:

∂Lq,θ

∂µ
=

1

σ2
0

(A1 + A2µ)
T − (1− q)⊙ µ

δ2
− q ⊙ µ

σ2
β

.

The problematic part in this expression that requires O(M2) is A2µ which is a MxM
matrix and Mx1 vector product where A2 = −AAT . Let’s recall the result of this
product as

Ap = A2µ. (34)

Since A2 = −AAT , the columns of A2 are highly correlated due to LD structure of
matrix A. Therefore, for reducing dimensionality, we may perform Principal Com-
ponent Analysis (PCA) analysis to A2 to obtain its eigenvalues and corresponding
eigenvectors as

cov(A2) = UΣUT , (35)

where Σ corresponds to diagonal matrix whose diagonal elements are the sorted eigen-
values of cov(A2) and columns of U is the matrix whose columns are the correspond-
ing eigenvectors. Then we can choose the first pc eigenvectors of U that covers the
pcthr=0.9999 (%99.99) of variation of A2 as A22 = UTA2 and project Ap into the new
dimension as

Ap2 = A22µ, (36)

where Ap2 is a matrix whose dimensions are pc x M. If we would like to reconstruct
Ap from Ap2 we can do this by multiplying Ap2 with U as

Âp = UAp2 = UUTA2µ. (37)

Note that, since UT and A2 are fixed, we may precalculate them before the iterations
as B1 = UTA2 and for each iteration the required calculations are

B2 = B1µ, (38)

Âp = UB2, (39)

where both operations above require O(pc M) and since pc is mostly pc << M , the
required operations to compute gradients can be reduced importantly by preserving
accuracy.

References

[1] A. A. Shadrin, O. Frei, O. B. Smeland, F. Bettella, K. S. O’Connell, O. Gani,
S. Bahrami, T. K. Uggen, S. Djurovic, D. Holland et al., “Phenotype-specific dif-
ferences in polygenicity and effect size distribution across functional annotation
categories revealed by ai-mixer,” Bioinformatics, vol. 36, no. 18, pp. 4749–4756,
2020.

[2] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[3] M. Titsias and M. Lázaro-Gredilla, “Doubly stochastic variational bayes for non-
conjugate inference,” in International conference on machine learning. PMLR,
2014, pp. 1971–1979.

